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Assume
- 0 C R™ bounded open set with smooth boundary, n > 1
- N smooth compact submanifold of R? without boundary (for
example 5971)

Definition (Harmonic map)

A map u € H'(;N) is said to be harmonic in Q if it is a critical
point of the Dirichlet energy

E(u, Q) := /|Vu\2da:
Q
for (constrained) outer variations, that is to say,
d o0
—[E My (utt), D], ;=0  VeeOX(QRY),

dt

where 7, the nearest point projection on N.
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Harmonic map equation

p Euler-Lagrange equation: w is harmonic iff

—Au | Tan(u, ) in 2 (Q).
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p Euler-Lagrange equation: w is harmonic iff
—Au | Tan(u, ) in 2 (Q).
» When NV = 591 we get the explicit equation

—Au = |Vul?u in Z'(Q).

Example

The application u(x) = = from R? into S% is harmonic.
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Harmonic map equation

p Euler-Lagrange equation: w is harmonic iff
—Au | Tan(u, ) in 2 (Q).
» When NV = 591 we get the explicit equation

—Au = |Vul?u in Z'(Q).

Example

The application u(z) = i‘ from R3 into 52 is harmonic.

|z

Connection with minimal surfaces:
- for n = 1, harmonic maps are geodesics

- for n = 2, they are branched minimal immersions
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Are they regular?

- What kind of regularity?
ly Holder continuity = ' Lipschitz = C*

sing(u) := Q\ {& : wis Holder-continuous in a neighborhood of x}

- Problem:
—Au = |Vul?u € L}(Q)
L, LP elliptic regularity theory does not apply
However,
- In dimension n = 1, they are smooth

- In dimension n = 2 as well*:
L, the source term has a div-curl structure
— 3 jtis in the Hardy space H'(R")
= *ueW?!' = smooth
R. M. Schoen 1984

Hélein 1990
3Compensated compactness: Coifman et al. 1993
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In higher dimension (n > 3) ? (1)

Proposition (No regularity!®)
There exists a harmonic map v € H'(B?;S?) which is
discontinuous everywhere.

Theorem (Minimizing harmonic maps®)
If w is @ minimizing harmonic map, i.e., satisfies

E(u, Q) < E(v,0Q) whenever spt(u —v) C £,
then uw € C*°(Q\sing(u)) with dim g sing(u) < n — 3.

Example
Let g € H'(B*S%) N C°(0B°) st. deg(gjpps) # 0. Then

v := argmin {€(u; B*) : u € H'(B*S?) st. u(z) = g(z) on 6B%},
is a minimizing harmonic map in B3 with a singularity.

SRiviére 1995
bR. Sch h k 1984
Schoen and Uhlenbeck 198 4)24



In higher dimension (n > 3) (2) ?

Theorem (Stationary harmonic maps’)
If wis harmonic and stationary, i.e. satisfies, VX € C°(Q;R™)
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=
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Theorem (Stationary harmonic maps’)
If wis harmonic and stationary, i.e. satisfies, VX € C°(Q;R™)
d

T {E(u ° @t,Q)L .= 0 where ®, is the integral flow of X,
=

then u € C*°(Q\sing(u)) with dim 4 sing(u) < n — 2.

Proposition (Stationarity equation)
If w Is stationary harmonic in Q then for every ¢ € C°(Q),

/R Z (IVul?6;; — 20;u - Oju) ;pdx =0, Vje{l,..,n}
™ i=1

Corollary (Monotonicity formula)
If u stationary harmonic in Q, then

T 7"2*"/ |Vul?dz », Vz €.
B,.(x)

r

’E 1991 Bethuel 1
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R

6/24



Fractional Laplacian (1)

» s€(0,1)
B Foru e . (—A)*uis defined by F((—A)%u) = (2r[€])* F(u).
p Integral formula

- u(z) —u(y)

—=d
" |l‘ _ y|n+25

(—A)°u(z) = 4y, V. / y, VueS

p Action of (—A)%u in Q obtained as the first variation of the
s-Dirichlet energy

6/24



Fractional Laplacian (1)

» s€(0,1)
B Foru e . (—A)*uis defined by F((—A)%u) = (2r[€])* F(u).
p Integral formula

- u(z) —u(y)

