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Abstract We consider random interlacements onZ
d, d ≥ 3. We show that the per-

colation function that to eachu≥ 0 attaches the probability that the origin does not
belong to an infinite cluster of the vacant set at levelu, is C1 on an interval[0, û),
whereû is positive and plausibly coincides with the critical levelu∗ for the percola-
tion of the vacant set. We apply this finding to a constrained minimization problem
that conjecturally expresses the exponential rate of decayof the probability that a
large box contains an excessive proportionν of sites that do not belong to an infinite
cluster of the vacant set. Whenu is smaller than̂u, we describe a regime of “small
excess” forν where all minimizers of the constrained minimization problem remain
strictly below the natural threshold value

√
u∗−
√

u for the variational problem.
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0 Introduction

In this work we consider random interlacements onZ
d, d ≥ 3, and the percolation

of the vacant set of random interlacements. We show that the percolation function
θ0 that to each levelu≥ 0 attaches the probability that the origin does not belong to
an infinite cluster ofV u, the vacant set at levelu of the random interlacements, is
C1 on an interval[0, û), whereû is positive and plausibly coincides with the critical
levelu∗ for the percolation ofV u, although this equality is presently open. We apply
this finding to a constrained minimization problem that for 0< u < u∗ conjecturally
expresses the exponential rate of decay of the probability that a large box contains
an excessive proportionν bigger thanθ0(u) of sites that do not belong to the infinite
cluster ofV u. Whenu > 0 is smaller than̂u andν close enough toθ0(u), we show
that all minimizersϕ of the constrained minimization problem areC1,α -functions

Alain-Sol Sznitman
Department of Mathematics, ETH Zürich, Rämistrasse 101,8092 Zürich, Switzerland,
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on R
d, for all 0 < α < 1, and their supremum norm lies strictly below

√
u∗−

√
u.

In particular, the corresponding “local level” functions(
√

u+ ϕ)2 do not reach the
critical valueu∗.

We now discuss our results in more details. We consider random interlacements
on Z

d, d≥ 3, and refer to [5] or [6] for background material. Foru≥ 0, we letI u

stand for the random interlacements at levelu andV u = Z
d\I u for the vacant set

at levelu. A key object of interest is the percolation function

θ0(u) = P[0
u←→/ ∞], for u≥ 0, (1)

where{0 u←→/ ∞} is a shorthand for the event{0 V
u

←→/ ∞} stating that 0 does not
belong to an infinite cluster ofV u. One knows from [14] and [13] that there is a
critical valueu∗ ∈ (0,∞) such thatθ0 equals 1 on(u∗,∞) and is smaller than 1 on
(0,u∗). And from Corollary 1.2 of [16], one knows that the non-decreasing left-
continuous functionθ0 is continuous except maybe at the critical valueu∗.

0
u

u∗

1

θ0

Fig. 1 A heuristic sketch of the graph ofθ0 (with a possible but not expected jump atu∗)

With an eye towards applications to a variational problem that we discuss be-
low, see (9), we are interested in proving thatθ0 is C1 on some (hopefully large)
neighborhood of 0. With this goal in mind, we introduce the following definition.
Given 0≤ α < β < u∗, we say that NLF(α,β ), the no large finite cluster property
on [α,β ], holds when

there existsL0(α,β )≥ 1, c0(α,β ) > 0, γ(α,β ) ∈ (0,1] such that
for all L≥ L0 andu∈ [α,β ], P[0

u←→ ∂BL, 0
u←→/ ∞]≤ e−c0Lγ

,
(2)

whereBL = B(0,L) is the closed ball for the sup-norm with center 0 and radiusL,
∂BL its internal boundary (i.e. the subset of sites inBL that are neighbors ofZd\BL),
and the notation is otherwise similar to (1). We then set

û = sup{u∈ [0,u∗) ; NLF(0,u) holds}. (3)
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One knows from Corollary 1.2 of [7] that̂u is positive:

û∈ (0,u∗] . (4)

It is open, but plausible, that̂u = u∗ (see also [8] for related progress in the
context of level-set percolation of the Gaussian free field). Our first main result is:

Theorem 1.

The functionθ0 is C1 on [0, û) and (5)

θ ′0 is positive on[0, û). (6)

Incidentally, let us mention that in the case of Bernoulli percolation the function
corresponding toθ0 is known to beC∞ in the supercritical regime, see Theorem
8.92 of [10]. However, questions pertaining to the sign of the second derivative (in
particular the possible convexity of the corresponding function in the supercritical
regime) are presently open. Needless to say that in our case the shape of the function
θ0 is not known (and the sketch in Figure 1 conceivably misleading).

Our interest in Theorem 1 comes in conjunction with an application to a varia-
tional problem that we now describe. We consider

D the closure of a smooth bounded domain, or of an open
sup-norm ball, ofRd that contains 0.

(7)

Givenu andν such that

0 < u < u∗ andθ0(u)≤ ν < 1, (8)

we introduce the constrained minimization problem

ID
u,ν = inf

{
1
2d

∫

Rd
|∇ϕ |2dz;ϕ ≥ 0,ϕ ∈C∞

0 (Rd),

∫

D
− θ0

(
(
√

u+ ϕ)2)dz> ν
}

, (9)

whereC∞
0 (Rd) stands for the set of smooth compactly supported functions on R

d

and
∫

D− . . .dz for the normalized integral1|D|
∫

. . .dzwith |D| the Lebesgue measure
of D (see also below (10) for the interpretation ofϕ).

The motivation for the variational problem (9) lies in the fact that it conjecturally
describes the large deviation cost of having a fraction at leastν of sites in the large
discrete blow-upDN = (ND)∩Z

d of D that are not in the infinite clusterC u
∞ of V u.

One knows by the arguments of Remark 6.6 2) of [15] that

liminf
N

1
Nd−2 logP[|DN\C u

∞| ≥ ν |DN|]≥−ID
u,ν for u,ν as in (8) (10)

(with |A| standing for the number of sites inA for A subset ofZd).

It is presently open whether the lim inf can be replaced by a limit and the inequal-
ity by an equality in (10), i.e. if there is a matching asymptotic upper bound. If such
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is the case, there is a direct interest in the introduction ofa notion of minimizers
for (9). Indeed,(

√
u+ ϕ)2( ·N ) can be interpreted as the slowly varying local levels

of the tilted interlacements that enter the derivation of the lower bound (10) (see
Section 4 and Remark 6.6 2) of [15]). In this perspective, it is a relevant question
whether minimizersϕ reach the value

√
u∗−
√

u. The regions where they reach the
value

√
u∗−
√

u could potentially reflect the presence of droplets secludedfrom the
infinite clusterC u

∞ and taking a share of the burden of creating an excess fraction ν
of sites ofDN that are not inC u

∞ (see also the discussion at the end of Section 2).

