Partial regularity for fractional harmonic maps into spheres

Joint work with Vincent Millot and Armin Schikorra

Marc Pegon September 29th 2020

Université de Lille Laboratoire Paul Painlevé

Outline

- 1. "Classical" harmonic maps
- 2. Fractional harmonic maps
- 3. Energy improvement and arepsilon-regularity
- 4. Minimizing 1/2-harmonic maps

General

Assume

- $\Omega \subseteq \mathbb{R}^n$ bounded open set with smooth boundary, $n \ge 1$
- $\mathcal N$ smooth compact submanifold of $\mathbb R^d$ without boundary (for example $\mathbb S^{d-1}$)

General

Assume

- $\Omega \subseteq \mathbb{R}^n$ bounded open set with smooth boundary, $n \ge 1$
- \cdot $\mathcal N$ smooth compact submanifold of $\mathbb R^d$ without boundary (for example $\mathbb S^{d-1}$)

Definition (Harmonic map)

A map $u\in H^1(\Omega;\mathcal{N})$ is said to be **harmonic** in Ω if it is a **critical** point of the Dirichlet energy

$$\mathcal{E}(u,\Omega) := \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x$$

for (constrained) outer variations

General

Assume

- $\Omega \subseteq \mathbb{R}^n$ bounded open set with smooth boundary, $n \ge 1$
- $\mathcal N$ smooth compact submanifold of $\mathbb R^d$ without boundary (for example $\mathbb S^{d-1}$)

Definition (Harmonic map)

A map $u\in H^1(\Omega;\mathcal{N})$ is said to be harmonic in Ω if it is a critical point of the Dirichlet energy

$$\mathcal{E}(u,\Omega) := \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x$$

for (constrained) outer variations, that is to say,

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\mathcal{E} \left(\pi_{\mathcal{N}}(u + t\varphi), \Omega \right) \right]_{|t=0} = 0 \qquad \forall \varphi \in C_c^{\infty}(\Omega; \mathbb{R}^d),$$

where $\pi_{\mathcal{N}}$ the nearest point projection on \mathcal{N} .

ightharpoonup Euler-Lagrange equation: u is harmonic iff

$$-\Delta u \perp \operatorname{Tan}(u, \mathcal{N}) \quad \text{in } \mathscr{D}'(\Omega).$$

ightharpoonup Euler-Lagrange equation: u is harmonic iff

$$-\Delta u \perp \operatorname{Tan}(u, \mathcal{N}) \quad \text{in } \mathscr{D}'(\Omega).$$

lackbox When $\mathcal{N}=\mathbb{S}^{d-1}$, we get the explicit equation

$$-\Delta u = |\nabla u|^2 u \qquad \text{in } \mathscr{D}'(\Omega).$$

ightharpoonup Euler-Lagrange equation: u is harmonic iff

$$-\Delta u \perp \operatorname{Tan}(u, \mathcal{N}) \qquad \text{in } \mathscr{D}'(\Omega).$$

lackbox When $\mathcal{N}=\mathbb{S}^{d-1}$, we get the explicit equation

$$-\Delta u = |\nabla u|^2 u \qquad \text{in } \mathscr{D}'(\Omega).$$

Example

The application $u(x) = \frac{x}{|x|}$ from \mathbb{R}^3 into \mathbb{S}^2 is harmonic.

ightharpoonup Euler-Lagrange equation: u is harmonic iff

$$-\Delta u \perp \operatorname{Tan}(u, \mathcal{N}) \qquad \text{in } \mathscr{D}'(\Omega).$$

ightharpoonup When $\mathcal{N}=\mathbb{S}^{d-1}$, we get the explicit equation

$$-\Delta u = |\nabla u|^2 u \qquad \text{in } \mathscr{D}'(\Omega).$$

Example

The application $u(x) = \frac{x}{|x|}$ from \mathbb{R}^3 into \mathbb{S}^2 is harmonic.

Connection with minimal surfaces:

- for n=1, harmonic maps are **geodesics**
- for n=2, they are branched minimal immersions

· What kind of regularity?

• What kind of regularity? $+ \text{ H\"{o}lder continuity} \implies ^{1} \text{Lipschitz} \implies C^{\infty}$

¹R. M. Schoen 1984

• What kind of regularity? $+ \text{H\"{o}lder continuity} \implies {}^{1}\text{Lipschitz} \implies C^{\infty}$

¹R. M. Schoen 1984

• What kind of regularity? $\, \vdash \, \text{H\"{o}lder} \, \, \text{continuity} \, \Longrightarrow \, ^1 \, \text{Lipschitz} \, \Longrightarrow \, C^\infty$

 $\operatorname{sing}(u) := \Omega \setminus \big\{x \ : \ u \text{ is H\"{o}lder-continuous in a neighborhood of } x\big\}$

¹R. M. Schoen 1984

What kind of regularity?

$$\downarrow$$
 Hölder continuity \implies 1 Lipschitz \implies C^{∞}

$$\operatorname{sing}(u) := \Omega \setminus \big\{x \ : \ u \text{ is H\"{o}lder-continuous in a neighborhood of } x\big\}$$

· Problem:

$$-\Delta u = |\nabla u|^2 u \in L^1(\Omega)$$

¹R. M. Schoen 1984

What kind of regularity?

$$\downarrow$$
 Hölder continuity \Longrightarrow 1 Lipschitz \Longrightarrow C^{∞}

$$\operatorname{sing}(u) := \Omega \setminus \big\{x \ : \ u \text{ is H\"{o}lder-continuous in a neighborhood of } x\big\}$$

· Problem:

$$-\Delta u = |\nabla u|^2 u \in L^1(\Omega)$$

¹R. M. Schoen 1984

What kind of regularity?

$$\downarrow$$
 Hölder continuity \implies 1 Lipschitz $\implies C^{\infty}$

$$\operatorname{sing}(u) := \Omega \setminus \big\{x \ : \ u \text{ is H\"{o}lder-continuous in a neighborhood of } x\big\}$$