—=d
" |l‘ _ y|n+25

(—A)°u(z) = 4y, V. / y, VueS

p Action of (—A)%u in Q obtained as the first variation of the
s-Dirichlet energy

B 2
E,(u,Q) = b// dedy
4 JJrnxro\(Qexe) T —y|nt2s
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Fractional Laplacian (2)

p The energy is defined so that, for u € .,

Slewrton] = [ arupds voecm@rd,
dt [t=0 R
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Fractional Laplacian (2)

p The energy is defined so that, for u € .,

Slewrton] = [ arupds voecm@rd,
dt [t=0 R

p We consider the Hilbert space

H*(Q;RY) == {ue L2 (R:RY) : & (u,Q) < +oo}.

loc

» Foru e H°(;R?Y), we then define (—A)*u € (H*(;R))" by

gl (u(@) —u(y)) - (pl@) — ¢W) |
2 /A?"XD?")\(QCMU) dz dy.

|x_y|n+25

(8w o =60+ t09)]
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Fractional harmonic maps

Definition (s-harmonic map)

u e H¥(Q; N) is a s-harmonic map in Q if

d d
- 4 Q = A4 X (Q; RY).
dr 63 (WN(U t‘)p)v ) =0 0 Y E C’c ( ) )
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Fractional harmonic maps

Definition (s-harmonic map)

u e H¥(Q; N) is a s-harmonic map in Q if

d d
- 4 Q = A4 X (Q; RY).
dr 5s (71-./\/(“ t‘)p)v ) =0 0 Y E C’c ( ) )

Euler-Lagrange equation
u is s-harmonic iff

(—A)°u L Tan(u,N') in Z'(Q).
When N = 5471,

<—A)5u(x) = (Vn,s M

R |.’E _ y|n+2s

‘dsll‘z(,’lf)

dy) u(z) In Z2°(Q).
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The regularity issue

- Subcritical casen =1 & s € (%7 1) : Holder-regularity by Sobolev
-+ Critical case n =1 & s = 7 : regularity (Da Lio and Riviére 2011)

- Supercritical case n > 2s : probably no regularity
(3 a 1/2-harmonic map from D into S' everywhere discontinuous?)

Definition (Energy-minimizing)
u is @ minimizing s-harmonic map if it satisfies
E(u, Q) < E,(v,9Q) whenever spt(u —v) C Q.

Definition (Stationary)
u is a stationary s-harmonic map if it is s-harmonic and satisfies,
VX € C®(Q;R™)

4 {Es(u o, Q)] =0 where @, is the integral flow of X.

dt [t=0
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Theorem (Stationary case)

Assume n > 2s. If u € H*(Q; 5%1) is stationary s-harmonic in €,
then u € C*(Q \ sing(u)) and
- fors<1/2and n > 1, dim , sing(u) <n—1;
L locally finite forn =1
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Partial regularity results

Theorem (Stationary case)

Assume n > 2s. If u € H*(Q; 5%1) is stationary s-harmonic in €,
then u € C*(Q \ sing(u)) and
- fors<1/2and n > 1, dim , sing(u) <n—1;
L locally finite forn =1

- fors>1/2and n > 2, dim, sing(u) < n—2
L locally finite forn = 2

- fors=1/2and n > 2, #" (sing(u)) = 0.

Theorem (Minimizing case)

Assume n > 2s. If u € H°(€%; 5% is minimizing s-harmonic in Q,
then w € C*°(Q \ sing(u)) and
- forn > 3, dim g sing(u) <n —2;

- for n = 2, sing(u) is locally finite &;
- forn =1, sing(u) = 0 (i.e, u € C(Q)).
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Proposition (Energy improvement)
There exists e, = ¢,(n,s) >0and 7 = 7(n,s) € (0,1) s.t, if
u € H*(B,;5% ") is a stationary s-harmonic map in B, satisfying
€S(u7 Bl) S €y
then
T2E (u, B,) < %Ss(u,Bl).

1/24



How to prove partial regularity? (1)

Proposition (Energy improvement)
There exists e, = ¢,(n,s) >0and 7 = 7(n,s) € (0,1) s.t, if
u € H*(B,;5% ") is a stationary s-harmonic map in B, satisfying
55(u7 Bl) S €y
then
T2E (u, B,) < %Ss(u,Bl).

