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Abstract We consider random interlacements®h d > 3. We show that the per-
colation function that to eaahn> 0 attaches the probability that the origin does not
belong to an infinite cluster of the vacant set at layeis C' on an interval0, 0),
wherel is positive and plausibly coincides with the critical levglfor the percola-
tion of the vacant set. We apply this finding to a constrain@dmization problem
that conjecturally expresses the exponential rate of de€#lye probability that a
large box contains an excessive proportioof sites that do not belong to an infinite
cluster of the vacant set. Whers smaller thart, we describe a regime of “small
excess” forv where all minimizers of the constrained minimization peshlremain

strictly below the natural threshold valyéu, — +/u for the variational problem.
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0 Introduction

In this work we consider random interlacementszsh d > 3, and the percolation
of the vacant set of random interlacements. We show thatehepfation function

6o that to each leval > 0 attaches the probability that the origin does not belong to
aninfinite cluster of¥Y, the vacant set at level of the random interlacements, is
C! on an interval0,G), whereG is positive and plausibly coincides with the critical
levelu, for the percolation of", although this equality is presently open. We apply
this finding to a constrained minimization problem that fer O < u,. conjecturally
expresses the exponential rate of decay of the probabiltlya large box contains
an excessive proportionbigger tharfy(u) of sites that do not belong to the infinite
cluster of¥!'. Whenu > 0 is smaller thai andv close enough té(u), we show
that all minimizersp of the constrained minimization problem a&?-functions
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onRY, for all 0 < a < 1, and their supremum norm lies strictly belgfd, — \/u.
In particular, the corresponding “local level” functiofgu+ ¢ )? do not reach the
critical valueu.,.

We now discuss our results in more details. We consider raridterlacements
onZd,d > 3, and refer to [5] or [6] for background material. ok 0, we let.#{
stand for the random interlacements at lavaind 7Y = 79\ .#" for the vacant set
at levelu. A key object of interest is the percolation function

Bo(u) = P[0 «#—co], for u> 0, 1)

where{0 «7- w} is a shorthand for the everio 2 oo} stating that O does not
belong to an infinite cluster af". One knows from [14] and [13] that there is a
critical valueu, € (0,) such thatf, equals 1 onu. ») and is smaller than 1 on
(0,u,). And from Corollary 1.2 of [16], one knows that the non-dewieg left-
continuous functiorly is continuous except maybe at the critical value

® u
O u*
Fig. 1 A heuristic sketch of the graph 6§ (with a possible but not expected jumpua)

With an eye towards applications to a variational probleat the discuss be-
low, see (9), we are interested in proving tifigtis C1 on some (hopefully large)
neighborhood of 0. With this goal in mind, we introduce th#édiwing definition.
Given 0< o < B < u,, we say that NLFa, 3), the no large finite cluster property
onla, ], holds when

there existdo(a, ) > 1,co(a,B) >0, y(a,B) € (0,1] such that
forall L > Lo andu € [a, B8], P[0 «—— 9B, 0 o] < g %L,

(2)

whereB. = B(0,L) is the closed ball for the sup-norm with center 0 and radlius
0By its internal boundary (i.e. the subset of siteBjrthat are neighbors &%\By),
and the notation is otherwise similar to (1). We then set

U= sup{u € [0,u,); NLF(O,u) holds}. 3)
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One knows from Corollary 1.2 of [7] thatis positive:
e (0,u,]. 4)

It is open, but plausible, thai = u, (see also [8] for related progress in the
context of level-set percolation of the Gaussian free figld)r first main result is:

Theorem 1.

The functiongy is C* on [0,0) and (5)
6 is positive on0, 0). (6)

Incidentally, let us mention that in the case of Bernoulligoation the function
corresponding td is known to beC” in the supercritical regime, see Theorem
8.92 of [10]. However, questions pertaining to the sign ef$kcond derivative (in
particular the possible convexity of the correspondingcfiom in the supercritical
regime) are presently open. Needless to say that in ourlcasdape of the function
6o is not known (and the sketch in Figure 1 conceivably mislegyi

Our interest in Theorem 1 comes in conjunction with an apgilbn to a varia-
tional problem that we now describe. We consider

D the closure of a smooth bounded domain, or of an open
sup-norm ball, ofR? that contains 0

(7)
Givenu andv such that
O<u<u,andf(u) <v <l (8)

we introduce the constrained minimization problem
. 1 © '
12, = mf{ﬁ / [0¢[?dz ¢ >0,¢ € C7(RY), f bo((v/U+¢)%) dz> v}, 9
Rd JD

Wherecg(Rd) stands for the set of smooth compactly supported function&®
andfp ...dzfor the normalized integr | J...dzwith |D| the Lebesgue measure
of D (see also below (10) for the interpretationgof

The motivation for the variational problem (9) lies in theff¢hat it conjecturally
describes the large deviation cost of having a fractionamthe of sites in the large
discrete blow-uy = (ND)NZY of D that are not in the infinite clust&fy of #Y.
One knows by the arguments of Remark 6.6 2) of [15] that

liminf % logP[| Dn\a| > v|Dn|] > —I0, foru,vasin(8)  (10)
(with |A| standing for the number of sites Aifor A subset ofZ9).