The desired notion of minimizers for (9) comes in Theorem 2 below. For this
purpose we introduce the right-continuous modificationθ 0 of θ0:

θ0(u) =

{
θ0(u), when 0≤ u < u∗,

1, whenu≥ u∗.
(11)

Clearly, θ 0 ≥ θ0 and it is plausible, but presently open, thatθ0 = θ0. We recall
thatD1(Rd) stands for the space of locally integrable functionsf on R

d with finite
Dirichlet energy that decay at infinity, i.e. such that{| f | > a} has finite Lebesgue
measure for alla > 0, see Chapter 8 of [11], and define forD,u,ν as in (7), (8)

JD
u,ν = inf

{
1
2d

∫

Rd
|∇ϕ |2dz;ϕ ≥ 0,ϕ ∈D1(Rd),

∫

D
− θ 0

(
(
√

u+ϕ)2)dz≥ ν
}

. (12)

Sinceθ 0≥ θ0 andD1(Rd)⊇C∞
0 (Rd), we clearly haveJD

u,ν ≤ ID
u,ν . But in fact:

Theorem 2. For D,u,ν as in (7), (8), one has

JD
u,ν = ID

u,ν . (13)

In addition, the infimum in (12) is attained:

JD
u,ν = min

{
1
2d

∫

Rd
|∇ϕ |2dz;ϕ ≥ 0,

ϕ ∈ D1(Rd),
∫

D
− θ 0

(
(
√

u+ ϕ)2)dz≥ ν
}

.
(14)

and any minimizerϕ in (14) satisfies

0≤ ϕ ≤√u∗−
√

u a.e.,

ϕ is harmonic outside D, andesssup
z∈Rd

|z|d−2ϕ(z) < ∞. (15)

Thus, Theorem 2 provides a notion of minimizers for (9), the variational problem
of interest. Its proof is given in Section 2. Additional properties of (14) and the
corresponding minimizers can be found in Remark 1. We refer to Chapter 11§3 of
[1] for other instances of non-smooth variational problems.

In Section 3 we bring into play theC1-property ofθ0 and show
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Theorem 3. If u0 ∈ (0,u∗) is such that

θ0 is C1 on a neighborhood of[0,u0], (16)

then for any u∈ (0,u0) there are c1(u,u0,D) < θ0(u∗)− θ0(u) and c2(u,u0) > 0
such that

for ν ∈ [θ0(u),θ0(u)+c1], any minimizerϕ in (14) is C1,α for all
0 < α < 1, and0≤ ϕ ≤

{
c2

(
ν−θ0(u)

)}
∧ (
√

u0−
√

u) (<
√

u∗−
√

u).
Here C1,α stands for the C1-functions withα-Hölder continuous partial
derivatives.

(17)

In view of Theorem 1 the above Theorem 3 applies to anyu0 < û (with û as in
(3)). It describes a regime of “small excess” forν where minimizers do not reach
the threshold value

√
u∗−
√

u. In the proof of Theorem 3 we use theC1-property to
write an Euler-Lagrange equation for the minimizers, see (90), and derive a bound
in terms ofν − θ0(u) of the corresponding Lagrange multipliers, see (91). It is an
interesting open problem whether a regime of “large excess”for ν can be singled
out where some (or all) minimizers of (14) reach the threshold value

√
u∗−
√

u on
a set of positive Lebesgue measure. We refer to Remark 2 for some simple minded
observations related to this issue.

Finally, let us state our convention about constants. Throughout we denote by
c,c′, c̃ positive constants changing from place to place that simplydepend on the
dimensiond. Numbered constantsc0,c1,c2, . . . refer to the value corresponding to
their first appearance in the text. Dependence on additionalparameters appears in
the notation.

1 The C1-property of θ0

The main object of this section is to prove Theorem 1 stated inthe Introduction.
Theorem 1 is the direct consequence of the following Lemma 1 and Proposition 1.
We letg(·, ·) stand for the Green function of the simple random walk onZ

d.

Lemma 1. For 0≤ u < u∗, one has

lim inf
ε↓0

1
ε

(
θ0(u+ ε)−θ0(u)

)
≥

(
1−θ0(u)

) 1
g(0,0)

. (18)

Proposition 1. For any0≤ α < β < u∗ such that NLF(α,β ) holds (see (2)),

θ0 is C1 on
[
α,

α +β
2

]
. (19)

As we now explain, Theorem 1 follows immediately. By Proposition 1 and a
covering argument, one see thatθ0 isC1 on [0, û). Then, by Lemma 1, one finds that
θ ′0 > 0 on[0, û), and Theorem 1 follows.
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There remains to prove Lemma 1 and Proposition 1.

Proof of Lemma 1: Consideru≥ 0 andε > 0 such thatu+ ε < u∗. Then, denot-
ing by I u,u+ε the collection of sites ofZd that are visited by trajectories of the
interlacement with level lying in(u,u+ ε], we have

θ0(u+ ε)−θ0(u) = P[0
u←→ ∞, 0

u+ε←→/ ∞]

≥ P[0
u←→ ∞, 0∈I u,u+ε ]

independence
=

(
1−θ0(u)

)
P[0∈I u,u+ε ]

=
(
1−θ0(u)

)
(1−e−ε/g(0,0)).

(20)

Dividing by ε both members of (20) and lettingε tend to 0 yields (18). This proves
Lemma 1. �

We now turn to the proof of Proposition 1. An important tool isLemma 2 below.
We will use Lemma 2 to gain control over the difference quotients of θ0, as ex-
pressed in (27) or (37) below. The claimedC1-property ofθ0 on [α, α+β

2 ] will then
quickly follow, see below (37). To prove (27) with Lemma 2, wedefine an increas-
ing sequence of levelsui , 1≤ i ≤ iη so thatu1 = u′ (in Proposition 1) andui −u
doubles asi increases by one unit, until it reachesη (of (27)), and in essence apply
Lemma 2 repeatedly to compare the successive difference quotients ofθ0 between
u andui , see (32) till (36).

Proof of Proposition 1: We consider 0≤ α,β < u∗ such that NLF(α,β ) holds
(see (0.2)), and set

c3 (α,β ) = 2/c0 . (21)

As mentioned above, an important tool in the proof of Proposition 1 is provided by

Lemma 2. Consider u< u′ ≤ u′′ in [α, α+β
2 ] such that

u′′−u≤ e
− 1

c3
Lγ

0 (≤ 1), (22)

and set

∆ ′ = 1
u′−u

(
θ0(u

′)−θ0(u)
)

and ∆ ′′ = 1
u′′−u

(
θ0(u

′′)−θ0(u)
)
, (23)

as well as L′ ≥ L′′ ≥ L0 (with L0 as in (2)) via

L′ =
(

c3 log
1

u′−u

)1/γ
and L′′ =

(
c3 log

1
u′′−u

)1/γ
. (24)

Then, withcap(·) denoting the simple random walk capacity, one has

|∆ ′−e(u′′−u′)cap(BL′ ) ∆ ′′| ≤ 3(u′′−u)
(
1+cap(BL′)

2)e(u′′−u′)cap(BL′ ). (25)
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Let us first admit Lemma 2 and conclude the proof of Proposition 1 (i.e. thatθ0

is C1 on [α, α+β
2 ]). We introduce

η0 =
1
4

(β −α
2
∧e
− 1

c3
Lγ

0
) (
≤ 1

4

)
. (26)

We will use Lemma 2 to show that

when 0< η ≤ η0, then for allu < u′ in
[
α,

α ,β
2

]
with u′ ≤ u+ η , one has∣∣∣ 1

u′−u

(
θ0(u′)−θ0(u)

)
− 1

η
(
θ0(u+ η)−θ0(u)

)∣∣∣≤ c(α,β )
√η .