L Vz € By, r < 1/2,1*7"E,(u, B,(z)) < Cr*P, thus (Campanato)

1/24
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Proposition (Energy improvement)
There exists e, = ¢,(n,s) >0and 7 = 7(n,s) € (0,1) s.t, if
u € H*(B,;5% ") is a stationary s-harmonic map in B, satisfying
58(u7 Bl) S €y
then
T2E (u, B,) < %Ss(u,Bl).

L Vz € By, r < 1/2,1*7"E,(u, B,(z)) < Cr*P, thus (Campanato)

Corollary (e-regularity)
Ifue I/{\S(B,ﬂ(x); s9-1y js a stationary s-harmonic map in B, (x) stt.
r# "€ (u, B,(z)) < e,

then u is Holder-continuous in B, j5(x).
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How to prove partial regularity? (2)

p Caffarelli-Silvestre extension u® : [Rfr1 — R? of u, by convolution

with the Poisson kernel P, , : R7*' — [0, 00) defined by

Z2s
n,s W

P, .(x)=0 Vx = (z,2) € R" x R,.

n,s(
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How to prove partial regularity? (2)

p Caffarelli-Silvestre extension u® : [RTr1 — R? of u, by convolution
with the Poisson kernel P, , : R7*' — [0, 00) defined by
Z2S
S |X|n+2s

P, .(x)=0 Vx = (z,2) € R" x R,.

’I'L,S(
= Monotonicity formula
p Higher regularity?
- Holder = Lipschitz: “harmonic replacement”-type method
- Lipschitz = C**: bootstrap from the equation, Schauder estimates

p Dimension of the singular set?
- Compactness of stationary s-harmonic maps, s # % (Marstrand)
- Construction of tangent map of u at z, by blowup.
- ptangent map = ¢ positively 0-homogeneous, i.e., p(Az) = Ap(z),
VYA > 0.
* x, € sing(u) iff there exists a nonconstant ¢ € T, (u)

= dim ,sing(u) < n — 1 (Federer).
12/24



Energy improvement: ingredients of proof

13/24



Energy improvement: ingredients of proof

Theorem (Classical stationary harmonic maps®)

If u e HY(Q;5%1) is a stationary harmonic map in €, then
u € C°°(Q \ sing(u)), with Z™2(sing(u)) = 0.

8
Evans 1991 13/24



Energy improvement: ingredients of proof

Theorem (Classical stationary harmonic maps®)

If u e HY(Q;5%1) is a stationary harmonic map in €, then
u € C°°(Q \ sing(u)), with Z™2(sing(u)) = 0.

Key was also energy improvement. Ingredients:

8
Evans 1991 13/24



Energy improvement: ingredients of proof

Theorem (Classical stationary harmonic maps®)

If u e HY(Q;5%1) is a stationary harmonic map in €, then
u € C°°(Q \ sing(u)), with Z™2(sing(u)) = 0.

Key was also energy improvement. Ingredients:

1. Monotonicity of r = r* & (u, B,(z)), by stationarity

8
Evans 1991 13/24



Energy improvement: ingredients of proof

Theorem (Classical stationary harmonic maps®)

If u e HY(Q;5%1) is a stationary harmonic map in €, then
u € C°°(Q \ sing(u)), with Z™2(sing(u)) = 0.

Key was also energy improvement. Ingredients:

1. Monotonicity of r = r* & (u, B,(z)), by stationarity
2. A div-curl structure for the term |Vu|?u of the equation

8
Evans 1991 13/24



Energy improvement: ingredients of proof

Theorem (Classical stationary harmonic maps®)

If u e HY(Q;5%1) is a stationary harmonic map in €, then
u € C°°(Q \ sing(u)), with Z™2(sing(u)) = 0.

Key was also energy improvement. Ingredients:

1. Monotonicity of r = r* & (u, B,(z)), by stationarity
2. A div-curl structure for the term |Vu|?u of the equation

3. Coifman-Lions-Meyer-Semmes’ div-curl lemma: a div-curl
product belongs to the Hardy space H!(R")

8
Evans 1991 13/24



Energy improvement: ingredients of proof

Theorem (Classical stationary harmonic maps®)

If u e HY(Q;5%1) is a stationary harmonic map in €, then
u € C°°(Q \ sing(u)), with Z™2(sing(u)) = 0.
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div(z!725Vu®) = 0 in R
u®=u on OR" ™ ~ R™ 7
by convolution with P, : %! — [0, 00) defined by
2s
z n
Pn,s(x) = Gn7sm Vx = (.T,Z) € R"™ x |R+.