· Problem:

$$-\Delta u = |\nabla u|^2 u \in L^1(\Omega)$$

• In dimension n=1, they are smooth

¹R. M. Schoen 1984

What kind of regularity?

$$\downarrow$$
 Hölder continuity \implies 1 Lipschitz $\implies C^{\infty}$

$$\operatorname{sing}(u) := \Omega \setminus \big\{x \ : \ u \text{ is H\"older-continuous in a neighborhood of } x\big\}$$

· Problem:

$$-\Delta u = |\nabla u|^2 u \in L^1(\Omega)$$

- In dimension n=1, they are smooth
- In dimension n=2 as well²:
 - 4 the source term has a div-curl structure

¹R. M. Schoen 1984

²Hélein 1990

What kind of regularity?

$$\operatorname{sing}(u) := \Omega \setminus \big\{x \ : \ u \text{ is H\"older-continuous in a neighborhood of } x\big\}$$

· Problem:

$$-\Delta u = |\nabla u|^2 u \in L^1(\Omega)$$

 $\label{eq:local_local_problem} \ \ \, \vdash L^p \ \mbox{elliptic regularity theory } \mbox{does not apply} \\ \mbox{However,}$

- In dimension n=1, they are smooth
- In dimension n=2 as well²:
- ५ the source term has a div-curl structure
 - \Longrightarrow 3 it is in the Hardy space $\mathcal{H}^1(\mathbb{R}^n)$

¹R. M. Schoen 1984

²Hélein 1990

³Compensated compactness: Coifman et al. 1993

What kind of regularity?

$$\downarrow$$
 Hölder continuity \implies 1 Lipschitz $\implies C^{\infty}$

$$\operatorname{sing}(u) := \Omega \setminus \big\{x \ : \ u \text{ is H\"{o}lder-continuous in a neighborhood of } x\big\}$$

· Problem:

$$-\Delta u = |\nabla u|^2 u \in \mathbf{L}^1(\Omega)$$

- In dimension n=1, they are smooth
- In dimension n=2 as well²:

५ the source term has a div-curl structure

$$\Longrightarrow$$
 3 it is in the Hardy space $\mathcal{H}^1(\mathbb{R}^n)$

$$\implies$$
 $^4u \in W^{2,1} \implies \text{smooth}$

¹R. M. Schoen 1984

²Hélein 1990

³Compensated compactness: Coifman et al. 1993

⁴Calderòn-Zygmund

Proposition (No regularity!5)

There exists a harmonic map $u \in H^1(B^3; \mathbb{S}^2)$ which is discontinuous everywhere.

⁵Rivière 1995

Proposition (No regularity!⁵)

There exists a harmonic map $u \in H^1(B^3; \mathbb{S}^2)$ which is discontinuous everywhere.

Theorem (Minimizing harmonic maps⁶)

If u is a **minimizing** harmonic map, i.e., satisfies

$$\mathcal{E}(u,\Omega) \leq \mathcal{E}(v,\Omega) \qquad \text{ whenever } \operatorname{spt}(u-v) \subseteq \Omega,$$

then $u \in C^{\infty}(\Omega \setminus \operatorname{sing}(u))$ with $\dim_{\mathscr{H}} \operatorname{sing}(u) \leq n-3$.

⁵Rivière 1995

⁶R. Schoen and Uhlenbeck 1984

Proposition (No regularity!⁵)

There exists a harmonic map $u \in H^1(B^3; \mathbb{S}^2)$ which is discontinuous everywhere.

Theorem (Minimizing harmonic maps⁶)

If u is a **minimizing** harmonic map, i.e., satisfies

$$\mathcal{E}(u,\Omega) \leq \mathcal{E}(v,\Omega) \qquad \text{ whenever } \operatorname{spt}(u-v) \subseteq \Omega,$$

then $u \in C^{\infty}(\Omega \setminus \operatorname{sing}(u))$ with $\dim_{\mathscr{H}} \operatorname{sing}(u) \leq n-3$.

Example

Let $g\in H^1(B^3;\mathbb{S}^2)\cap C^0(\partial B^3)$ s.t. $\deg(g_{|\partial B^3})\neq 0$. Then $v:= \operatorname{argmin}\left\{\mathcal{E}(u;B^3)\,:\, u\in H^1(B^3;\mathbb{S}^2) \text{ s.t. } u(x)=g(x) \text{ on } \partial B^3\right\},$ is a minimizing harmonic map in B^3 with a singularity.

⁵Rivière 1995

⁶R. Schoen and Uhlenbeck 1984

Theorem (Stationary harmonic maps⁷)

If u is harmonic and **stationary**, i.e. satisfies, $\forall X \in C_c^\infty(\Omega;\mathbb{R}^n)$

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big[\mathcal{E}(u \circ \Phi_t, \Omega) \Big]_{|t=0} = 0 \quad \text{ where } \Phi_t \text{ is the integral flow of } X,$$

⁷Evans 1991 and Bethuel 1993

Theorem (Stationary harmonic maps⁷)

If u is harmonic and **stationary**, i.e. satisfies, $\forall X \in C_c^\infty(\Omega;\mathbb{R}^n)$

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big[\mathcal{E}(u\circ\Phi_t,\Omega)\Big]_{|t=0}=0 \quad \text{ where } \Phi_t \text{ is the integral flow of } X,$$
 then $u\in C^\infty(\Omega\backslash \mathrm{sing}(u))$ with $\dim_{\mathscr{F}}\mathrm{sing}(u)\leq n-2$.

⁷Evans 1991 and Bethuel 1993

Theorem (Stationary harmonic maps⁷)

If u is harmonic and **stationary**, i.e. satisfies, $\forall X \in C_c^\infty(\Omega;\mathbb{R}^n)$

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big[\mathcal{E}(u\circ\Phi_t,\Omega)\Big]_{|t=0}=0 \quad \text{ where } \Phi_t \text{ is the integral flow of } X,$$
 then $u\in C^\infty(\Omega\backslash \mathrm{sing}(u))$ with $\dim_{\mathscr{F}}\mathrm{sing}(u)\leq n-2$.