Itis presently open whether the lim inf can be replaced bsné knd the inequal-
ity by an equality in (10), i.e. if there is a matching asyntjgtapper bound. If such
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is the case, there is a direct interest in the introductioa abtion of minimizers
for (9). Indeed(/U+ ¢)?(5) can be interpreted as the slowly varying local levels
of the tilted interlacements that enter the derivation @f lilwer bound (10) (see
Section 4 and Remark 6.6 2) of [15]). In this perspectives i irelevant question
whether minimizerg reach the valug/u, — /u. The regions where they reach the
value,/uU, — \/u could potentially reflect the presence of droplets seclided the
infinite cluster#z’Y and taking a share of the burden of creating an excess fractio
of sites ofDy that are not ir5Y (see also the discussion at the end of Section 2).

The desired notion of minimizers for (9) comes in Theorem BWeFor this

purpose we introduce the right-continuous modificaBigrof 6o:

(11)

— 6o(u), when 0< u < uy,
Bo(u) =

1, whenu > u,.
Clearly, 8y > 6 and it is plausible, but presently open, ttég= 6,. We recall
thatD*(RY) stands for the space of locally integrable functidrsn RY with finite

Dirichlet energy that decay at infinity, i.e. such tHaf| > a} has finite Lebesgue
measure for alh > 0, see Chapter 8 of [11], and define foru, v as in (7), (8)

Ry =inf{% [ 100Pdzé >0.9 €DURY), [ Bo((vu+9)?) dz>v}. (12)

SinceBp > 6y andD(RY) D CF (RY), we clearly havd}, < ID,,. But in fact:
Theorem 2. For D,u,v as in (7), (8), one has
Joy = lov- (13)

In addition, the infimum in (12) is attained:

0 _mind L 2
Juyv_mm{% /Rd||]¢| dz¢ >0,

_ (14)
¢ c DL(RY), ][Deo((ﬁJr $)) dz> v}.
and any minimizep in (14) satisfies
0<¢ <,u —+uae,
¢ is harmonic outside D, anéss sufy|?2¢ (z) < . (19)

zeRd

Thus, Theorem 2 provides a notion of minimizers for (9), tagational problem
of interest. Its proof is given in Section 2. Additional pespies of (14) and the
corresponding minimizers can be found in Remark 1. We ref@ttapter 183 of
[1] for other instances of non-smooth variational problems

In Section 3 we bring into play th@!-property offy and show
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Theorem 3. If up € (0, u,) is such that
6o is C! on a neighborhood db, ug], (16)

then for any ue (O,up) there are g(u,up,D) < Bp(u,) — Bo(u) and ¢(u,ug) >0
such that

for v € [6o(u), Bp(u) + c1], any minimizew in (14) is C-¢ for all
O<a<1l,and0< ¢ < {c(v—6p(u)} A(yUy—VU) (< U, —/U). 17
Here C-¢ stands for the &functions witha-Holder continuous partial (17)
derivatives.

In view of Theorem 1 the above Theorem 3 applies to any U (with G as in
(3)). It describes a regime of “small excess” fowhere minimizers do not reach
the threshold valug/u, — \/u. In the proof of Theorem 3 we use t@&-property to
write an Euler-Lagrange equation for the minimizers, s&€g,(@nd derive a bound
in terms ofv — Gp(u) of the corresponding Lagrange multipliers, see (91). Inis a
interesting open problem whether a regime of “large excéssb can be singled
out where some (or all) minimizers of (14) reach the thredialue,/u, — /uon
a set of positive Lebesgue measure. We refer to Remark 2 fioe simple minded
observations related to this issue.

Finally, let us state our convention about constants. Tginout we denote by
¢,c/,C positive constants changing from place to place that sindplyend on the
dimensiond. Numbered constantg, ¢, Cy, ... refer to the value corresponding to
their first appearance in the text. Dependence on additipsra@meters appears in
the notation.

1 TheCl-property of 6y

The main object of this section is to prove Theorem 1 statethénintroduction.
Theorem 1 is the direct consequence of the following LemmadLRroposition 1.
We letg(-,-) stand for the Green function of the simple random walkZ8n

Lemma 1. For 0 < u < uy, one has

L

liminf > (Bo(u+£) — 6o(u)) > (1— 6o(u) 00

€|0 (18)

Proposition 1. For any0 < a < 8 < u, such that NLFa, 3) holds (see (2)),

B is Cl on [a,aﬂ?] (19)
2
As we now explain, Theorem 1 follows immediately. By Progiosi 1 and a
covering argument, one see tifgtis C' on [0,0G). Then, by Lemma 1, one finds that
6, > 00on|0,0), and Theorem 1 follows.
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There remains to prove Lemma 1 and Proposition 1.