- Dirichlet-to-Neumann : —lim,_,, 2! 720 u®(z, 2) = (—A)*u(z)
- Vx = (,0) € By x {0}, 7 = r>* "E_(u®, B)f (x)) is nondecreasing
in (0, R), where

E, (u®, B} (x)) = / VP2 dx
/By (x)

— u € BMO(Bp). /
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Fractional div-curl quantities

p Fractional s-gradient: foru € ﬁS(Q), we define

dyu(z,y) = \’;7_175 u(|x) — u|(y) eL?
2 Tyl h

(©2)
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Fractional div-curl quantities

p Fractional s-gradient: foru € ﬁS(Q), we define
& u(z,y) = Lre 2@ ZuY)  pa g
V2 o lz—uyl
p “vector fields” in Q: functions F': (R x R™) \ (Q° x Q°) — R st

dx dy
IFI, = ] PP = < oo
Loa@  JJwosrepy(@exe) |z —yl
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& u(z,y) = Lre 2@ ZuY)  pa g
V2 o lz—uyl
p “vector fields” in Q: functions F': (R x R™) \ (Q° x Q°) — R st

dx dy
IFI, = ] F )P S < oo
Loa(® (R xR\ (20X 2°) |z —y|™

» “scalar product” © : L2 (Q) x L2,(Q) — L'(®2) defined by

d/
FOG(@) = / P(a,y) G, y)
Il-—-yI'
» s-divergence: by duality div, : L2 () — H*() defined by

(div, F, @) = /F@dggodx
Q

15/24



Fractional div-curl lemma

Theorem (Mazowiecka and Schikorra, 2018)
If F e L2, (R™) satisfies div, F = 0 in H *(R™) and v € H*(R™), then
Fod,veH(RY).
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Fractional div-curl lemma

Theorem (Mazowiecka and Schikorra, 2018)

If F e L2, (R™) satisfies div, F = 0 in H *(R™) and v € H*(R™), then
Fod,veH(RY).

Proposition (Local version)

There exists C > 0 and A € (0,1) universal constant s.t., if
F € L2(B,) satisfies div, F = 0 in H*(B,) and v € H*(B,), then

/ (Fodv)eds
IRTL

< ClFl gz, By, 1dsvlr2, (8, (PlBmo + 77" @) ,
N
= gs(’U, BA’I‘)
for every ¢ € C°(By,).
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div-curl structure of the source term

» Recall
(—A)*u = |d ul?u = (d,u O d,u)u in Z'(Q)
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p Rewriting (cf Hélein 1990)

d
(—A)yu =" (QJ od, uj> +T in2(Q),
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foralli € {1,...,d}, where u = (u, ..., u?), et
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p Recall
(—A)*u = |d ul?u = (d,u O d,u)u in Z'(Q)

p Rewriting (cf Hélein 1990)

d
(—A)yui =Y (QJ od, uj) LT in9'(Q),

j=1
foralli € {1,...,d}, where u = (u, ..., u?), et
Qij(xay) = ul(x) ds uj(xvy) - uj(x) ds ui(xvy)

2 [ Juta) = u() (o) — i)

T (z) = . —
( ) |x7y|n+2s

Proposition (Conservation law)
w e H*(Q;5%1Y) is s-harmonic iff Vi, j € {1,...,d},
div,QY =0 in H*(Q).
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» Recall
(—A)*u = |d ul?u = (d,u O d,u)u in Z'(Q)

p Rewriting (cf Hélein 1990)
d
(—A)yu =" (QJ od, uj) +T in2(Q),
j=1
foralli € {1,...,d}, where u = (u, ..., u?), et
Qij(xay) = ul(x) ds Uj([L'7y) - uj(x) ds ui(xvy)

= [ ulo) —uw (o) = ()

< Ju(z) —u(y)?
Proposition (Conservation law)
w e H*(Q;5%1Y) is s-harmonic iff Vi, j € {1,...,d},

dy

Ti(z) = —
(LC) |JC _ y|n+2s

div,QY =0 in H*(Q).
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Proof of energy improvement (1)