(27)

Once (27) is established, Proposition 1 will quickly follow(see below (37)). For the
time being we will prove (27). To this end we set

ui = 2i−1(u′−u)+u, for 1≤ i ≤ iη , whereiη = max{i ≥ 1,ui ≤ u+ η} (28)

(note thatu1 = u′), as well as

∆i =
1

ui −u

(
θ0(ui)−θ0(u)

)
and Li =

(
c3 log

1
ui −u

) 1
γ

(
(26)
≥ L0),

for 1≤ i ≤ iη .

(29)

We also define

δi = (ui−u)cap(BLi ) and δ̃i = 6(ui−u)+6δi cap(BLi ), for 1≤ i ≤ iη . (30)

We will apply (25) of Lemma 2 tou′ = ui , u′′ = ui+1, when 1≤ i < iη , and to
u′ = uiη , u′′ = u+η . We note that for 1≤ i ≤ iη , we haveδi ≤ c(α,β )

√
ui−u and

δ̃i ≤ c(α,β )
√

ui−u so that

for 1≤ j ≤ iη , ∑
1≤i≤ j

δi ≤ c(α,β )
√

u j −u and ∑
1≤i≤ j

δ̃i ≤ c(α,β )
√

u j −u. (31)

The application of (25) tou′′ = ui+1, u′ = ui , for 1≤ i < iη and the observation that
ui+1−ui = ui−u yield the inequality

|∆i−eδi ∆i+1| ≤ cδ̃i eδi , for 1≤ i < iη , so that∣∣e∑ℓ<i δℓ∆i−e∑ℓ<i+1δℓ∆i+1
∣∣≤ ce∑ℓ<i+1δℓ δ̃i , for 1≤ i < iη .

(32)

Hence, adding these inequalities, we find that

∣∣∆1−e∑ℓ<iη δℓ∆iη

∣∣≤ c ∑
1≤i<iη

e∑ℓ<i+1δℓ δ̃i

(31),η≤ 1
4≤ c(α,η)

√
η . (33)
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Then, the application of (25) tou′′ = u+ η andu′ = uiη , noting thatu+ η−uiη ≤
uiη −u, yields

∣∣∣∆iη −e
(u+η−uiη )cap(BLiη

) 1
η

(
θ0(u+ η)−θ0(u)

)∣∣∣≤ δ̃iη eδiη ≤ c(α,β )
√

η . (34)

Multiplying both members of (34) bye∑ℓ<iη δℓ and using (33) and (31) as well, we
thus find

∣∣∣ 1
u′−u

(
θ0(u′)−θ0(u)

)
−e

∑ℓ<iη δℓ+(u+η−uiη )cap(BLiη
) 1

η
(
θ0(u+ η)−θ0(u)

)∣∣∣

≤ c(α,β )
√η

(35)
and the term inside the exponential is at mostc(α,β )

√
η .

Applying (35) with the choiceη = η0, see (26), one obtains that

sup
α≤u<u′≤ α+β

2 ,u′≤u+η0

1
u′−u

(
θ0(u

′)−θ0(u)
)
≤ c(α,β ). (36)

Coming back to (35), with the help of the observation below (35) and the inequality
ea−1≤ c′(α,β )a for 0≤ a≤ c(α,β ), one obtains the claim (27).

We will now see how theC1-property ofθ0 on [α, α+β
2 ] (i.e. Proposition 1) fol-

lows. We note that forv,w∈ [α, α+β
2 ] with 0 < |v−w| ≤ η(≤ η0), the claim (27)

applied tou = v∧w andu′ = v∨w yields that
∣∣∣ 1
w−v

(
θ0(w)−θ0(v)

)
− 1

η
(
θ0(v∧w+ η)−θ0(v∧w)

)∣∣∣≤ c(α,β )
√

η . (37)

LettingΓ (·) stand for the modulus of continuity ofθ0 on the interval[α, α+β
2 ]⊆

[0,u∗), we find that forv,w∈ [α, α+β
2 ] with 0 < |v−w| ≤ η (≤ η0), one has

∣∣∣ 1
w−v

(
θ0(w)−θ0(v)

)
− 1

η
(
θ0(v+ η)−θ0(v)

)∣∣∣≤

c(α,β )
√

η +
2
η

Γ (|w−v|).
(38)

The above inequality implies that for anyv∈ [α, α+β
2 ], whenw∈ [α, α+β

2 ] tends
to v, the difference quotients1

w−v (θ0(w)− δ0(v)) are Cauchy. Thus, lettingw tend
to v, we find that

θ0 is differentiable on[α, α+β
2 ], and for 0< η ≤ η0 andv∈ [α, α+β

2 ],∣∣∣θ ′0(v)−
1
η

(
θ0(v+ η)−θ0(v)

)∣∣∣≤ c(α,β )
√

η .
(39)
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As a result we see thatθ ′0 is the uniform limit on[α, α+β
2 ] of continuous functions,

and as suchθ ′0 is continuous. This is the claimedC1-property of Proposition 1. The
last missing ingredient is the

Proof of Lemma 2: We introduce the notation forv≥ 0 andL≥ 1

θ0,L(v) = P[0
v←→/ ∂BL], (40)

and the approximations of∆ ′ and∆ ′′ in (23)

∆̃ ′ = 1
u′−u

(
θ0,L′(u

′)−θ0,L′(u)
)
, ∆̃ ′′ = 1

u′′−u

(
θ0,L′′(u

′′)−θ0,L′′(u)
)
, (41)

where we recall thatL′ ≥ L′′ (≥ L0) are defined in (24). Note that

∆ ′ = 1
u′−u

(
P[0

u′←→/ ∞]−P[0
u←→/ ∞]

)
=

1
u′−u

P[0
u←→ ∞,0

u′←→/ ∞],

∆̃ ′ = 1
u′−u

P[0
u←→ ∂BL′ ,0

u′←→/ ∂BL′ ],

(42)

and as we now explain

∆ ′− ∆̃ ′ = 1
u′−u

(
P[0

u′←→ ∂BL′ , 0
u′←→/ ∞]−P[0

u←→ ∂BL′ ,0
u←→/ ∞]

)
. (43)

Indeed, by (42), (42), one has

∆ ′− ∆̃ ′ = 1
u′−u

(
P[0

u←→ ∞,0
u′←→/ ∞]−P[0

u←→ ∂BL′ , 0
u′←→/ ∂BL′ ]