Proof of Lemma 1Consideru > 0 ande > 0 such thau+ € < u.. Then, denot-
ing by .#44*+¢ the collection of sites o that are visited by trajectories of the
interlacement with level lying ifu, u+ €], we have

Bo(u+€) — Bp(u) = P[0 w0, 0 L5 00
> P[0« o, 0c FWUHE]
independenc

SN — Bo(u)) P[0 € 7 UUHe]
= (1- 6p(u))(1— e &/900),

(20)

Dividing by € both members of (20) and lettirggtend to 0 yields (18). This proves
Lemmal. 0

We now turn to the proof of Proposition 1. An important tooLamma 2 below.
We will use Lemma 2 to gain control over the difference quuseof 6y, as ex-
pressed in (27) or (37) below. The claim@d-property of6 on [a, “—53] will then
quickly follow, see below (37). To prove (27) with Lemma 2, define an increas-
ing sequence of levels, 1 <i <i, so thatu; = U’ (in Proposition 1) andi —u
doubles a$ increases by one unit, until it reachegof (27)), and in essence apply
Lemma 2 repeatedly to compare the successive differendeeqtsof 6y between
u andu;, see (32) till (36).

Proof of Proposition 1We consider 6< a, 3 < u. such that NLFa,3) holds
(see (0.2)), and set

cz(a,B) =2/co. (21)
As mentioned above, an important tool in the proof of Prajasil is provided by

Lemma 2. Consider u< U < u” in [a, 98] such that
1" _ Ly
U —u<e B °(<1), (22)
and set
r_ 1 A n_ 1 mn
A= L (Bo(U) — () and 4" = T (B(u') — Go(w)),  (23)
as well as L> L" > Lg (with Ly as in (2)) via
;o 1 \Vvy 0 1 \VYy
L= (03 log m) and L' = (03 log m) . (24)

Then, withcap(-) denoting the simple random walk capacity, one has

|Al - e(u//,u/) cap(B, /) A”| < 3(ull - U) (1+ CaF(BL/)Z) e(ulliu/) CaF(BL/)' (25)
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Let us first admit Lemma 2 and conclude the proof of Propasitidi.e. thatf,

isCton]a, #]). We introduce

_ _1,Y
=3 (55 e ) (<) =
We will use Lemma 2 to show that
when 0< n < ng, thenforallu< u'in |a, a—zﬁ} with U <u+n, one has 27)
7
1 1
o (B() — (W) —  (Bolu+11) — 66(u)| < c{at, B) V.

Once (27) is established, Proposition 1 will quickly follgsee below (37)). For the
time being we will prove (27). To this end we set

u=2"1u-u+ufori<i< in, wherei; =max{i > 1,u <u+n} (28)
(note thatu; = u'), as well as

oL - i0) st i )’ (o

for 1 <i <ip.

0=

We also define
& = (ui—u)capgBy,) and 5= 6(u —u)+65capBy;), for 1<i<ip. (30)

We will apply (25) of Lemma 2 ta/ = uj, U’ = uj;1, when 1<i < i, and to
U= Uiy, u” =u+n. We note that for Ki <ij, we haved <c(a, f8)/ui—uand

& < c(a,B) /U —uso that
forl1<j<ip, Z 4 <c(a,B)/uj—uand agc(a,ﬁ)w/ujfu. (31)

1< 1<K

The application of (25) to”” = uj;1, U = u;, for 1 <i < i, and the observation that
Ui+ 1— Ui = U — uyield the inequality

|4 —e&Ai+1| < ccﬁ ed forl<i< in, so that

he 32
‘eZm %A, _er<i+15£Ai+l’ <ce<inid g forl<i< in. (32)

Hence, adding these inequalities, we find that

- (31).n<3
<

81— | <o y et g cla,mva.  (33)
1<i<ip
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Then, the application of (25) 0’ = u+n andu’ = u;,, noting thatu+n — u;, <
Ui, — U, yields

’Aiq 7e(u+nfuiq)CaF(BLi,7) % ( (u+n ‘ < d eé,—, <C(C{ B)\/_ (34)

Multiplying both members of (34) bg2‘<in % and using (33) and (31) as well, we
thus find

s (Bo(W) — Bo(w) — &< TS L (g (ur ) — o(u)

<c(a,B)vn

(35)
and the term inside the exponential is at mugst, 3) /7.
Applying (35) with the choice) = g, see (26), one obtains that
1
sup T—u (Bo(U') — Bo(u)) < c(a,B). (36)

a<u<uw<®E w<uing

Coming back to (35), with the help of the observation belo8) @d the inequality
e8—1<cd(a,B)afor0<a<c(a,f), one obtains the claim (27).
We will now see how th€*-property of6y on [a ‘”’3] (i.e. Proposition 1) fol-

lows. We note that fov,w € [a “;’3] with 0 < |[v—w| < n(< no), the claim (27)
applied tou=vAwandu’ = vvalelds that

‘ﬁ (Bo(w) — Bo(v)) — % (Bo(VAW- 1) — Bo(VA w))] <c(a,B)yA. (37)

Letting " (-) stand for the modulus of continuity & on the intervala, ‘”’3] -
[0,u,), we find that forv,w € [a ‘”’3] with 0 < [v—w| < (< np), one has
1 1
[y (BowW) = Bo(v) = 1 (B0(v-+ 1) — Bo(v) | <

2 (38)
c(a,B)y/n+ 1 I (lw—v]).
The above inequality implies that for amye [a ‘”B] whenw € [a ‘”B] tends
to v, the difference quotientsgt- (6p(w) — &(v)) are Cauchy. Thus, letting tend
to v, we find that