Proposition (Stationarity equation)

If u is stationary harmonic in Ω then for every $\varphi \in C_c^\infty(\Omega)$,

$$\int_{\mathbb{R}^n} \sum_{i=1}^n \left(|\nabla u|^2 \delta_{ij} - 2 \partial_i u \cdot \partial_j u \right) \partial_i \varphi \, \mathrm{d}x = 0, \quad \forall j \in \{1, \dots, n\}$$

⁷Evans 1991 and Bethuel 1993

Theorem (Stationary harmonic maps⁷)

If u is harmonic and **stationary**, i.e. satisfies, $\forall X \in C_c^\infty(\Omega;\mathbb{R}^n)$

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big[\mathcal{E}(u\circ\Phi_t,\Omega)\Big]_{|t=0}=0 \quad \text{ where } \Phi_t \text{ is the integral flow of } X,$$
 then $u\in C^\infty(\Omega\backslash \mathrm{sing}(u))$ with $\dim_{\mathscr{F}}\mathrm{sing}(u)\leq n-2$.

Proposition (Stationarity equation)

If u is stationary harmonic in Ω then for every $\varphi \in C_c^\infty(\Omega)$,

$$\int_{\mathbb{R}^n} \sum_{i=1}^n \left(|\nabla u|^2 \delta_{ij} - 2 \partial_i u \cdot \partial_j u \right) \partial_i \varphi \, \mathrm{d}x = 0, \quad \forall j \in \{1, \dots, n\}$$

Corollary (Monotonicity formula)

If u stationary harmonic in Ω , then

$$r \mapsto r^{2-n} \int_{B_{-}(x)} |\nabla u|^2 \, \mathrm{d}x \nearrow, \quad \forall x \in \Omega.$$

⁷Evans 1991 and Bethuel 1993

Fractional harmonic maps

▶ $s \in (0,1)$

- ▶ $s \in (0, 1)$
- ightharpoonup For $u\in \mathscr{S}$, $(-\Delta)^s u$ is defined by $\mathcal{F}((-\Delta)^s u)=(2\pi |\xi|)^{2s}\mathcal{F}(u)$.

- $s \in (0,1)$
- ▶ For $u \in \mathcal{S}$, $(-\Delta)^s u$ is defined by $\mathcal{F}((-\Delta)^s u) = (2\pi |\xi|)^{2s} \mathcal{F}(u)$.
- ▶ Integral formula

$$(-\Delta)^{s}u(x) = \gamma_{n,s} \text{ p.v.} \int_{\mathbb{R}^{n}} \frac{u(x) - u(y)}{|x - y|^{n + 2s}} \, \mathrm{d}y, \quad \forall u \in \mathscr{S}$$

- $s \in (0,1)$
- ▶ For $u \in \mathcal{S}$, $(-\Delta)^s u$ is defined by $\mathcal{F}((-\Delta)^s u) = (2\pi |\xi|)^{2s} \mathcal{F}(u)$.
- ▶ Integral formula

$$(-\Delta)^s u(x) = \gamma_{n,s} \text{ p.v.} \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x - y|^{n + 2s}} \, \mathrm{d}y, \quad \forall u \in \mathscr{S}$$

 \blacktriangleright Action of $(-\Delta)^s u$ in Ω obtained as the first variation of the s-Dirichlet energy

- $s \in (0,1)$
- ▶ For $u \in \mathcal{S}$, $(-\Delta)^s u$ is defined by $\mathcal{F}((-\Delta)^s u) = (2\pi |\xi|)^{2s} \mathcal{F}(u)$.
- ▶ Integral formula

$$(-\Delta)^s u(x) = \gamma_{n,s} \text{ p.v.} \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x - y|^{n + 2s}} \, \mathrm{d}y, \quad \forall u \in \mathscr{S}$$

Action of $(-\Delta)^s u$ in Ω obtained as the first variation of the s-Dirichlet energy

$$\mathcal{E}_s(u,\Omega) := \frac{\gamma_{n,s}}{4} \iint_{\mathbb{R}^n \times \mathbb{R}^n \backslash (\Omega^c \times \Omega^c)} \frac{|u(x) - u(y)|^2}{|x - y|^{n + 2s}} \,\mathrm{d}x \,\mathrm{d}y$$

ightharpoonup The energy is defined so that, for $u \in \mathcal{S}$,

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big[\mathcal{E}_s(u + t\varphi, \Omega) \Big]_{|t=0} = \int_{\mathbb{R}^n} (-\Delta)^s u \cdot \varphi \, \mathrm{d}x, \quad \forall \varphi \in C_c^{\infty}(\Omega; \mathbb{R}^d),$$

Fractional Laplacian (2)

▶ The energy is defined so that, for $u \in \mathcal{S}$,

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big[\mathcal{E}_s(u+t\varphi,\Omega) \Big]_{|t=0} = \int_{\mathbb{R}^n} (-\Delta)^s u \cdot \varphi \, \mathrm{d}x, \quad \forall \varphi \in C_c^\infty(\Omega;\mathbb{R}^d),$$

▶ We consider the Hilbert space

$$\widehat{H}^s(\Omega;\mathbb{R}^d) := \left\{ u \in L^2_{\mathrm{loc}}(\mathbb{R}^n;\mathbb{R}^d) \ : \ \mathcal{E}_s(u,\Omega) < +\infty \right\}.$$

Fractional Laplacian (2)

ightharpoonup The energy is defined so that, for $u \in \mathcal{S}$,

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big[\mathcal{E}_s(u+t\varphi,\Omega) \Big]_{|t=0} = \int_{\mathbb{R}^n} (-\Delta)^s u \cdot \varphi \, \mathrm{d}x, \quad \forall \varphi \in C_c^\infty(\Omega;\mathbb{R}^d),$$