)
=

1
u′−u

(
P[0

u←→ ∂BL′ ,0
u′←→/ ∞]−P[0

u←→ ∂BL′ , 0
u←→/ ∞, 0

u′←→/ ∞]

− P[0
u←→ ∂BL′ ,0

u′←→/ ∂BL′ ]
)

=
1

u′−u

(
P[0

u←→ ∂BL′ ,0
u′←→/ ∂BL′ ]

+ P[0
u←→ ∂BL′ ,0

u′←→ ∂BL′ ,0
u′←→/ ∞]

− P[0
u←→ ∂BL′ ,0

u←→/ ∞]−P[0
u←→ ∂BL′ ,0

u′←→/ ∂BL′ ]) =
1

u′−u

(
P[0

u′←→ ∂BL′ ,0
u′←→/ ∞]−P[0

u←→ ∂BL′ ,0
u←→/ ∞]

)
,

(44)

whence (43). Clearly, one also has similar identities as in (42) - (43) for∆ ′′ and∆̃ ′′.
We now proceed with the proof of (25). By (43), we have

|∆ ′− ∆̃ ′| ≤ 1
u′−u

max
{
P[0

u′←→ ∂BL′ ,0
u′←→/ ∞], P[0

u←→ ∂BL′ ,0
u←→/ ∞]

}

(2)

≤ 1
u′−u

e−c0 L′ γ (24),(21)
= u′−u,

(45)

and likewise we have
|∆ ′′− ∆̃ ′′| ≤ u′′−u. (46)
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We will now comparẽ∆ ′ and∆̃ ′′. We first recall that whenZ is a Poisson-distributed
random variable with parameterλ > 0, then one has

P[Z≥ 2] = 1−e−λ −λ e−λ =

∫ λ

0
se−sds≤ λ 2

2
. (47)

If Nu,u′(BL′) stands for the number of trajectories in the interlacementswith labels
in (u,u′] that reachBL′ (this is a Poisson((u′−u)cap(BL′))-distributed random vari-
able), we find by (42) that

∆̃ ′ = 1
u′−u

(
P[0

u←→ ∂BL′ ,0
u′←→/ ∂BL′ , Nu,u′(BL′) = 1] +

P[0
u←→ ∂BL′ ,0

u′←→/ ∂BL′ , Nu,u′(BL′)≥ 2]
)
.

(48)

If we consider an independent random walkX. with initial distributioneBL′ , where

eBL′ stands for the normalized equilibrium measure ofBL′ , and writeV̂ u = V u\(rangeX),
we find from (48), (47) that

∣∣∆̃ ′−cap(BL′)e−(u′−u)cap(BL′ )PeBL′
⊗P[0

u←→ ∂BL′ , 0
V̂ u

←→/ ∂BL′ ]
∣∣≤

1
2

(u′−u)cap(BL′)
2

(49)

(this formula is close in spirit to Theorem 1 of [2]). Then, wenote that

cap(BL′)e−(u′−u)cap(BL′ )PeBL′
⊗P[0

u←→ ∂BL′ , 0
V̂ u

←→/ ∂BL′ ] =

1
u′′−u

e(u′′−u′)cap(BL′ )P[Nu,u′′(BL′) = 1]PeBL′
⊗P[0

u←→ ∂BL′ ,0
V̂ u

←→/ ∂BL′ ] =

1
u′′−u

e(u′′−u′)cap(BL′ )
(
P[0

u←→ ∂BL′ ,0
u′′
←→/ ∂BL′ ]

− P[0
u←→ ∂BL′ ,0

u′′
←→/ ∂BL′ , Nu,u′′(BL′)≥ 2]

)
.

(50)

Inserting this identity into (49) and using (47) once again,we find that

∣∣∣∆̃ ′− 1
u′′−u

e(u′′−u′)cap(BL′ )P[0
u←→ ∂BL′ ,0

u′′
←→/ ∂BL′ ]

∣∣∣≤
1
2

(u′−u)cap(BL′)
2 +

1
2

(u′′−u)cap(BL′)
2 e(u′′−u′)cap(BL′ ) ≤

(u′′−u)cap(BL′)
2e(u′′−u′)cap(BL′ ).

(51)

Note thatL′′ ≤ L′ and a similar calculation as (44) yields the identity

1
u′′−u

P[0
u←→ ∂BL′ ,0

u′′
←→/ ∂BL′ ]− ∆̃ ′′ =

1
u′′−u

(P[0
u′′←→ ∂BL′′ ,0

u′′
←→/ ∂BL′ ]−P[0

u←→ ∂BL′′ , 0
u←→/ ∂BL′ ]

) (52)
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(u′′ plays the role ofu′, L′′ the role ofL′, andL′ the role of∞ in (43)). The application
of (2) with L′′ as in (24) now yields

∣∣∣ 1
u′′−u

P[0
u←→ ∂BL′ , 0

u′′
←→/ ∂BL′ ]− ∆̃ ′′

∣∣∣≤ u′′−u. (53)

Coming back to (51), we find that

|∆̃ ′−e(u′′−u′)cap(BL′ ) ∆̃ ′′| ≤ (u′′−u)
(
1+cap(BL′)

2)e(u′′−u′)cap(BL′ ). (54)

Using (45), (46), it then follows that

|∆ ′−e(u′′−u′)cap(BL′ ) ∆ ′′| ≤ 3(u′′−u)
(
1+cap(BL′)

2)e(u′′−u′)cap(BL′ ). (55)

This completes the proof of (25) and hence of Lemma 2. �

With this last ingredient the proof of Proposition 1 is now complete. �

2 The variational problem

The main object of this section is to prove Theorem 2 that provides a notion of min-
imizers for the variational problem (9), see (13) - (15). At the end of the section, the
Remark 1 contains additional information on the variational problem, in particular
whenD, see (7), is star-shaped or a ball.

Proof of Theorem 2:We will first prove (14) and (15). We considerD,u,ν as
in (7), (8) andJD

u,ν defined in (12). We letϕn ≥ 0 in D1(Rd), n ≥ 0, stand for
a minimizing sequence of (12). Then, by Theorem 8.6, p. 208 and Corollary 9.7,
p. 212 of [11], we can extract a subsequence still denoted byϕn and findϕ ≥ 0
in D1(Rd) such that 1

2d

∫
Rd |∇ϕ |2dz≤ lim infn

1
2d

∫
Rd |∇ϕn|2dz= JD

u,ν andϕn→ ϕ
a.e. and inL2

loc(R
d). Then, one has

∫

D
− θ 0

(
(
√

u+ ϕ)2)dz≥
∫

D
− limsup

n
θ 0

(
(
√

u+ ϕn)
2)dz

reverse Fatou
≥ limsup

n

∫

D
− θ 0

(
(
√

u+ ϕn)
2)dz≥ ν.