6o is differentiable orja, TB] and for0<n < ngandv € [a, “—;’3],

o(V) — ;(90<V+n 6o(v))| < c(a. B) . (39)
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As a result we see th& is the uniform limit on[a, "—erﬁ] of continuous functions,
and as suclf) is continuous. This is the claimef-property of Proposition 1. The
last missing ingredient is the

Proof of Lemma 2We introduce the notation far> 0 andL > 1

6oL (v) = P[0 0By ], (40)

and the approximations df' andA” in (23)

=2 (6o, (W) — Bo (), A" = % (B (U") = 6o rr(W),  (41)

u—u u
where we recall that’ > L” (> Lo) are defined in (24). Note that

1

u —

A =1 (P00 — P[0 o)) =

u—u
1
u—u

P 00,0 Y oo],
(42)
i -

Pl0 B,0Y- 9B,

and as we now explain

1
u-—u

Indeed, by (42), (42), one has

AN =

(P[0 9BL, 0¥ oo] — P[0 9B, 0tcd]).  (43)

1
u—u

(P[0 c0,0 Yo0] — P[0 9By, 04 0BL]) =
S (PO 9B,/,0 Y o00] — P[0 9B, 0o, 0 Y o]
—Pl0<% 9B,0Y-0B,]) = u,fu (P[0 9B, 0 4~ 9B,
P[0 9B, 0 <Y 9B, 0 Yo )
~ P[0 0BL,0 Yoo — P[0 3B, 0 <Y 0BL]) =
L (P02 8By,0 Y00 — P[0 9By, 0 scal]),

u—u

Alfﬁl _

(44)

whence (43). Clearly, one also has similar identities ad®) { (43) forA” andA”.
We now proceed with the proof of (25). By (43), we have

& =& < T max{P(0 < 9By, 0 o), PO 9By, 0 es])

4
@ (45)

2 @420 |

I
g Sl Ty

v —u ’

and likewise we have B
A" — A" < U’ —u. (46)
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We will now compare’ andA”. We first recall that whed is a Poisson-distributed
random variable with parametér> 0, then one has

A 2
Pz>2—1-e?—Ae :/0 sesds< (47)

If Ny (Br) stands for the number of trajectories in the interlacemedits labels
in (u,u'] that reactB, (this is a Poissoffu’ — u) cap(B,/))-distributed random vari-
able), we find by (42) that

A= u%u (P[0 9BL,0 <4 9B, Ny (BL) = 1] + u8)
P[0 9B/, 04 0B, Nyy (BL) > 2)).
If we consider an independent random wXlkwith initial distributionéBL,, where

&g, stands for the normalized equilibrium measurgpof and write/! = 7Y\ (rangeX),
we find from (48), (47) that

A7 - CanL/)e*(u/,u)caF(BL/)P%L/ @P[0— 3B/, 0 J//u—@BL,H <

1 (49)
5 (U= capBy/)?
(this formula is close in spirit to Theorem 1 of [2]). Then, nete that
capBu)e V- HBLIRy, @ P0 S 9By, 04 9By =
L ') canB PN, o (Bu) = 1 Ps, | @ P[0 < 0By, 0 s 3B ] =
U//*U [ U,U”( L/) - ] QBL/ ® [ — L’ L/] - (50)
u,,l_ _ e )earBY) (PO s 9By, 0 S 0B,]
— P05 9B,0 - 3By, Ny (B) = 2)).
Inserting this identity into (49) and using (47) once agaia,find that
A L el =U)canBuplo Y, 9B, 0 /- 9B | <
u’—u
> (U —u)capBu)?+ 5 (U~ u)cap(By)? €' ) carBu) < (51)
(u// —u) CanL/)ze(u”—u’)ca[(BL/)_
Note thatl” < L’ and a similar calculation as (44) yields the identity
1 u u’ Al
——— P[0+— 0B/,0—~+—0B/]|-A" =
u 1— u (52)

I u’
m (P[O<u—> dBL//,0<—I—>dB|_/] —P[()(L) dBL//, O<—LIJ—>dB|_/])
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(u” playsthe role off, L” the role ofL’, andL’ the role ofw in (43)). The application
of (2) with L” as in (24) now yields

1

u v’ AN "
m]P’[O<—>OB|_/, 0—+0By]-A" <Uu' —u. (53)
Coming back to (51), we find that

|A~' . e(uu,u/)cap(BL/) A~"| < (u” - u) (1+ CaF(BL/)Z) e(“//*u/)cap(BL/)' (54)

Using (45), (46), it then follows that
|A' . e(u//,u/)cap(BL/) A"| < 3(u” - u) (1+ CaﬂBL')Z) e(U”*u’)cap(BL/)' (55)
This completes the proof of (25) and hence of Lemma 2. O
With this last ingredient the proof of Proposition 1 is nowrgaete. O

2 Thevariational problem

The main object of this section is to prove Theorem 2 that iples/a notion of min-
imizers for the variational problem (9), see (13) - (15). W& £nd of the section, the
Remark 1 contains additional information on the variatlgorablem, in particular
whenD, see (7), is star-shaped or a ball.