Proposition (Energy improvement)
There exists e, = €,(n,s) >0and 7 = 7(n,s) € (0,1/4) s.t, if
u € ﬁs(Bl; 5971 s a stationary s-harmonic map in B, satisfying
gs(uv Bl) < €y
then
72E (u, B,) < %Ss(u,Bl).
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Proposition (Energy improvement)
There exists e, = €,(n,s) >0and 7 = 7(n,s) € (0,1/4) s.t, if
u € ﬁs(Bl; 5971 s a stationary s-harmonic map in B, satisfying
58(11,, Bl) < >
then
72E (u, B,) < %Ss(u,Bl).

» Proof
- For a fixed 7, assume that there is no such e,.

- I(uy) C H¥(B,; 8% 1) st.
Es(ug, By) =165 = 0
7250E, (g, By) >2E,(uyy By),

 Letwy = 228 then g (wy, By) = 1and 7€, (wy, B,) > 1.

k
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Proof of energy improvement (2)

)
- Up to a subsequence, wy, w,, Wy, ! w,, where
(—A)*w, =0in By.
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- Up to a subsequence, wy, w,, Wy, J w,, where
(—A)*w, =0in By.

- Temp. assumption: w;, converges strongly to w, in H*(B; »; R%).

- For any k large
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Proof of energy improvement (2)

- Up to a subsequence, wy, w,, Wy, J w,, where
(—A)*w, =0in By.

- Temp. assumption: w;, converges strongly to w, in H*(B; »; R%).

- For any k large

TQs—n[,wk]iIS(BT) ~ T2s_n[w*]§15(3.,_) (strong V)
<or|Vu, . p,, (w, smooth)
< O7%|w,|% (w, s-harm fct)

H=(By)
< 2s liminf 2A o
<Cr im in ||w,€HHS(Bl) (Ls.c.)
< 012
— T257n58(wk’37_> < Cr2s < % (7 small)

= contradiction with 7%7"&_(w,, B,) >

N | —
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Proof of energy improvement (3)

p Strong convergence of w, in H*(B,) for some o € (0,1)?
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Proof of energy improvement (3)

p Strong convergence of w, in H*(B,) for some o € (0,1)?
» w, —w, satisfies

(—A)*(w;, — wl) (Zﬂ”@d wk) + 2Ty,
with div, 2,7 = 0, [2)/] 2, = O(e;,) and

|wi (@) — wi(y)I®

Ti(z)| < C
| | - |x71/|n+29
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p Strong convergence of w, in H*(B,) for some o € (0,1)?
» w, —w, satisfies

(—A)*(w;, — wl) (Zﬂ”@d wk) + 2Ty,
with div, 2,7 = 0, [2)/] 2, = O(e;,) and

lwy(z) — wk(U)‘g
|.§C _ y|n+2s

| Ty(2)| < C

R

p Test equation against ((w;, — w,), ¢ cutoff
* LHS = [w;, — w,]% B, T o(1)
- st term of the RHS is O(e,) by div-curl Lemma
- 2nd term of RHS

IRHS2| < Ce2[w,? (Holder)

We/3.6(B,, ”wk”Hs(Bl)
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Proof of energy improvement (3)

p Strong convergence of w, in H*(B,) for some o € (0,1)?
» w, —w, satisfies

(—A)*(w;, — wl) (Zﬂ”@d wk) + 2Ty,
with div, 2,7 = 0, [2)/] 2, = O(e;,) and

lwy(z) — wk(U)‘g
|.§C _ y|n+2s

| Ty(2)| < C

R

p Test equation against ((w;, — w,), ¢ cutoff
* LHS = [w;, — w,]% B, T o(1)
- st term of the RHS is O(e,) by div-curl Lemma
- 2nd term of RHS

IRHS2| < Ce2[w,? (Holder)

We/3.6(B,, ”wk”Hs(Bl)

3
505%( sup % n[wk]m( ,>j)> HwkHHS(Bl) (Q-spaces)

B,.(z)CBy
20/24



Minimizing 1/2-harmonic maps




Improvement in the minimizing case s = 1/2
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Improvement in the minimizing case s = 1/2

e Previously known: if u € H/2(€;$*') a minimizing 1/2-harmonic
map, dim ,sing(u) <n —2forn > 2.