(56)

This shows thatϕ is a minimizer for the variational problem in (12) and (14) is
proved. If ϕ is a minimizer for (12), note that̃ϕ = ϕ ∧ (

√
u∗ −

√
u) ∈ D1(Rd),

and using Theorem 6.17, p. 152 of [11],ϕ − ϕ̃ = (ϕ − (
√

u∗−
√

u))+ and ϕ̃ are
orthogonal inD1(Rd). In addition, one hasθ 0((

√
u+ ϕ̃)2) = θ0((

√
u+ϕ)2) so that

ϕ̃ is a minimizer for (12) as well. It follows thatϕ = ϕ̃ (otherwiseϕ would not be a
minimizer). With analogous arguments, one sees that the infimum definingJD

u,ν in
(12) remains the same if one omits the conditionϕ ≥ 0 in the right member of (12).
Then, using smooth perturbations inR

d\D of a minimizerϕ for (12), one finds that
ϕ is harmonic outsideD and tends to 0 at infinity (see Remark 5.10 1) of [15] for
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more details). In addition, see the same reference,|z|d−2ϕ(z) is bounded at infinity
and hence everywhere sinceϕ is bounded. This completes the proof of (15).

We now turn to the proof of (13). As already stated above Theorem 2, we know
by direct inspection thatID

u,ν ≥ JD
u,ν . Thus, we only need to show that

JD
u,ν ≥ ID

u,ν . (57)

To this end, we consider a minimizerϕ for JD
u,ν and know that (15) holds. As we

now explain, ifψ ≥ 0 belongs toC∞
0 (Rd) andψ > 0 onD, then one has

∫

D
− θ0

(
(
√

u+ ϕ + ψ)2)dz> ν. (58)

We consider two cases to argue (58). LettingmD stand for the normalized Lebesgue
measure onD, either

mD(ϕ <
√

u∗−
√

u) = 0 or (59)

mD(ϕ <
√

u∗−
√

u) > 0. (60)

In the first case (59), thenϕ ≥√u∗−
√

u a.e. onD so that the left member of (58)
equals 1 and (58) holds sinceν < 1 by (8). In the second case (60), sinceθ0 is
strictly increasing on[0,u∗) (cf. Lemma 1), one has

∫

D
− θ0

(
(
√

u+ ϕ + ψ)2)dz=

∫

D∩{ϕ<
√

u∗−
√

u}
θ0

(
(
√

u+ ϕ + ψ)2)dz+
∫

D∩{ϕ≥√u∗−
√

u}
θ0

(
(
√

u+ ϕ + ψ)2)dz>

∫

D∩{ϕ<
√

u∗−
√

u}
θ0

(
(
√

u+ ϕ)2)dz+ |D∩{ϕ ≥
√

u∗−
√

u}|=
∫

D
θ 0

(
(
√

u+ ϕ)2)dz≥ ν |D|,

(61)

and (58) follows. We have thus proved (58). Using multiplication by a smooth com-
pactly supported[0,1]-valued function and convolution, we can construct a sequence
ϕn≥ 0 inC∞

0 (Rd), which approximatesϕ +ψ in D1(Rd) and such thatϕn converges
to ϕ + ψ a.e. onD. Then, we have

ν
(58)
<

∫

D
− θ0

(
(
√

u+ ϕ + ψ)2)dz≤
∫

D
− lim inf

n
θ0

(
(
√

u+ ϕn)
2)dz

Fatou
≤ lim inf

n

∫

D
− θ0

(
(
√

u+ ϕn)
2)dz.

(62)



On theC1-property of the percolation function 13

Hence, for infinitely manyn, one hasID
u,ν ≤ 1

2d

∫ |∇ϕn|2dz, so that

ID
u,ν ≤

1
2d

∫

Rd
|∇(ϕ + ψ)|2dz. (63)

If we now letψ tend to 0 inD1(Rd) and recall that12d

∫
Rd |∇ϕ |2 dz= JD

u,ν , we find
(57). This completes the proof of Theorem 2. �

Remark 1.1) Note that forD as in (7) and 0< u < u∗, the non-decreasing map

ν ∈ [θ0(u),1)−→ ID
u,ν

Theorem 2
= JD

u,ν is continuous. (64)

Indeed, by definition ofID
u,ν in (9), the map is right continuous. To see that the map

is also left continuous, considerν ∈ (θ0(u),1) and a sequenceνn smaller thanν
increasing toν. If ϕn is a corresponding sequence of minimizers for (14), by the
same arguments as above (56), we can extract a subsequence still denoted byϕn and
find ϕ ≥ 0 in D1(Rd) so that 1

2d

∫
Rd |∇ϕ |2dz≤ lim infn

∫
Rd |∇ϕn|2dz= limnJD

u,νn

andϕn→ ϕ a.e. Using the reverse Fatou inequality as in (56), we then have
∫

D
− θ 0

(
(
√

u+ ϕ)2)dz≥
∫

D
− limsup

n
θ0

(
(
√

u+ ϕn)
2)dz

≥ limsup
n

∫

D
− θ 0

(
(
√

u+ ϕn)
2)dz≥ limsup

n
νn = ν.

(65)

This shows thatJD
u,ν ≤ limnJD

u,νn
and completes the proof of (64).

2) If D in (7) is star-shaped aroundz∗ ∈ D (that is, whenλ (z− z∗)+ z∗ ∈ D for
all z∈D and 0≤ λ ≤ 1), then foru,ν as in (8), one has the additional fact

any minimizerϕ in (14) satisfies
∫

D
− θ0

(
(
√

u+ ϕ)2)dz= ν, and (66)

JD
u,ν = (67)

min
{

1
2d

∫

Rd
|∇ϕ |2dz; ϕ ≥ 0,ϕ ∈ D1(Rd),

∫

D
− θ0

(
(
√

u+ ϕ)2)dz= ν
}

.

Indeed, if ϕ is a minimizer of (14), one sets for 0< λ < 1, ϕλ (z) = ϕ(z∗ +
1
λ (z− z∗)). Then, one has

∫
Rd |∇ϕλ |2dz = λ d−2∫

Rd |∇ϕ |2 dz, and, with Dλ ⊇
D, the image ofD under the dilation with centerz∗ and ratioλ−1, one finds∫

D− θ0((
√

u+ ϕλ )2)dz =
∫

Dλ
− θ 0 ((

√
u + ϕ)2)dz≥ λ d ∫

D− θ 0((
√

u + ϕ)2)dz. Thus
∫

D− θ 0((
√

u+ ϕ)2)dz≥ ν must actually equalν, otherwise the consideration ofϕλ
for λ < 1 close to 1 would contradict the fact thatϕ is a minimizer for (14). This
proves (66) and (67) readily follows.

Incidentally, note that due to (66), (67),

the map in (64) is strictly increasing. (68)
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Indeed, otherwise there would beν < ν ′ with JD
u,ν = JD

u,ν ′ , and corresponding min-
imizers ϕ ,ϕ ′ as in (67). But thenϕ ′ would contradict (66). The claim (68) thus
follows.