▶ We consider the Hilbert space

$$\widehat{H}^s(\Omega;\mathbb{R}^d) := \left\{ u \in L^2_{\mathrm{loc}}(\mathbb{R}^n;\mathbb{R}^d) \ : \ \mathcal{E}_s(u,\Omega) < +\infty \right\}.$$

ightharpoonup For $u\in \widehat{H}^s(\Omega;\mathbb{R}^d)$, we then define $(-\Delta)^su\in (\widehat{H}^s(\Omega;\mathbb{R}^d))'$ by

$$\langle (-\Delta)^s u, \varphi \rangle_{\Omega} := \frac{\mathrm{d}}{\mathrm{d}t} \left[\mathcal{E}_s(u + t\varphi, \Omega) \right]_{|t=0}$$

Fractional Laplacian (2)

▶ The energy is defined so that, for $u \in \mathcal{S}$,

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big[\mathcal{E}_s(u+t\varphi,\Omega) \Big]_{|t=0} = \int_{\mathbb{R}^n} (-\Delta)^s u \cdot \varphi \, \mathrm{d}x, \quad \forall \varphi \in C_c^\infty(\Omega;\mathbb{R}^d),$$

▶ We consider the Hilbert space

$$\widehat{H}^s(\Omega;\mathbb{R}^d) := \left\{ u \in L^2_{\mathrm{loc}}(\mathbb{R}^n;\mathbb{R}^d) \ : \ \mathcal{E}_s(u,\Omega) < +\infty \right\}.$$

ightharpoonup For $u\in \widehat{H}^s(\Omega;\mathbb{R}^d)$, we then **define** $(-\Delta)^su\in \big(\widehat{H}^s(\Omega;\mathbb{R}^d)\big)'$ by

$$\begin{split} \langle (-\Delta)^s u, \varphi \rangle_{\Omega} &:= \frac{\mathrm{d}}{\mathrm{d}t} \Big[\mathcal{E}_s(u + t\varphi, \Omega) \Big]_{|t = 0} \\ &= \frac{\gamma_{n,s}}{2} \iint_{(\mathbb{R}^n \times \mathbb{R}^n) \backslash (\Omega^c \times \Omega^c)} \frac{(u(x) - u(y)) \cdot (\varphi(x) - \varphi(y))}{|x - y|^{n + 2s}} \, \mathrm{d}x \, \mathrm{d}y. \end{split}$$

Fractional harmonic maps

Definition (s-harmonic map)

$$u\in \widehat{H}^s(\Omega;\mathcal{N})$$
 is a $\mathbf{s} ext{-harmonic map}$ in Ω if

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big[\mathcal{E}_s \big(\pi_{\mathcal{N}}(u + t\varphi), \Omega \big) \Big]_{|t=0} = 0 \qquad \forall \varphi \in C_c^{\infty}(\Omega; \mathbb{R}^d).$$

Fractional harmonic maps

Definition (s-harmonic map)

 $u \in \widehat{H}^s(\Omega; \mathcal{N})$ is a $\mathbf{s}\text{-harmonic}$ map in Ω if

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big[\mathcal{E}_s(\pi_{\mathcal{N}}(u+t\varphi),\Omega) \Big]_{|t=0} = 0 \qquad \forall \varphi \in C_c^\infty(\Omega;\mathbb{R}^d).$$

Euler-Lagrange equation

u is s-harmonic iff

$$(-\Delta)^s u \perp \operatorname{Tan}(u, \mathcal{N}) \quad \text{in } \mathscr{D}'(\Omega).$$

Fractional harmonic maps

Definition (s-harmonic map)

 $u \in \widehat{H}^s(\Omega; \mathcal{N})$ is a $\mathbf{s}\text{-harmonic map}$ in Ω if

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big[\mathcal{E}_s(\pi_{\mathcal{N}}(u+t\varphi),\Omega) \Big]_{|t=0} = 0 \qquad \forall \varphi \in C_c^\infty(\Omega;\mathbb{R}^d).$$

Euler-Lagrange equation

u is s-harmonic iff

$$(-\Delta)^s u \perp \operatorname{Tan}(u, \mathcal{N})$$
 in $\mathscr{D}'(\Omega)$.

When $\mathcal{N}=\mathbb{S}^{d-1}$,

$$(-\Delta)^s u(x) = \underbrace{\left(\gamma_{n,s} \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^2}{|x - y|^{n + 2s}} \,\mathrm{d}y\right)}_{ |\mathbf{d}_s u|^2(x)} u(x) \quad \text{in } \mathscr{D}'(\Omega).$$

• Subcritical case n=1 & $s\in(\frac{1}{2},1)$: Hölder-regularity by Sobolev

- Subcritical case n=1 & $s\in(\frac{1}{2},1)$: Hölder-regularity by Sobolev
- Critical case n=1 & $s=\frac{1}{2}$: regularity (Da Lio and Rivière 2011)

- Subcritical case n=1 & $s\in(\frac{1}{2},1)$: Hölder-regularity by Sobolev
- Critical case n=1 & $s=\frac{1}{2}$: regularity (Da Lio and Rivière 2011)
- Supercritical case n>2s: probably no regularity (\exists a 1/2-harmonic map from $\mathbb D$ into $\mathbb S^1$ everywhere discontinuous?)

- Subcritical case n=1 & $s\in(\frac{1}{2},1)$: Hölder-regularity by Sobolev
- Critical case n=1 & $s=\frac{1}{2}$: regularity (Da Lio and Rivière 2011)
- Supercritical case n > 2s: probably no regularity (\exists a 1/2-harmonic map from $\mathbb D$ into $\mathbb S^1$ everywhere discontinuous?)

Definition (Energy-minimizing)

u is a **minimizing** s-harmonic map if it satisfies

$$\mathcal{E}_s(u,\Omega) \leq \mathcal{E}_s(v,\Omega)$$
 whenever $\operatorname{spt}(u-v) \subseteq \Omega$.

- Subcritical case n=1 & $s\in(\frac{1}{2},1)$: Hölder-regularity by Sobolev
- Critical case n=1 & $s=\frac{1}{2}$: regularity (Da Lio and Rivière 2011)
- Supercritical case n>2s: probably no regularity (\exists a 1/2-harmonic map from $\mathbb D$ into $\mathbb S^1$ everywhere discontinuous?)

