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Abstract

The modified stochastic approximation procedure
ZTit1 = i + a:g(xi + &+1),20 = (1)

is considered. Here {a;} is the sequence of positive numbers, {£,} is a sequence
of martingale-differences, function g is twice differentiable, ug(u) < 0 for u # 0,
¢ is the initial value. Results on the almost-sure boundedness and the exponen-
tial stability of procedure (1) are obtained. The theorem of the convergence of
nonnegative semimartingale has been applied.

1 Introduction

Stochastic approximation, originally proposed by Robbins and Monro in 1951 [7], is
concerned with the problem of finding the root of the function y = R(x) which is
neither known nor directly observed. Let the result of the measurement at the point
xk at moment k be equal to Yy = R(zy) + £k+1, where &1, ..., &, ... are independent
random values with zero mean. For an arbitrary initial point X (0) = = and an arbi-
trary sequence {;} of positive numbers, Robbins and Monro suggested the following
procedure

Xir1 = Xi — mYe, Yo = R(xr) + g1 (2)

The generalizations of Robbins and Monro method were investigated in numerous pub-
lications. We mention here just two outstanding books: by Nevelson and Khasmin-
skii (cf. [5]) and Kushner (cf. [2]). Over the years, stochastic approximation has
been proven to be a powerful and useful tool. Here we discuss the application of the
stochastic approximation to credibility.

Let x denote the claim size, with distribution Py that depends on some random
parameter 6 (with the prior distribution 7(6)). It can be proven (cf. [1] and [3]) that
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for some distributions P and 7 (the Normal/Normal, the Poisson/Gamma, etc.) the
tradition credibility formula

fn = (1 —ap)m+ anZn, (3)

takes place. Here [i,, is an estimation of the fair premium, m is the collective fair
premium, T, is the mean of n years of individual experience z1,xo,...,T,. It is not
difficult to show that (3) can be rewritten as a stochastic recursion of the type (2). The
latter is particularly suited for the sequential evaluation of the fair premium. However
in some situations (see [3])) tradition credibility formula fails and the stochastic ap-
proximation gives rise to some kind of quasi-credibility. In this case, instead of the
stochastic approximation procedure (2), we need to consider the following modified
procedure

Tipr = 2 + ig(w; +&ig1), o = ¢ (4)

In this paper we investigate the exponential stability of procedure (4), where the
errors of the observation ; are martingale-differences, the function g is twice differ-
entiable and ug(u) < 0 for u # 0. The theorem of the convergence of nonnegative
semimartingale will be needed (cf. [6]).

2 Definitions and Auxiliary Lemmas

Let the probability space (£, F, P) with filtration F' = {F,},=1,2,.. be given. Let the
stochastic sequence {m,,} be an F,,-martingale with mg = 0. We put &, = m,, — m,_1
for n > 1 where & = 0. Then the stochastic sequence {&,} is an F,,-martingale-
difference. For detailed definitions and facts of random processes, the reader can see
e.g. [4]. We present below two necessary lemmas which will be used in this paper.

LEMMA 1. Let {{,} be an F,,-martingale-difference. Then there exists an F,-
martingale-difference {u,,} and a positive F;,_1-measurable stochastic sequence {n, }
such that for every n =1,2,...,

£ = lp +1n  as. (5)

LEMMA 2. Let Z,, = Zo +AL —A2 + M,, be a non-negative semimartingale, where
M,, is a martingale, A, A2 are a.s. non-decreasing processes. Then {w :: A}, < o0} C
{Z =yn {42 < oo} as.

Here {Z —} denotes the set of all w € §2 for which Z,

The notation a.s. means almost-surely.