3) If D satisfying (7) is a closed Euclidean ball of positive radiusin R
d, given a

minimizer ϕ of (14), we can consider its symmetric decreasing rearrangementϕ∗
relative to the center ofD, see Chapter 3§3 of [11]. One knows thatϕ∗ ∈ D1(Rd)
and

∫
Rd |∇ϕ∗|2dz≤

∫
Rd |∇ϕ |2 dz, see p. 188-189 of the same reference. As we now

explain:
ϕ∗ is a minimizer of (14) as well. (69)

The argument is a (small) variation on Remark 5.10 2) of [15].With mD the nor-
malized Lebesgue measure onD, one hasmD(ϕ ≥ s) ≤mD(ϕ∗ ≥ s) for all s in R.

Settingθ−1
0 (a) = inf{t ≥ 0; θ0(t) ≥ a}, for 0≤ a≤ 1, we see that for 0≤ t ≤ 1,

{θ0((
√

u+ϕ)2)≥ t}= {ϕ ≥
√

θ−1
0 (t)−√u}, and a similar identity holds withϕ∗

in place ofϕ . Hence, we have

ν ≤
∫

D
− θ0

(
(
√

u+ ϕ)2)dt =

∫ 1

0
mD

(
θ 0

(
(
√

u+ ϕ)2)≥ t
)

dt

=
∫ 1

0
mD

(
ϕ ≥

√
θ−1

0 (t)−
√

u
)

dt≤
∫ 1

0
mD

(
ϕ∗ ≥

√
θ−1

0 (t)−
√

u
)

dt

=

∫ 1

0
mD

(
θ 0

(
(
√

u+ ϕ)2)≥ t
)
dt =

∫

D
− θ 0

(
(
√

u+ ϕ∗)2)dz.

(70)

Thus,ϕ∗ is a minimizer of (14) as well, and the claim (69) follows. Incidentally,
note thatD is clearly star-shaped so that (64) and (68) hold. �

With Theorem 2 we have a notion of minimizers for the variational problem cor-
responding to (9). As mentioned in the Introduction, it is a natural question whether
there is a strengthening of the asymptotics (10): is it the case that

lim
N

1
Nd−2 logP[|DN\C u

∞| ≥ ν |DN|] = JD
u,ν

Theorem2
= JD

u,ν ? (71)

Given a minimizerϕ in (14), the function(
√

u+ ϕ)2( ·N) can heuristically be in-
terpreted as describing the slowly varying local levels of the tilted interlacements
that enter the derivation of the lower bound (10) for (71), see Section 4 of [15].
Hence, the special interest in analyzing whether the minimizersϕ for (14) reach
the value

√
u∗−

√
u. Indeed, ifϕ remains smaller than

√
u∗−

√
u the local level

function(
√

u+ ϕ)2 remains smaller thanu∗, and so with values in the percolative
regime of the vacant set of random interlacements. On the other hand, the presence
of a region whereϕ ≥ √u∗−

√
u raises the question of the possible occurrence of

droplets secluded from the infinite cluster of the vacant setthat would take part in
the creation of an excessive fractionν of sites ofDN outside the infinite cluster of
V u (somewhat in the spirit of the Wulff droplet in the case Bernoulli percolation or
for the Ising model, see [4], [3]).
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3 An application of the C1-property of θ0 to the variational
problem

The main object of this section is to prove Theorem 3 of the Introduction that de-
scribes a regimeof small excessν for which all minimizers of the variational prob-
lem (14) remain strictly below the threshold value

√
u∗−

√
u. At the end of the

section, the Remark 2 contains some simple observations concerning the existence
of minimizers reaching the threshold value

√
u∗−
√

u.
We considerD as in (7), and as in (16)

u0 ∈ (0,u∗) such thatθ0 is C1 on a neighborhood of[0,u0]. (72)

To prove Theorem 3, we will replaceθ0 by a suitableC1-function θ̃ , which agrees
with θ0 on [0,u0], see Lemma 3, and show that for 0< u < u0 andν ≥ θ0(u) the
variational problem̃JD

u,ν attached tõθ , see (86) and Lemma 5, has minimizers that
satisfy an Euler-Lagrange equation, see (90), involving a Lagrange multiplier that
can be bounded from above and below in terms ofν − θ0(u), see (91). Using such
tools, we will derive properties such as stated in (17) for the minimizers ofJ̃D

u,ν and
show that they coincide with the minimizers of the original problemJD

u,ν in (14)
when 0< u < u0 andν is close toθ0(u), see below (99).

Proof of Theorem 3:
Recallu0 as in (72). Our fist step is

Lemma 3. There exist non-negative functionsθ̃ and γ̃ onR+ such that

θ0 = θ̃ − γ̃, (73)

the functioñη(b) = θ̃ (b2) is C1 onR, (74)

η̃ ′ is bounded and uniformly continuous onR, (75)

η̃ ′ is uniformly positive on each interval[a,+∞),a > 0, (76)

γ̃ = 0 on [0,u0] and γ̃ > 0 on (u0,∞). (77)

Proof. By assumption there isu1 ∈ (u0,u∗) such thatθ0 is C1 on a neighborhood
of [0,u1] with a uniformly positive derivative on[0,u1] by Lemma 1. We setu2 =

max{u∗,4}, so thatu0 < u1 < u2. We then definẽθ (v) = θ0(v) on [0,u0], θ̃ (v) =

θ0(v)+a(v−u0)
2 on [u0,u1], wherea > 0 is chosen so that̃θ (u1) = 1 (≥ θ0(u∗) >

θ0(u1)), andθ̃ (v) =
√

v (≥ 2) on [u2,∞). In particular,̃η(b) = b for b≥√u2. Then,
any choice of̃θ on [u1,u2] that isC1 on [u1,u2] with right derivativeθ ′0(u1) atu1, left
derivative 1

2
√

u2
atu2, and uniformly positive derivative on[u1,u2], leads to functions

θ̃ , γ̃ that satisfy (73) - (77).
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We select functions fulfilling (73) - (77) and from now on we view

θ̃ (and hencẽγ) as fixed and solely depending onu0. (78)

For the results below up until the end of the proof of Theorem 3, the only property
of u0 that matters is thatu0 is positive and a decomposition ofθ0 satisfying (73) -
(77) has been selected. In particular, if such a decomposition can be achieved in the
case ofu0 = u∗, the results that follow until the end of the proof of Theorem3, with
the exception of the last inequality (17) (part of the claim at the end of the proof),
remain valid. This observation will be useful in Remark 2 at the end of this section.

With u∈ (0,u0), D as in (7), and̃η as in (74), we now introduce the map:

Ã : ϕ ∈ D1(Rd)→ Ã(ϕ) =

∫

D
− η̃(

√
u+ ϕ)dz∈ R. (79)

We collect some properties of̃A in the next

Lemma 4.

|Ã(ϕ + ψ)− Ã(ϕ)| ≤ c(u0)‖ψ‖L1(mD), for ϕ ,ψ ∈ D1(Rd) (80)

(recall mD stands for the normalized Lebesgue measure on D).