Theorem (d > 3)
If u e H'2(Q; 5% 1) is a minimizing 1/2-harmonic map, where
d > 3, then u € C*°(Q \ sing(u)) with dim g sing(u) < n — 3.
Theorem (n = d = 2)
u,(x) = x/|z| from D into S' is a minimizing 1/2-harmonic map

u, is the only 0-homogeneous minimizing 1/2-harmonic map
from R? into S', up to an orthogonal transformation.

- Ifu e HY?(Q C R?;S) is a minimizing 1/2-harmonic map, then
the topological degree of u around its singularities is 1.
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Proofd > 3 (1)

- Federer: amounts to proving that any 0-homogeneous minimizing
1/2-harmonic map from R? into $%~! is constant
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Proofd > 3 (1)

- Federer: amounts to proving that any 0-homogeneous minimizing
1/2-harmonic map from R? into $%~! is constant
- u(z) = g(x/|z]) minimizing 1/2-harmonic
= g¢:5! = 591 1/2-harmonic
- g(S') is equatorial (connection free boundary minimal surfaces):
l, harmonic extension w, : D — B st. (wg)\aD =y
w, branched minimal immersion of the disk D into B4

s w,(9D) C S !and 9w, = (—=A)Y2g 1 Tan(g = w,, 39-1) on oD

= w,(D) is a flat equatorial disk (Fraser and R. Schoen; Nitsche)
for example w,(D) = D x {0}*"2 and g(S') = S' x {0}*2
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Proof d > 3 (2)

- Competitor v, = %, ¢ € C(R?)
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- Explicit optimal Hardy constant = 4&, 5(9,5") < C,
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Proof d > 3 (2)

- Competitor v, = %, ¢ € C(R?)

- Positive second variation (by minimality) gives

— walla\IZ 2
[[ DR s sy [ L,
R2 xR2 |z —y[3 R |7

- Explicit optimal Hardy constant = 4&, 5(9,5") < C,

: 51/2(97 Sl) = W’deg(ga Sl)’
= &55(9,8") =0 = g constant.
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p Improvement of the upper bound on dim 5 sing(u) for minimizing

s-harmonic maps into 8¢~ for s > 1/2?

Minimality of /|z| when s # 1/2

» Construction of a 1/2-harmonic map from D into S*
discontinuous everywhere

v

p Study of nonlocal PDE (fractional versions of Ginzburg-Landau,
Cahn-Hilliard, ...)

24/24
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div-curl structure of the RHS

p Recall
(=A)su = |d u*u = (dyu © dyu)u
p Rewriting of the source term. For i, j € {1,...,d}

|d, o’ *(2)u’ ()
- d
- [ (@) d e
|z —y|"
, ; d
= [ (#@ i) —w) ) e
Q¥
) N d
—|—/ (dS u’ @dsul>u-7 de—Y
Rn |z —y|™
p Since |u| = 1, we have
d . < lu(@) —u(y))® ;
Z (dsuj o} dsu1>u3 =7 / lu(z) — u(y)|? (v (z) — ui(y)) 4 —
j=1 4 R™ “T - y|

Ti
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Embeddings between Qp“-spaces

» We have
[RHS| < o(1) + Cfi[“’/«mu :z.u(BmJ”wkHHs(Bl)

» 9,%(R™) seminormed space made of measurable functions fst.

q 1/q
[flozagn) : —sup\Q|1/p La (// @) = Fw)F dxdy) < 00.
QxQ \l’—y|’”“q

| 2 FMPM(IR”) Trlebel—leor|<|n—Morrey—Lorentz spaces. We have

n=x n=\ n=x
Oy, —_—
QC%;h([Rn> _ Fqll,)qlnql (R™) < Fq2 (’Iznqz (R™) = Qq2 7(;(12 (R™),

forall0 <oy <oy, <1,1<¢g<¢g <ocand0 <A <n.

» In particular
Q0 ®") < O (R),

~e~r
25—n

. = 2 ‘ < ; 2s5—n 2 ]
Br:l)gmr ’ [f]W“//'3>6(Br(r)> N CBr(b;l)IQ)[R"T [f]HS(BT(:v))
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