Definition (Energy-minimizing)

u is a **minimizing** s-harmonic map if it satisfies

$$\mathcal{E}_s(u,\Omega) \leq \mathcal{E}_s(v,\Omega) \qquad \text{ whenever } \operatorname{spt}(u-v) \subseteq \Omega.$$

Definition (Stationary)

u is a ${\bf stationary}\ s$ -harmonic map if it is s -harmonic and satisfies, $\forall X\in C_c^\infty(\Omega;\mathbb{R}^n)$

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big[\mathcal{E}_s(u\circ\Phi_t,\Omega)\Big]_{|t=0}=0 \quad \text{ where } \Phi_t \text{ is the integral flow of } X.$$

Theorem (Stationary case)

 \downarrow locally finite for n=1

Assume n>2s. If $u\in \widehat{H}^s(\Omega; \mathbb{S}^{d-1})$ is stationary s-harmonic in Ω , then $u\in C^\infty(\Omega\setminus \operatorname{sing}(u))$ and \cdot for s<1/2 and $n\geq 1$, $\dim_{\mathscr{C}}\operatorname{sing}(u)\leq n-1$;

10/24

Theorem (Stationary case)

Assume n>2s. If $u\in \widehat{H}^s(\Omega; \mathbb{S}^{d-1})$ is stationary s-harmonic in Ω , then $u\in C^\infty(\Omega\setminus \mathrm{sing}(u))$ and

- for s<1/2 and $n\geq 1$, $\dim_{\mathscr{H}}\operatorname{sing}(u)\leq n-1$; \downarrow locally finite for n=1
- for s>1/2 and $n\geq 2$, $\dim_{\mathscr H} \mathrm{sing}(u)\leq n-2$; ${}\downarrow$ locally finite for n=2

Theorem (Stationary case)

Assume n>2s. If $u\in \widehat{H}^s(\Omega; \mathbb{S}^{d-1})$ is stationary s-harmonic in Ω , then $u\in C^\infty(\Omega\setminus \mathrm{sing}(u))$ and

- for s<1/2 and $n\geq 1$, $\dim_{\mathscr{H}}\operatorname{sing}(u)\leq n-1$; \downarrow locally finite for n=1
- · for s = 1/2 and $n \ge 2$, $\mathscr{H}^{n-1}(\operatorname{sing}(u)) = 0$.

Theorem (Stationary case)

Assume n>2s. If $u\in \widehat{H}^s(\Omega; \mathbb{S}^{d-1})$ is stationary s-harmonic in Ω , then $u\in C^\infty(\Omega\setminus \mathrm{sing}(u))$ and

- · for s=1/2 and $n\geq 2$, $\mathscr{H}^{n-1}(\operatorname{sing}(u))=0$.

Theorem (Minimizing case)

Assume n>2s. If $u\in \widehat{H}^s(\Omega;\, \mathbb{S}^{d-1})$ is **minimizing** s-harmonic in Ω , then $u\in C^\infty(\Omega\setminus \mathrm{sing}(u))$ and

- for $n \geq 3$, $\dim_{\mathscr{H}} \operatorname{sing}(u) \leq n-2$;
- for n=2, $\operatorname{sing}(u)$ is locally finite Ω ;
- for n=1, $\operatorname{sing}(u)=\emptyset$ (i.e., $u\in C^\infty(\Omega)$).

Energy improvement and arepsilon-regularity

Proposition (Energy improvement)

There exists $\varepsilon_*=\varepsilon_*(n,s)>0$ and $\pmb{ au}=\pmb{ au}(n,s)\in(0,1)$ s.t., if $u\in \widehat{H}^s(B_1;\mathbb{S}^{d-1})$ is a stationary s-harmonic map in B_1 satisfying

$$\mathcal{E}_s(u, B_1) \le \varepsilon_*$$

then

$$\boldsymbol{\tau}^{2s-n}\mathcal{E}_s(u,B_{\boldsymbol{\tau}}) \leq \frac{1}{2}\mathcal{E}_s(u,B_1)\,.$$

Proposition (Energy improvement)

There exists $\varepsilon_* = \varepsilon_*(n,s) > 0$ and $\tau = \tau(n,s) \in (0,1)$ s.t., if $u \in \widehat{H}^s(B_1;\mathbb{S}^{d-1})$ is a stationary s-harmonic map in B_1 satisfying

$$\mathcal{E}_s(u, B_1) \le \varepsilon_*$$
,

then

$$\boldsymbol{\tau}^{2s-n}\mathcal{E}_s(u,B_{\boldsymbol{\tau}}) \leq \frac{1}{2}\mathcal{E}_s(u,B_1)\,.$$

 $\ \, \forall x \in B_{1/2} \text{, } r < 1/2 \text{, } r^{2s-n} \mathcal{E}_s(u,B_r(x)) \leq C r^{2\beta_0} \text{, thus (Campanato)}$

Proposition (Energy improvement)

There exists $\pmb{\varepsilon}_* = \pmb{\varepsilon}_*(n,s) > 0$ and $\pmb{\tau} = \pmb{\tau}(n,s) \in (0,1)$ s.t., if $u \in \widehat{H}^s(B_1;\mathbb{S}^{d-1})$ is a stationary s-harmonic map in B_1 satisfying

$$\mathcal{E}_s(u, B_1) \le \varepsilon_*$$
,

then

$$\boldsymbol{\tau}^{2s-n}\mathcal{E}_s(u,B_{\boldsymbol{\tau}}) \leq \frac{1}{2}\mathcal{E}_s(u,B_1)\,.$$

 $\ \, \, \forall x \in B_{1/2} \text{, } r < 1/2 \text{, } r^{2s-n} \mathcal{E}_s(u,B_r(x)) \leq C r^{2\beta_0} \text{, thus (Campanato)}$

Corollary (ε -regularity)

If $u \in \widehat{H}^s(B_r(x);\mathbb{S}^{d-1})$ is a stationary s-harmonic map in $B_r(x)$ s.t.

$$r^{2s-n}\mathcal{E}_s(u,B_r(x)) \leq \pmb{\varepsilon}_*\,,$$

then u is Hölder-continuous in $B_{r/2}(x)$.