Ã is a C1-map and A′(ϕ), its differential atϕ ∈D1(Rd), is the (81)

linear formψ ∈D1(Rd)→
∫

D
− η̃ ′(

√
u+ ϕ)ψ dz= A′(ϕ)ψ .

For anyϕ ≥ 0, A′(ϕ) is non-degenerate. (82)

Proof. The claim (80) is an immediate consequence of the Lipschitz property ofη̃
resulting from (75). We then turn to the proof of (81). Forϕ ,ψ in D1(Rd), we set

Γ = Ã(ϕ + ψ)− Ã(ϕ)−
∫

D
− η̃ ′(

√
u+ ϕ)ψ dz=

∫ 1

0
ds

∫

D
−

(
η̃ ′(
√

u+ ϕ +sψ)− η̃ ′(
√

u+ ϕ)
)

ψ dz.
(83)

With the help of the uniform continuity and boundedness ofη̃ ′, see (75), for any
δ > 0 there is aρ > 0 such that for anyϕ ,ψ in D1(Rd)

|Γ | ≤
∫

D
− (δ +2‖η̃ ′‖∞1{|ψ | ≥ ρ}) |ψ |dz

≤ δ‖ψ‖L1(mD) +
2
ρ
‖η̃ ′‖∞ ‖ψ‖2L2(mD)

.
(84)

Since theD1(Rd)-norm controls theL2(mD)-norm, see Theorem 8.3, p. 202 of
[11], we see that for anyϕ ∈ D1(Rd), Γ = o(‖ψ‖D1(Rd)), asψ → 0 in D1(Rd).
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Hence,Ã is differentiable with differential given in the second line of (81). In addi-
tion, with δ > 0 andρ > 0 as above, for anyϕ ,γ,ψ in D1(Rd)

∣∣∣
∫

D
− (η̃ ′

(√
u+ ϕ + γ)− η̃ ′(

√
u+ ϕ)

)
ψ dz

∣∣∣≤
∫

D
− (δ +2‖η̃ ′‖∞ 1{|γ| ≥ ρ}) |ψ |dz

≤ δ‖ψ‖L1(mD) +
2
ρ
‖η̃ ′‖∞ ‖γ‖L2(mD) ‖ψ‖L2(mD).

(85)

This readily implies that̃A is C1 and completes the proof of (81). Finally, (82) fol-
lows from (76) and the fact thatu > 0. This completes the proof of Lemma 4.

Recall thatu∈ (0,u0). We now define the auxiliary variational problem

J̃D
u,ν = min

{
1
2d

∫

Rd
|∇ϕ |2dz; ϕ ≥ 0,ϕ ∈ D1(Rd), Ã(ϕ)≥ ν

}
,

for ν ≥ θ̃ (u) (
(77)
= θ0(u) ).

(86)

In the next lemma we collect some useful facts about this auxiliary variational prob-
lem and its minimizers. We denote byG the convolution with the Green function of
1
2d ∆ (i.e. d

2πd/2 Γ (d
2 −1) | · |−(d−2) with | · | the Euclidean norm onRd).

Lemma 5. For D as in (7), u∈ (0,u0), ν ≥ θ̃ (u) (= θ0(u)), one has

J̃D
u,ν = min

{
1
2d

∫

Rd
|∇ϕ |2dz; ϕ ≥ 0,ϕ ∈ D1(Rd), Ã(ϕ) = ν

}
. (87)

Moreover, one can omit the conditionϕ ≥ 0 without changing the above value, and

any minimizer of (86) satisfies̃A(ϕ) = ν. (88)

In addition, whenν = θ̃(u), ϕ̃ = 0 is the only minimizer of (86) and whenν > θ0(u),
for any minimizer̃ϕ of (86)

ϕ̃ (≥ 0) is C1,α for all α ∈ (0,1), harmonic outside D, with
sup

z
|z|d−2ϕ(z) < ∞, (89)

and there exists a Lagrange multiplierλ̃ > 0 such that

ϕ̃ = λ̃ G(η̃ ′(
√

u+ ϕ̃)1D), with (90)

c′(u0,D)
(
ν−θ0(u)

)
≤ λ̃ ≤ c(u,u0,D)

(
ν−θ0(u)

)
(91)

(recall thatθ0(u) = θ̃ (u)).

Proof. We begin by the proof of (87), (88). Forϕ ∈ D1(Rd), we writeD(ϕ) as a
shorthand for1

2d

∫
Rd |∇ϕ |2dz. Note that limb→∞ η̃(b) = ∞ by (76), so that the set in
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the right member of (86) is not empty. Taking a minimizing sequenceϕn in (86),
we can extract a subsequence still denoted byϕn and findϕ ∈ D1(Rd) such that
D(ϕ) ≤ lim infnD(ϕn) andϕn→ ϕ in L1(mD) (see Theorem 8.6, p. 208 of [11]).
By (80) of Lemma 4, we find that̃A(ϕ)≥ ν. Hence,ϕ is a minimizer of (86).

Now, for any minimizerϕ of (86), if Ã(ϕ) > ν, then for someλ ∈ (0,1) close to
1, Ã(λ ϕ)≥ ν. Moreover,ϕ is not the zero function (sincẽA(ϕ) > ν), andD(λ ϕ) =
λ 2D(ϕ) < D(ϕ). This yields a contradiction and (88), (87) follow.

Also, if one removes the conditionϕ ≥ 0 in (88), one notes that for anyϕ in
D1(Rd), D(|ϕ |)≤D(ϕ) andÃ(|ϕ |)≥ Ã(ϕ). So, the infimum obtained by removing
the conditionϕ ≥ 0 is at least̃JD

u,ν and hence equal tõJD
u,ν . The claim of Lemma 5

below (87) follows.
When ν = θ̃ (u), J̃D

u,ν = 0 andϕ = 0 is the only minimizer. We now assume

ν > θ̃ (u) and will prove (89), (90). For̃ϕ ≥ 0 in D1(Rd) a minimizer of (87), one
finds using smooth perturbations inRd\D (see Remark 5.10 1) of [15] for simi-
lar arguments) that̃ϕ is a non-negative harmonic function inRd\D that vanishes at
infinity and that|z|d−2 ϕ̃(z) is bounded at infinity. By (81), (82) of Lemma 4,ϕ̃ satis-
fies an Euler-Lagrange equation (see Remark 5.10 4) of [15] for a similar argument)
and for a suitable Lagrange multiplierλ̃ , one has (90) (and necessarilyλ̃ > 0). Since
η̃ ′ is bounded by (21), it follows from (90) that̃ϕ is C1,α for all α ∈ (0,1), see for
instance (4.8), p. 71 of [9]. This proves (89), (90).