Proof of Theorem 2We will first prove (14) and (15). We considér,u,v as
in (7), (8) andJ?, defined in (12). We letp, > 0 in D*(R?), n > 0, stand for
a minimizing sequence of (12). Then, by Theorem 8.6, p. 2@BGarollary 9.7,
p. 212 of [11], we can extract a subsequence still denotedi,bgnd find¢ > 0
in DY(RY) such thatsy fpa |0¢[2dz< liminfy 2 fre |[O¢n|?dz= I, and¢n — ¢

a.e. and i, (RY). Then, one has

£.80((vi+9)?) dz= f limsupBo((v+¢)?) dz

. 56

rever;z Fatolljimsup Déo((\/UJr ¢'n)2) dz>v. ( )
n B

This shows thatp is a minimizer for the variational problem in (12) and (14) is
proved. If ¢ is a minimizer for (12), note thap = ¢ A (v/U, — /U) € DY(RY),
and using Theorem 6.17, p. 152 of [1#]— ¢ = (¢ — (v/u, —/U))+ and ¢ are
orthogonal inD*(RY). In addition, one ha8p((/u+ #)?) = Bo((v/u+ ¢)?) so that
@ is a minimizer for (12) as well. It follows that = ¢ (otherwised would not be a
minimizer). With analogous arguments, one sees that thaumfi definingjav in
(12) remains the same if one omits the conditfor 0 in the right member of (12).
Then, using smooth perturbationQRH\D of a minimizer¢ for (12), one finds that
¢ is harmonic outsid® and tends to 0O at infinity (see Remark 5.10 1) of [15] for
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more details). In addition, see the same referefst®,?¢ (2) is bounded at infinity
and hence everywhere singds bounded. This completes the proof of (15).

We now turn to the proof of (13). As already stated above Tém@a2, we know
by direct inspection thdf, > J° . Thus, we only need to show that

I =15 (57)

To this end, we consider a minimizérfor jav and know that (15) holds. As we
now explain, ify > 0 belongs tcCy (RY) andy > 0 onD, then one has

][DBO((\/G+¢+1,U)2)dz> V. (58)

We consider two cases to argue (58). Letting stand for the normalized Lebesgue
measure o, either

mp(¢ < /U, —v/u)=0 or (59)
mp (¢ <V, —+vu)>0. (60)

In the first case (59), thep > /u, —/u a.e. onD so that the left member of (58)
equals 1 and (58) holds sinee< 1 by (8). In the second case (60), singgis
strictly increasing orjo, u,.) (cf. Lemma 1), one has

1 60((Vi+ ¢+ )?) dz—

‘ Bo((VU+ ¢ +y)?) dz+

6o((vU+ @ +y)*) dz> (61)
Bo((vu+9)%)dz+ DN {¢ > VU, - VU}| =

-/Dﬂ{¢<ﬁfﬁ}
‘/E)m{¢2\/a*7\/a}

/Dﬂ{¢<ﬁfﬁ}
[ Bo((v+9)?)dz=viD],

and (58) follows. We have thus proved (58). Using multigima by a smooth com-
pactly supporte(D, 1]-valued function and convolution, we can construct a segeien
¢n > 0inCZ(RY), which approximateg +  in D*(RY) and such thap, converges
to ¢ + ¢ a.e. orD. Then, we have

(58) 2 P 2
v < Le((aro+w) )szastou £ imint 6o((vu+ 90)%)dz

(62)
<" liminf ][Deo((ﬁ+ 9n)2) dz
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Hence, for infinitely many, one had?, < 2 [|0¢n|?dz so that

1
18y < 55 [,1000+w)dz (63)
If we now lety tend to 0 inD*(RY) and recall thaty [pa |[O¢p|2dz=1J3,, we find
(57). This completes the proof of Theorem 2. O

Remark 11) Note that foD as in (7) and G< u < u,, the non-decreasing map
v € [6o(u),1) — 19, ""*L*?3D  is continuous (64)

Indeed, by definition ofl'fv in (9), the map is right continuous. To see that the map
is also left continuous, considerc (6y(u),1) and a sequence, smaller thanv
increasing tov. If ¢, is a corresponding sequence of minimizers for (14), by the
same arguments as above (56) we can extract a subsequHadeemeted by¢n and

find ¢ > 0 in DY(RY) so that; [pa |0 [2dz < liminfy fpa |[Ogn[>dz=lim, I3,
and¢, — ¢ a.e. Using the reverse Fatou inequality as in (56), we thea ha

£.80((vi+9)%) dz> £ lmsupBo((va+ ¢)?) dz

_ (65)
> Iimsup]éeo((\/ﬁ+ ¢n)?) dz> limsupv, = v.

This shows tha.ﬂ‘av <lim,J% uv, and completes the proof of (64).
2) If Din (7) is star- shaped arourzd € D (that is, whem (z— z,) + z. € D for
all ze D and 0< A < 1), then foru, v as in (8), one has the additional fact

any minimizerg in (14) satisfiesé@o((\/ﬁJr $)?)dz=v, and (66)
Jow= (67)
mm{ / |0¢|?dz ¢ >0,¢ € DY(RY), ][90 (VU+¢)%)dz=v }

Indeed, if ¢ is a minimizer of (14), one sets for@ A < 1, ¢,(2) = ¢(z. +
1 (z—z)). Then, one hagya |09, [>dz= A9"2 [4|0¢[>dz and, withD, D
D, the image ofD under the dilation with centez, and ratioA —, one finds
o Bo((vU+9r)?)dz= fp B0 (VU+9)*)dz> A% f,80((VU+ ¢)?)dz Thus
o Bo((v/u+¢)?)dz> v must actually equal, otherwise the consideration @j
for A < 1 close to 1 would contradict the fact thfatis a minimizer for (14). This
proves (66) and (67) readily follows.
Incidentally, note that due to (66), (67),

the map in (64) is strictly increasing (68)
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Indeed, otherwise there would be< v/ with I3, =J° . and corresponding min-
imizers ¢, ¢’ as in (67). But therp’ would contradict (66). The claim (68) thus
follows.