▶ Caffarelli-Silvestre extension $u^{\mathrm{e}}: \mathbb{R}^{n+1}_+ \to \mathbb{R}^d$ of u, by convolution with the Poisson kernel $\mathbf{P}_{n,s}: \mathbb{R}^{n+1}_+ \to [0,\infty)$ defined by

$$\mathbf{P}_{n,s}(\mathbf{x}) = \sigma_{n,s} \frac{z^{2s}}{|\mathbf{x}|^{n+2s}} \quad \forall \mathbf{x} = (x,z) \in \mathbb{R}^n \times \mathbb{R}_+.$$

▶ Caffarelli-Silvestre extension $u^{\mathrm{e}}: \mathbb{R}^{n+1}_+ \to \mathbb{R}^d$ of u, by convolution with the Poisson kernel $\mathbf{P}_{n,s}: \mathbb{R}^{n+1}_+ \to [0,\infty)$ defined by

$$\mathbf{P}_{n,s}(\mathbf{x}) = \sigma_{n,s} \frac{z^{2s}}{|\mathbf{x}|^{n+2s}} \quad \forall \mathbf{x} = (x,z) \in \mathbb{R}^n \times \mathbb{R}_+.$$

 \Longrightarrow Monotonicity formula

▶ Caffarelli-Silvestre extension $u^{\mathrm{e}}: \mathbb{R}^{n+1}_+ \to \mathbb{R}^d$ of u, by convolution with the Poisson kernel $\mathbf{P}_{n,s}: \mathbb{R}^{n+1}_+ \to [0,\infty)$ defined by

$$\mathbf{P}_{n,s}(\mathbf{x}) = \sigma_{n,s} \frac{z^{2s}}{|\mathbf{x}|^{n+2s}} \quad \forall \mathbf{x} = (x,z) \in \mathbb{R}^n \times \mathbb{R}_+.$$

- \Longrightarrow Monotonicity formula
- ► Higher regularity?
 - · Hölder ⇒ Lipschitz : "harmonic replacement"-type method
 - \cdot Lipschitz $\implies C^{k,lpha}$: bootstrap from the equation, Schauder estimates

▶ Caffarelli-Silvestre extension $u^{\mathrm{e}}: \mathbb{R}^{n+1}_+ \to \mathbb{R}^d$ of u, by convolution with the Poisson kernel $\mathbf{P}_{n,s}: \mathbb{R}^{n+1}_+ \to [0,\infty)$ defined by

$$\mathbf{P}_{n,s}(\mathbf{x}) = \sigma_{n,s} \frac{z^{2s}}{|\mathbf{x}|^{n+2s}} \quad \forall \mathbf{x} = (x,z) \in \mathbb{R}^n \times \mathbb{R}_+.$$

⇒ Monotonicity formula

- ► Higher regularity?
 - · Hölder ⇒ Lipschitz : "harmonic replacement"-type method
 - \cdot Lipschitz $\implies C^{k,lpha}$: bootstrap from the equation, Schauder estimates
- Dimension of the singular set?

▶ Caffarelli-Silvestre extension $u^{\mathrm{e}}: \mathbb{R}^{n+1}_+ \to \mathbb{R}^d$ of u, by convolution with the Poisson kernel $\mathbf{P}_{n,s}: \mathbb{R}^{n+1}_+ \to [0,\infty)$ defined by

$$\mathbf{P}_{n,s}(\mathbf{x}) = \sigma_{n,s} \frac{z^{2s}}{|\mathbf{x}|^{n+2s}} \quad \forall \mathbf{x} = (x,z) \in \mathbb{R}^n \times \mathbb{R}_+.$$

- ⇒ Monotonicity formula
- ► Higher regularity?
 - · Hölder ⇒ Lipschitz : "harmonic replacement"-type method
 - \cdot Lipschitz $\implies C^{k,\alpha}$: bootstrap from the equation, Schauder estimates
- ▶ Dimension of the singular set?
 - · Compactness of stationary s-harmonic maps, $s \neq \frac{1}{2}$ (Marstrand)

▶ Caffarelli-Silvestre extension $u^{\mathrm{e}}: \mathbb{R}^{n+1}_+ \to \mathbb{R}^d$ of u, by convolution with the Poisson kernel $\mathbf{P}_{n,s}: \mathbb{R}^{n+1}_+ \to [0,\infty)$ defined by

$$\mathbf{P}_{n,s}(\mathbf{x}) = \sigma_{n,s} \frac{z^{2s}}{|\mathbf{x}|^{n+2s}} \quad \forall \mathbf{x} = (x,z) \in \mathbb{R}^n \times \mathbb{R}_+.$$

- ⇒ Monotonicity formula
- ► Higher regularity?
 - · Hölder ⇒ Lipschitz : "harmonic replacement"-type method
 - \cdot Lipschitz $\implies C^{k,\alpha}$: bootstrap from the equation, Schauder estimates
- ▶ Dimension of the singular set?
 - · Compactness of stationary s-harmonic maps, $s \neq \frac{1}{2}$ (Marstrand)
 - Construction of tangent map of u at x_0 by blowup.

▶ Caffarelli-Silvestre extension $u^{\mathrm{e}}: \mathbb{R}^{n+1}_+ \to \mathbb{R}^d$ of u, by convolution with the Poisson kernel $\mathbf{P}_{n,s}: \mathbb{R}^{n+1}_+ \to [0,\infty)$ defined by

$$\mathbf{P}_{n,s}(\mathbf{x}) = \sigma_{n,s} \frac{z^{2s}}{|\mathbf{x}|^{n+2s}} \quad \forall \mathbf{x} = (x,z) \in \mathbb{R}^n \times \mathbb{R}_+.$$

\Longrightarrow Monotonicity formula

- ► Higher regularity?
 - · Hölder ⇒ Lipschitz : "harmonic replacement"-type method
 - \cdot Lipschitz $\implies C^{k,lpha}$: bootstrap from the equation, Schauder estimates
- ▶ Dimension of the singular set?
 - · Compactness of stationary s-harmonic maps, $s \neq \frac{1}{2}$ (Marstrand)
 - Construction of tangent map of u at x_0 by blowup.
 - φ tangent map $\implies \varphi$ positively 0-homogeneous, i.e., $\varphi(\lambda x) = \lambda \varphi(x)$, $\forall \lambda > 0$.