= lim Z; exists and is finite.
t—o0

3 Boundedness of Solution

Let the function g be twice differentiable and for any u € R,
ug(u) <0, u#0, (6)
92(u) < Kluza (7)
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9" (u)] < K, (8)

where K1, K > 0 are nonrandom numbers. Let {£,} be a sequence of F,-martingale-
differences with £, = 0 and decomposition (5) takes place. Let {c;} be a sequence of
positive numbers such that a.s.

o0

Y a; =0, (9)

j=0

Za? < 00, (10)
=0

> ajnjn < oo (11)
j=0

THEOREM 1. Let conditions (6)-(11) be fulfilled, then the solution x; to equation
(4) has the following properties:

sup 2? <oo and liminfz; =0 a.s.
0<i<oo i—00

PROOF. Applying Taylor’s expansion to g(z; + &;4+1) we have
i - = (w4 g+ &) — o}
< 205w |g(7) + ' ()61 + QN(U)% + P K (i + &),
where u lies between z; and &; ;1. From above and using the decomposition of £? (see

Lemma 1 and (5)) we have

2l — < 204mig(x) + (Kaglag| + 2K108)nig1 + 2K 0727 + 204259 (%) €41
+(Kai|zi] + 2K107) iy

Let Am; = 20,29 (2:)€i41 + (K| 2| + 2K102)pit 1, which is a martingale-difference.
Applying the estimation |z;| < 1+ 22, we get

w7 — a7 < 20umig(w) + (Koy + 2K107 )ni1 + (Kainipa + 2K107)a; + Amy, (12)
and then
a7y < 20Gwig(w;) + (1+ B;)a + (Kay + 2K107 )01 + Amy, (13)
where §; = Ka;niv1 + 2K10¢i2. Note that (10)—(11) imply

%

[[a+8) <M (14)
j=1
for some nonrandom M > 0 and every ¢ = 1,2, ... Letting

w1 = [+ 8)" Py

Jj=1
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and substituting it in (13) we get

i i—1 1—1
[T+6)620 —9) < 2[00 +/3j)1/2yig(H(1 +ﬁj>1/2yi)

j=1 j=1 =1
+(KO¢¢ —+ 2K10¢?)17i+1 —+ Ami.

Let

H(l + ﬁj)_lAmi = Am},

Jj=1

which is a martingale-difference, therefore

7 1—1 1—1
Yia —vi < 2H(1+5j)1%‘H(lJrﬁj)l/Qyz‘g(H(l+5j)1/2yi)
j=1

j=1 j=1

+ ] +8) " (Kai + 2K107)ni 1 + Am). (15)

Taking the sum of (15) from ¢ =0 to i = n — 1, we have

1

n—1 n—1 1 i—1 i—
SUEED SNEIE) 0 | (RN (RN OV (R
=0 i=0 j=1 j=1 j=1

n—1 1 n—1

+ZH 1+ 85)” Kal—i—QKla 172+1+2Am

1=0 j=1 =0
Therefore

Y2 < U, =y + AL — A2 +ml, (16)
where

ZH 1+ 3;) " (Ka; + 2K107)mi41

:O =1
and

n—1 i i—1 i—1
A2 =23 TJa+8) e [T+ ﬁj)1/2yig(H(1 + ﬁj)”zyi)

i=0 j=1 j=1 J=1

It should be noted that Al and A2 are increasing processes a.s., m} is a martingale,

U, is nonnegative semimartingale and P{AL, < oo} = 1 due to the convergence of
series in (10) and (11). Applying Lemma 2, that is

{AL < oo} C{Ui =} n{A%, < oo},

we have
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This implies that there exists some a.s. finite random value H = H(w) such that

P{ sup U; < H}=1. Then P{ sup y? < H} =1 and the first part of the theorem
0<i<oo 0<i<oo
is proved.

Suppose now that P{liminfy? > 0} = pg > 0. Then there exist random variables

Co = Co(w) > 0 and Ny = No(w) > 0 such that P(Qp) = po7 where Qp = {w : y? >

Co(w)/2 for i > Ny}. Since [] (1+B;)Y/? > 1, we have y? H (14 8;)Y2 > ¢o(w)/2 for
j=1

i > Ng and w € Q. Due to the continuity and negativity (for u # 0) of the function
d(u) = ug(u) we can find kg = ko(w) and N3 = Ny(w) > Np(w) such that

_¢<H(1 + 5;‘)1/2%) > ko(w)
j=1
for w € Qg and i > N;. Then

—ZZalH 1+ 8)?yi(w)g (H(Hﬁg)myl( ))

j=1
N1 1 n—1

- 2y 2y

lNl

S aiqs(nlu +6) i)

i=N1

Y

> 2ko(w Zal—>oo
ZN1

as n — oo. Hence P{A2 = oo} > py > 0 which contradicts (16) and conditions (10)-
(11). Then P{liminfy? > 0} = 0 and from (14) we have: P{liminf 2? < M liminfy? =
i—00 i—00 i—00

0} = 1. The theorem is completely proved.