3) If D satisfying (7) is a closed Euclidean ball of positive radiu&?, given a
minimizer ¢ of (14), we can consider its symmetric decreasing rearraegég *
relative to the center d, see Chapter §3 of [11]. One knows thap* ¢ DY(RY)
and fa |0¢*1?dz< [pa |0¢|2dz see p. 188-189 of the same reference. As we now
explain:

¢* is a minimizer of (14) as well (69)

The argument is a (small) variation on Remark 5.10 2) of [V&th mp the nor-
malized Lebesgue measure bnone hasnp (¢ >s) < mp(¢* > s) for all sin R.

Settingﬁal(a) =inf{t > 0; Bp(t) > a}, for0< a< 1, we see that for & t < 1,

{Bo((v/U+¢)?) >t} = {¢ > /B, (t) — /U}, and a similar identity holds witlh*
in place of¢. Hence, we have

v < f[;@o((ﬁJr 9)%) dt:/(;lma(éo((ﬁJr $)%) >t)dt
:/Olrrb(qbz §al(t)—\/ﬁ)dt§/olmg(¢*2 B, () —va)dt  (70)
- /Olmo(ao(m+ 67) =)ot = [ Bo((i+ 9°?)dz
Thus,¢" is a minimizer of (14) as well, and the claim (69) follows. ikentally,
note thaD is clearly star-shaped so that (64) and (68) hold. 0

With Theorem 2 we have a notion of minimizers for the variadilpproblem cor-
responding to (9). As mentioned in the Introduction, it issédunal question whether
there is a strengthening of the asymptotics (10): is it tise ¢hat

. 1 Theorem2s
lim 5= 10gP[IDN\3| > v Dn]] =, =0, (71)

Given a minimizerg in (14), the function(/u+ ¢)?() can heuristically be in-
terpreted as describing the slowly varying local levelsh# tilted interlacements
that enter the derivation of the lower bound (10) for (71} Section 4 of [15].
Hence, the special interest in analyzing whether the mirensip for (14) reach
the value\/u, — v/u. Indeed, if¢ remains smaller thag/u, — /u the local level
function (y/u+ ¢)? remains smaller than,, and so with values in the percolative
regime of the vacant set of random interlacements. On ther didind, the presence
of a region where) > ,/u, — /U raises the question of the possible occurrence of
droplets secluded from the infinite cluster of the vacanttsat would take part in
the creation of an excessive fractiorof sites ofDy outside the infinite cluster of
¥ (somewhat in the spirit of the Wulff droplet in the case Besfigercolation or
for the Ising model, see [4], [3]).
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3 An application of the C1-property of 6y to the variational
problem

The main object of this section is to prove Theorem 3 of theobhiction that de-
scribes a regimef small excess for which all minimizers of the variational prob-
lem (14) remain strictly below the threshold valy&i, — \/u. At the end of the
section, the Remark 2 contains some simple observatiorceaoing the existence
of minimizers reaching the threshold valy@i, — /u.

We consideD as in (7), and as in (16)

Up € (0,u,) such thath is C* on a neighborhood do, ug). (72)

To prove Theorem 3, we will replad® by a suitableC!-function 6, which agrees
with 6y on [0, ug], see Lemma 3, and show that foxOu < ug andv > 6p(u) the
variational problenﬁﬁv attached td, see (86) and Lemma 5, has minimizers that
satisfy an Euler-Lagrange equation, see (90), involvingagrange multiplier that
can be bounded from above and below in terms ef6y(u), see (91). Using such
tools, we will derive properties such as stated in (17) ferrtiinimizers ot]a'alv and
show that they coincide with the minimizers of the 0rigine¢t;ﬂemj'a‘v in (14)
when 0< u < ug andv is close tof(u), see below (99). '

Proof of Theorem 3:

Recallug as in (72). Our fist step is

Lemma 3. There exist non-negative functioésand? onR, such that

B=06-Y, (73)
the functionrj (b) = 6(b?) is C onR, (74)
i’ is bounded and uniformly continuous Bn (75)
N’ is uniformly positive on each intervid, +«),a > 0, (76)
y=00n]0,up] andy > 0 on (Ug, ). 77)

Proof. By assumption there is; € (up,u.) such thatgy is C' on a neighborhood
of [0,us] with a uniformly positive derivative of0,u;] by Lemma 1. We seti, =
max{U,, 4}, so thatup < uy < Uy. We then definéd(v) = 6y(v) on [0,Ug], B(v) =
60(V) +a(Vv— Ug)2 on [ug, uy], wherea > 0 is chosen so that(u) = 1 (> 6p(u,) >
6o(u1)), and@(v) = \/V (> 2) on[up, ). In particularfj (b) = b for b > /U,. Then,
any choice ob on [ug, Up] that isC* on [ug, up] with right derivativeg)(uy) atuy, left

derivativez—\}Gz atu, and uniformly positive derivative djuiy, U], leads to functions