▶ Caffarelli-Silvestre extension $u^{\mathrm{e}}: \mathbb{R}^{n+1}_+ \to \mathbb{R}^d$ of u, by convolution with the Poisson kernel $\mathbf{P}_{n,s}: \mathbb{R}^{n+1}_+ \to [0,\infty)$ defined by

$$\mathbf{P}_{n,s}(\mathbf{x}) = \sigma_{n,s} \frac{z^{2s}}{|\mathbf{x}|^{n+2s}} \quad \forall \mathbf{x} = (x,z) \in \mathbb{R}^n \times \mathbb{R}_+.$$

\Longrightarrow Monotonicity formula

- ► Higher regularity?
 - · Hölder ⇒ Lipschitz : "harmonic replacement"-type method
 - \cdot Lipschitz $\implies C^{k,\alpha}$: bootstrap from the equation, Schauder estimates
- ▶ Dimension of the singular set?
 - · Compactness of stationary s-harmonic maps, $s \neq \frac{1}{2}$ (Marstrand)
 - Construction of tangent map of u at x_0 by blowup.
 - φ tangent map $\implies \varphi$ positively 0-homogeneous, i.e., $\varphi(\lambda x) = \lambda \varphi(x)$, $\forall \lambda > 0$.
 - + $x_0 \in \mathrm{sing}(u)$ iff there exists a nonconstant $\varphi \in T_{x_0}(u)$

▶ Caffarelli-Silvestre extension $u^e: \mathbb{R}^{n+1}_+ \to \mathbb{R}^d$ of u, by convolution with the Poisson kernel $\mathbf{P}_{n,s}: \mathbb{R}^{n+1}_+ \to [0,\infty)$ defined by

$$\mathbf{P}_{n,s}(\mathbf{x}) = \sigma_{n,s} \frac{z^{2s}}{|\mathbf{x}|^{n+2s}} \quad \forall \mathbf{x} = (x,z) \in \mathbb{R}^n \times \mathbb{R}_+.$$

⇒ Monotonicity formula

- ► Higher regularity?
 - · Hölder ⇒ Lipschitz: "harmonic replacement"-type method
 - \cdot Lipschitz $\implies C^{k,\alpha}$: bootstrap from the equation, Schauder estimates
- ▶ Dimension of the singular set?
 - · Compactness of stationary s-harmonic maps, $s \neq \frac{1}{2}$ (Marstrand)
 - Construction of tangent map of u at x_0 by blowup.
 - φ tangent map $\implies \varphi$ positively 0-homogeneous, i.e., $\varphi(\lambda x) = \lambda \varphi(x)$, $\forall \lambda > 0$.
 - $\begin{array}{l} \cdot \ x_0 \in \mathrm{sing}(u) \ \mathrm{iff \ there \ exists \ a \ nonconstant} \ \varphi \in T_{x_0}(u) \\ \Longrightarrow \ \dim_{\mathscr{H}} \mathrm{sing}(u) \leq n-1 \ \mathrm{(Federer)}. \end{array}$

Theorem (Classical stationary harmonic maps⁸)

If $u \in H^1(\Omega; \mathbb{S}^{d-1})$ is a stationary harmonic map in Ω , then $u \in C^{\infty}(\Omega \setminus \operatorname{sing}(u))$, with $\mathscr{H}^{n-2}(\operatorname{sing}(u)) = 0$.

⁸Evans 1991

Theorem (Classical stationary harmonic maps⁸)

If $u \in H^1(\Omega; \mathbb{S}^{d-1})$ is a stationary harmonic map in Ω , then $u \in C^{\infty}(\Omega \setminus \operatorname{sing}(u))$, with $\mathscr{H}^{n-2}(\operatorname{sing}(u)) = 0$.

Key was also **energy improvement**. Ingredients:

⁸Evans 1991

Theorem (Classical stationary harmonic maps⁸)

If $u \in H^1(\Omega; \mathbb{S}^{d-1})$ is a stationary harmonic map in Ω , then $u \in C^{\infty}(\Omega \setminus \operatorname{sing}(u))$, with $\mathscr{H}^{n-2}(\operatorname{sing}(u)) = 0$.

Key was also **energy improvement**. Ingredients:

1. Monotonicity of $r \mapsto r^{2-n}\mathcal{E}(u, B_r(x))$, by stationarity

⁸Evans 1991

Theorem (Classical stationary harmonic maps⁸)

If $u \in H^1(\Omega; \mathbb{S}^{d-1})$ is a stationary harmonic map in Ω , then $u \in C^{\infty}(\Omega \setminus \operatorname{sing}(u))$, with $\mathscr{H}^{n-2}(\operatorname{sing}(u)) = 0$.

Key was also energy improvement. Ingredients:

- 1. Monotonicity of $r \mapsto r^{2-n}\mathcal{E}(u, B_r(x))$, by stationarity
- 2. A **div-curl structure** for the term $|\nabla u|^2 u$ of the equation

⁸Evans 1991

Theorem (Classical stationary harmonic maps⁸)

If $u \in H^1(\Omega; \mathbb{S}^{d-1})$ is a stationary harmonic map in Ω , then $u \in C^{\infty}(\Omega \setminus \operatorname{sing}(u))$, with $\mathscr{H}^{n-2}(\operatorname{sing}(u)) = 0$.

Key was also **energy improvement**. Ingredients:

- 1. Monotonicity of $r \mapsto r^{2-n}\mathcal{E}(u, B_r(x))$, by stationarity
- 2. A div-curl structure for the term $|\nabla u|^2 u$ of the equation
- 3. Coifman-Lions-Meyer-Semmes' div-curl lemma: a div-curl product belongs to the Hardy space $\mathcal{H}^1(\mathbb{R}^n)$

⁸Evans 1991

Energy improvement: ingredients of proof

Theorem (Classical stationary harmonic maps⁸)

If $u \in H^1(\Omega; \mathbb{S}^{d-1})$ is a stationary harmonic map in Ω , then $u \in C^{\infty}(\Omega \setminus \operatorname{sing}(u))$, with $\mathscr{H}^{n-2}(\operatorname{sing}(u)) = 0$.