There remains to prove (91). We have (recall thatθ0(u) = θ̃(u))

ν−θ0(u) =

∫

D
− η̃(

√
u+ ϕ̃)− η̃ (

√
u)dz. (92)

By (75), we see that

ν−θ0(u) ≤ ‖η̃ ′‖∞

∫

D
− ϕ̃ dz

(90)
= λ̃ ‖η̃ ′‖∞

∫

D
−G(η̃ ′

(√
u+ ϕ̃)1D

)
dz

≤ λ̃ ‖η̃ ′‖2∞
∫

D
−G(1D)dz= c(u0,D) λ̃ .

(93)

On the other hand, by (76), we see that

ν−θ0(u) ≥ inf
[
√

u,∞)
η̃ ′

∫

D
− ϕ̃ dz

(90)
= λ̃ inf

[
√

u,∞)
η̃ ′

∫

D
−G

(
η̃ ′(
√

u+ ϕ2)1D
)

dz

≥ λ̃
(

inf
[
√

u,∞)
η̃ ′

)2
∫

D
−G(1D)dz= c(u,u0,D) λ̃ .

(94)

The claim (91) now follows from (93) and (94). This concludesthe proof of
Lemma 5. �

We now continue the proof of Theorem 3. Givenu ∈ (0,u0) andν ≥ θ̃ (u) (=
θ0(u)), we see by Lemma 5 that any minimizerϕ̃ for (87) satisfies (90) for a suitable
λ̃ satisfying (91), so that

‖ϕ̃‖∞ ≤ λ̃ ‖η̃ ′‖∞ ‖G1D‖∞
(91),(75)
≤ c2(u,u0,D)

(
ν−θ0(u)

)
. (95)
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In particular, we find that

for θ0(u)≤ ν ≤ θ0(u)+c1(u,u0,D)(< 1), any minimizerϕ̃
for (87) satisfies 0≤ ϕ̃ ≤ (

√
u0−
√

u)∧
{

c2
(
ν−θ0(u)

)}
.

(96)

We will now derive the consequences for the basic variational problem of interest
JD

u,ν , see (12), (14). By (73), (77) and the definition ofθ0 (see (11)), we find that

θ̃ ≥ θ 0, so that

for all u∈ (0,u0) andν ∈ [θ0(u),1), JD
u,ν ≥ J̃D

u,ν . (97)

Moreover, whenν ∈ [θ0(u),θ0(u)+ c1] (with c1 as in (96)), any minimizer̃ϕ for
(87) is bounded by

√
u0−
√

u, and hence satisfies as well
∫

D− θ0((
√

u+ ϕ̃)2)dz≥ ν
(in fact an equality by (88)). We thus find that

JD
u,ν = J̃D

u,ν for all ν ∈ [θ0(u)+c1], and any minimizer̃ϕ of J̃D
u,ν in (87)

is a minimizer ofJD
u,ν in (14).

(98)

Now for ν as above, considerϕ a minimizer of (14). Then, we haveD(ϕ) = JD
u,ν =

J̃D
u,ν , and sincẽθ ≥ θ 0, we find that

Ã(ϕ) =

∫

D
− θ̃

(
(
√

u+ ϕ)2)dz≥
∫

D
− θ 0

(
(
√

u+ ϕ)2)dz≥ ν. (99)

This show thatϕ is a minimizer for (86), hence for (87) by (88). We thus find that
whenν ∈ [θ0(u),θ0(u)+c1], the set of minimizers of (14) and (87) coincide and the
claim (17) now follows from Lemma 5. This concludes the proofof Theorem 3.

With Theorem 3 we have singled out a regime of “small excess” for ν such that
all minimizersϕ for JD

u,ν in (14) stay below the maximal value
√

u∗−
√

u. In the
remark below we make some simple observations about the possible existence of a
regime where some minimizers in (14) reach the threshold

√
u∗−
√

u.

Remark 2.1) If θ0 is discontinuous atu∗ (a not very plausible possibility), then
θ0(u∗)< 1, and for anyν ∈ (θ0(u∗),1) any minimizer for (14) must reach the thresh-
old value

√
u∗−
√

u on a set of positive Lebesgue measure due to the constraint in
(14).

2) If θ0 is continuous and its restriction to[0,u∗] is C1 with uniformly positive
derivative (corresponding to a “mean field” behavior of the percolation function
θ0), then a decomposition as in Lemma 3 can be achieved with nowu0 = u∗. As
mentioned below (78), the facts established till the end of Theorem 3 (with the
exception of the last inequality of (17)) remain valid in this context. In particular,
if for someu ∈ (0,u∗) andν ∈ (θ0(u),1) there is a minimizer̃ϕ for J̃D

u,ν in (87)
such that‖ϕ̃‖∞ =

√
u∗−

√
u, thenϕ̃ is a minimizer forJD

u,ν in (14) and it reaches
the threshold value

√
u∗−

√
u. In the toy example wherẽη is affine on[

√
u+ ∞)

and 0< η̃ (
√

u) < η̃ (
√

u∗) = 1, such aν < 1 andϕ̃ (which satisfies (90)) are for
instance easily produced. �
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The above remark naturally raises the question of finding some plausible as-
sumptions on the behavior of the percolation functionθ0 close tou∗ (if the behavior
mentioned in Remark 2 2) is not pertinent, see for instance Figure 4 of [12] for the
level-set percolation of the Gaussian free field, whend = 3) and whether such as-
sumptions give rise to a regime foru,ν, ensuring that minimizers ofJD

u,ν in (14)
achieve the maximal value

√
u∗−

√
u on a set of positive measure. But there are

many other open questions. For instance, what can be said about the number of
minimizers for (14)? Is the mapν → JD

u,ν in (64) convex? An important question
is of course whether the asymptotic lower bound (10) can be complemented by a
matching asymptotic upper bound.
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1197, 2014.

8. Duminil-Copin H., Goswami S., Rodriguez P.-F. , Severo, F.: Equality of critical parameters
for percolation of Gaussian free field level-sets.Preprint, also available at arXiv:2002.07735.

9. Gilbarg D.,Trudinger N.S.:Elliptic partial differential equations of second order, volume 224
of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin-New York, 1983.

10. Grimmett G.:Percolation. Second edition, Springer, Berlin, 1999.
11. Lieb E., Loss M.:Analysis, volume 14 ofGraduate Studies in Mathematics. Second edition,

AMS, 2001.
12. Marinov, V.I., Lebowitz, J.L.: Percolation in the harmonic crystal and voter model in three

dimensions.Physical Review, E 74, 031120, 2006.
13. Sidoravicius V., Sznitman, A.S.: Percolation for the vacant set of random interlacements.

Comm. Pure Appl. Math., 62(6):831–858, 2009.
14. Sznitman, A.S.: Vacant set of random interlacements andpercolation.Ann. Math., 171:2039–

2087, 2010.
15. Sznitman, A.S.: On bulk deviations for the local behavior of random interlacements.Preprint,

also available at arXiv:1906.05809.
16. Teixeira A.:On the uniqueness of the infinite cluster of the vacant set of random interlacements.

Ann. Appl. Probab., 19(1):454–466, 2009.