6,y that satisfy (73) - (77).
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We select functions fulfilling (73) - (77) and from now on wewi
] (and hence) as fixed and solely depending ag (78)

For the results below up until the end of the proof of Theoreith& only property

of up that matters is thaty is positive and a decomposition 6§ satisfying (73) -

(77) has been selected. In particular, if such a decompasifin be achieved in the

case ofup = u,, the results that follow until the end of the proof of Theorgmvith

the exception of the last inequality (17) (part of the clainthee end of the proof),

remain valid. This observation will be useful in Remark 2het €nd of this section.
With u € (0,up), D asin (7), andj as in (74), we now introduce the map:

5\:¢eDl(Rd)H,&(cp):][Dﬁ(\/ﬁnL(P)dze R. (79)
We collect some properties Afin the next
Lemma 4.
A + ) — A@)| < c(Uo) | @l 1y For @, @ € DXRY) (80)

(recall mp stands for the normalized Lebesgue measure on D)

Ais aC-map and A(¢), its differential atp € D(RY), is the (81)
linear formy e DY(RY) — % n'(Vu+é)pdz=A(¢)y.
Jo

Forany¢ >0, A'(¢) is non-degenerate (82)

Proof. The claim (80) is an immediate consequence of the Lipschiperty of
resulting from (75). We then turn to the proof of (81). Fany in D*(RY), we set

r= A+ 4)—A@)~ £7'(Vi+ ) pz=

T, B (83)
|| dsf (7' (Va+9-+su) ~R'(Vi+9) woz

With the help of the uniform continuity and boundednesg) 6fsee (75), for any
5 > Othere is g > 0 such that for ang, ¢ in D*(RY)

rI < f @+ 21 I-1(1] = p}) | Wldz

2 5 2
< 81t + 2 17 o 912

Since theD(RY)-norm controls thé.?(mp)-norm, see Theorem 8.3, p. 202 of
[11], we see that for anp € DY(R?), I = o(||¢/[|p1(ga)), asy — O in DX(RY).
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HenceA is differentiable with differential given in the seconddiof (81). In addi-
tion, with & > 0 andp > 0 as above, for ang, y, g in D*(RY)

H (VU+9+y)— ' (Vi+$)) pdg <

F.(6+2/'l+ {11 = p}) 4]z (89)
2
< Sl + 2 17 V2 192y

This readily implies thaf is C* and completes the proof of (81). Finally, (82) fol-
lows from (76) and the fact that> 0. This completes the proof of Lemma 4.

Recall that € (0,up). We now define the auxiliary variational problem

Ry=min{ [ 10dz ¢ > 0.9 € D'(RY.A@) > v},
(86)
for v > 6(u) ((7:7) 6o(u)).

In the next lemma we collect some useful facts about thislianxivariational prob-
Iem and its m|n|m|zers We denote Bthe convolution with the Green function of
A (i.e. an/z ( 1)|-|~@=2 with |- | the Euclidean norm oRY).

Lemma 5. For D as in (7), ue (0,ug), v > 6(u) (= 65(u)), one has

By =min{ / 09 dz ¢ >0,¢ € DYRY),A9)=v}.  (87)

2d Jpa

Moreover, one can omit the conditign> 0 without changing the above value, and
any minimizer of (86) satisfie@é(dJ) =V. (88)

In addition, wherv = 6(u), = 0is the only minimizer of (86) and whemn> 6y(u),
for any minimize of (86)

¢ (> 0)is CH9 for all a € (0,1), harmonic outside D, with
sup|Z92¢(2) < o, (89)
z

and there exists a Lagrange multipli§r> 0 such that

$ =AG(7'(vu+§)1p), with (90)
¢'(Up,D) (v — 6p(u)) < A < c(u,up, D) (v—6o(u)) (91)

(recall that6p(u) = 6(u)).

Proof. We begin by the proof of (87), (88). Fgr € D'(RY), we write Z(¢) as a
shorthand fokl; fze |0¢|2dz Note that limy_.., 7] (b) = o by (76), so that the set in
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the right member of (86) is not empty. Taking a minimizing wseaceg, in (86),
we can extract a subsequence still denotedppyand find¢ € D1(RY) such that
2(¢) < liminf,2(¢n) and¢, — ¢ in L1 (mp) (see Theorem 8.6, p. 208 of [11]).
By (80) of Lemma 4, we find tha(¢) > v. Hence ¢ is a minimizer of (86).

Now, for any minimizerp of (86), ifﬂ(d)) > v, then for somé\ € (0,1) close to
1,A(A¢) > v. Moreoverg is not the zero function (sino& @) > v), andZ(A ¢ ) =
A29(¢) < 2(¢). This yields a contradiction and (88), (87) follow.

Also, if one removes the cond|t|o<p > 0 in (88), one notes that for any in
DY(RY), 2(|9|) < 2(¢) and jgqb| ). So, the infimum obtained by removing
the conditiong > 0 is at leastly and hence equal ti)uov The claim of Lemma 5
below (87) follows.