4 Exponential Stability

In addition to the conditions from the previous section let two more conditions be
fulfilled

Hy x| < g(z)], (17)
Zaim-H H(1*204jH1)71 < 00 a.s., (18)
i=0 j=1

where H; > 0 is some constant and 7,417 — 0 when 7 — oc.

REMARK 1. Let Hq|z| < |g(z)| and zg(z) < 0 for all x € R and = # 0. The
following is correct: if > 0, then

—ag(x) = lg(x)| > |z|Hi|x| = Hya?*;
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and if z < 0, then
—ag(x) = |z||g(z)| > |2[H:|z| = Hia®.

Therefore
zg(x) < —Hyx2 (19)

THEOREM 2. Let conditions (6)-(11) and (17)-(18) be fulfilled. Then for any

Kk >0,
exp [(1 — K)2H; Zail 2 —0
=0

a.s. where x,, is a solution of equation (4).
PROOF. Substituting (19) in (12) we get

23— < —(20;H1 — Kamip — 2K103)27 + (Ko + 2K103 )41 + Am;. (20)

Let
T = 20éiH1 — KOZZ‘T]Z‘+1 — 2K1Oéi2.

Due to the positivity of K1, K and 7,41 from condition (18) we have

Z(KOZZ — 2K10¢12)7]i+1 H(]. — 2ajH1 + 2K10[? + KOéjanrl)_l
=0 7=0
< K> amip [J(1—205H) 7" < 0. (21)
=0 7=0

From (20) we get
27, < (1—7)a? + (Ka; + 2K103)ni01 + Am,. (22)
Let i
H (1—m7)" a3
j=1
which implies that )

i

i =] -7)2
j=1
Substituting it in (22) we get,
i i—1
H(]. — Tj>21-2+1 S (1 — Ti) H(]. — Tj>zz'2 =+ (KOéj =+ 2K10&?)7]j+1 =+ Aml
Jj=1 Jj=1

and

22—z < H 1—7) YKaj + 2K 055%)n; 41 + Amj, (23)
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where Am! = [] (1 — 7;) "' Am,. Taking the sum of (23) from i =0 to i =n — 1, we
j=1
obtain
n—1 1
<2+ ) [0 -7)7 (Ko +2K1a5)nj41 + my,.
i=0 j=1
Applying (21) and using the same arguments as in Theorem 1 we obtain that there

exists some a.s. finite random value H = H(w) such that P{ sup 2?2 < H} =1. As
0<i<oo
a;i,ni+1 — 0 when ¢ — oo for any € > 0 there exists the random integer N = N(w) > 0

such that for any j > N
2K 0 + Knjp1 < 2Hqe.

Then for some Hy > 0

r? < HH, H (1-2H,(1 —¢)a;) = HH, exp{z In[1 —2H1(1 —¢)ay]}
i=N i=N

(3
< HHyexp{-2H, » (1-¢)ay}. (24)
j=N
If we take some £ > 0 and ¢ < £/2, then from (24) we obtain that P{lim exp{(1 —
71— 00
k)2H1 Y ajta? =0} = 1. The proof is complete.
j=N
In the following example we investigate the fulfillment of the condition (18). We
consider two different cases for «;, and n;.
EXAMPLE. a) Let a; = 3 and 7; < C(w)/i"* for some € > 0 and a.s. finite
random variable C'(w) > 0. Then

i i = > In(1-2H10)
[[(-2ma;) ™ = J] emttemen — e o= < Kji*h,
j=N j=N

and a.s.

-1 / 2H
;amm ]1;[1(1 —20;H1)" < K, ; U e <%
where K| and K are some constants.
b) Let a;; = (ilnd)~! and n; < C(w)/i*+2H1 for some € > 0 and a.s. finite random
variable C(w) > 0. Then
i

[ —2Hi0))7" < K{n*™4,

j=N
and a.s.

0 i B =1 COw
Zamm H(l —2a;H1)7" < Ky Z ilng I Zis+(21121 <0
i=0 i=1 i=1
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