Whenv = 9( ), JP uv =0 and¢ = 0 is the only minimizer. We now assume
V> 9(u) and will prove (89), (90). Fop > 0 in D}(RY) a minimizer of (87), one
finds using smooth perturbations Rf'\D (see Remark 5.10 1) of [15] for simi-
lar arguments) thag is a non-negative harmonic function®f'\ D that vanishes at
infinity and thatz|~2 ¢ () is bounded at infinity. By (81), (82) of Lemmadi satis-
fies an Euler-Lagrange equation (see Remark 5.10 4) of [1%] éimilar argument)
and for a suitable Lagrange multipli#r one has (90) (and necessailly> 0). Since
n' is bounded by (21), it follows from (90) thatis C1-¢ for all a < (0,1), see for
instance (4.8), p. 71 of [9]. This proves (89), (90). B

There remains to prove (91). We have (recall #Bgt)) = 6(u))

= A(/i+9) -7 (Vi) dz ©2)

By (75), we see that

V=) < (7]l 8z A1l SR (vE+$)10) 2

(93)
< AR’ ||2][G (1) dz= c(Uip, D) A.
On the other hand, by (76), we see that
V—6(u) > inf ﬁ'][fﬁdz@i inf ﬁ’][G(ﬁ’(\/ﬂ+¢2)1D)dz
’[\\’/a’oo) D [\/a,oo) D N (94)
> A( inf ﬁ’)z][G(lo)dz: c(u,ug,D)A.
D

(Vi)

The claim (91) now follows from (93) and (94). This concludég proof of

Lemma 5. B O
We now continue the proof of Theorem 3. Givere (0,up) andv > 8(u) (=

6o(u)), we see by Lemma 5 that any minimizgfor (87) satisfies (90) for a suitable

A satisfying (91), so that

. (91),(75)
1@lle <Al [Glpllee < C2(u,Uo,D) (v — Bo(u)). (95)
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In particular, we find that

for Bp(u) < v < 6p(u) + c1(u, U, D)(< 1), any minimizerd

for (87) satisfies 6< ¢ < (y/Uy— /) A {C2(v — Bp(u)) }.

We will now derive the consequences for the basic variatiprablem of interest
JD,. see (12), (14). By (73), (77) and the definition@f (see (11)), we find that

6 > B, so that

(96)

for all u € (0,up) andv € [fp(u), 1), IB, > IO, (97)
Moreover, wherv € [6o(u), 6o(u) + c1] (with ¢; as in (96)), any minimized for
(87) is bounded by/u, — /U, and hence satisfies as wéljfo((\/u+ §)?)dz> v
(in fact an equality by (88)). We thus find that

Jqv =38, forall v € [6y(u) +c1], and any minimize of I3, in (87) (98)
is a minimizer ofJ} , in (14).

Now for v as above, consider a minimizer of (14). Then, we havé(¢) =J%, =

JB.,. and sincéd > Bo, we find that

A®) = £8((vi+9)?) dz> £ Bo((vi+9)?) dz= v. (99)

This show thaty is a minimizer for (86), hence for (87) by (88). We thus findttha
whenv € [6p(u), Bp(u) + ¢1], the set of minimizers of (14) and (87) coincide and the
claim (17) now follows from Lemma 5. This concludes the probfheorem 3.

With Theorem 3 we have singled out a regime of “small excessVfsuch that
all minimizers¢ for J9, in (14) stay below the maximal valugu, — \/u. In the
remark below we make some simple observations about théopessistence of a
regime where some minimizers in (14) reach the threskald— /u.

Remark 21) If 6y is discontinuous ati, (a not very plausible possibility), then
6o(us) < 1, and foranw € (8p(u.),1) any minimizer for (14) must reach the thresh-
old value,/u, — \/u on a set of positive Lebesgue measure due to the constraint in
(14).

2) If g is continuous and its restriction {0, u,] is C! with uniformly positive
derivative (corresponding to a “mean field” behavior of trergolation function
6), then a decomposition as in Lemma 3 can be achieved withwow u,.. As
mentioned below (78), the facts established till the end loéarem 3 (with the
exception of the last inequality of (17)) remain valid ingltontext. In particular,
if for someu € (0,u,) andv € (6p(u),1) there is a minimizep for Jﬂﬁv in (87)
such that|||» = \/u, — /U, theng is a minimizer forJ2 , in (14) and it reaches
the threshold valug/u, — /u. In the toy example wherg is affine on[,/u+ o)
and 0< n (y/u) < n(y/u,) =1, such av < 1 and@ (which satisfies (90)) are for
instance easily produced. O
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The above remark naturally raises the question of findingesptausible as-
sumptions on the behavior of the percolation funcigiclose tou, (if the behavior
mentioned in Remark 2 2) is not pertinent, see for instangargi4 of [12] for the
level-set percolation of the Gaussian free field, whea 3) and whether such as-
sumptions give rise to a regime farv, ensuring that minimizers O_IB,V in (14)
achieve the maximal valug’u, — \/u on a set of positive measure. But there are
many other open questions. For instance, what can be said #® number of
minimizers for (14)? Is the map — jB,v in (64) convex? An important question
is of course whether the asymptotic lower bound (10) can lneptemented by a
matching asymptotic upper bound.
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