Key was also **energy improvement**. Ingredients:

- 1. Monotonicity of $r \mapsto r^{2-n}\mathcal{E}(u, B_r(x))$, by stationarity
- 2. A **div-curl structure** for the term $|\nabla u|^2 u$ of the equation
- 3. Coifman-Lions-Meyer-Semmes' div-curl lemma: a div-curl product belongs to the Hardy space $\mathcal{H}^1(\mathbb{R}^n)$
- 4. The identification of $\mathcal{H}^1(\mathbb{R}^n)$ with the dual of BMO, due to Fefferman

⁸Evans 1991

Energy improvement: ingredients of proof

Theorem (Classical stationary harmonic maps⁸)

If $u \in H^1(\Omega; \mathbb{S}^{d-1})$ is a stationary harmonic map in Ω , then $u \in C^{\infty}(\Omega \setminus \operatorname{sing}(u))$, with $\mathscr{H}^{n-2}(\operatorname{sing}(u)) = 0$.

Key was also energy improvement. Ingredients:

- 1. Monotonicity of $r \mapsto r^{2-n}\mathcal{E}(u, B_r(x))$, by stationarity ?
- 2. A **div-curl structure** for the term $|\nabla u|^2 u$ of the equation ?
- 3. Coifman-Lions-Meyer-Semmes' div-curl lemma: a div-curl product belongs to the Hardy space $\mathcal{H}^1(\mathbb{R}^n)$?
- 4. The identification of $\mathcal{H}^1(\mathbb{R}^n)$ with the dual of BMO, due to Fefferman

⁸Evans 1991

We do not know if $r\mapsto r^{2s-n}\mathcal{E}_s(u,B_r(x))$ is monotone.

We do not know if $r\mapsto r^{2s-n}\mathcal{E}_s(u,B_r(x))$ is monotone.

Definition (Caffarelli-Silvestre extension)

For
$$u \in \widehat{H}^s(\Omega; \mathbb{S}^{d-1})$$
, we build $u^{\mathrm{e}}: \mathbb{R}^{n+1}_+ \to \mathbb{R}^d$
$$\left\{ \begin{array}{ll} \operatorname{div}(z^{1-2s} \nabla u^{\mathrm{e}}) = 0 & \text{in } \mathbb{R}^{n+1}_+ \\ u^{\mathrm{e}} = u & \text{on } \partial \mathbb{R}^{n+1}_+ \simeq \mathbb{R}^n \end{array} \right.,$$

by convolution with $\mathbf{P}_{n,s}:\mathbb{R}^{n+1}_+\to[0,\infty)$ defined by

$$\mathbf{P}_{n,s}(\mathbf{x}) = \sigma_{n,s} \frac{z^{2s}}{|\mathbf{x}|^{n+2s}} \quad \forall \mathbf{x} = (x,z) \in \mathbb{R}^n \times \mathbb{R}_+.$$

We do not know if $r\mapsto r^{2s-n}\mathcal{E}_s(u,B_r(x))$ is monotone.

Definition (Caffarelli-Silvestre extension)

For
$$u \in \widehat{H}^s(\Omega; \mathbb{S}^{d-1})$$
, we build $u^{\mathrm{e}}: \mathbb{R}^{n+1}_+ \to \mathbb{R}^d$
$$\left\{ \begin{array}{ll} \operatorname{div}(z^{1-2s} \nabla u^{\mathrm{e}}) = 0 & \text{in } \mathbb{R}^{n+1}_+ \\ u^{\mathrm{e}} = u & \text{on } \partial \mathbb{R}^{n+1}_+ \simeq \mathbb{R}^n \end{array} \right.,$$

by convolution with $\mathbf{P}_{n,s}:\mathbb{R}^{n+1}_+\to[0,\infty)$ defined by

$$\mathbf{P}_{n,s}(\mathbf{x}) = \sigma_{n,s} \frac{z^{2s}}{|\mathbf{x}|^{n+2s}} \quad \forall \mathbf{x} = (x,z) \in \mathbb{R}^n \times \mathbb{R}_+.$$

- Dirichlet-to-Neumann : $-\lim_{z\to 0} z^{1-2s} \partial_z u^{\rm e}(x,z) = (-\Delta)^s u(x)$

We do not know if $r\mapsto r^{2s-n}\mathcal{E}_s(u,B_r(x))$ is monotone.

Definition (Caffarelli-Silvestre extension)

For
$$u \in \widehat{H}^s(\Omega; \mathbb{S}^{d-1})$$
, we build $u^{\mathrm{e}}: \mathbb{R}^{n+1}_+ \to \mathbb{R}^d$
$$\left\{ \begin{array}{ll} \operatorname{div}(z^{1-2s} \nabla u^{\mathrm{e}}) = 0 & \text{in } \mathbb{R}^{n+1}_+ \\ u^{\mathrm{e}} = u & \text{on } \partial \mathbb{R}^{n+1}_+ \simeq \mathbb{R}^n \end{array} \right.,$$

by convolution with $\mathbf{P}_{n,s}:\mathbb{R}^{n+1}_+ \to [0,\infty)$ defined by

$$\mathbf{P}_{n,s}(\mathbf{x}) = \sigma_{n,s} \frac{z^{2s}}{|\mathbf{x}|^{n+2s}} \quad \forall \mathbf{x} = (x,z) \in \mathbb{R}^n \times \mathbb{R}_+.$$

- Dirichlet-to-Neumann : $-\lim_{z\to 0} z^{1-2s} \partial_z u^{\mathrm{e}}(x,z) = (-\Delta)^s u(x)$
- $\forall \mathbf{x}=(x,0)\in B_R\times\{0\},\,r\mapsto r^{2s-n}\mathbf{E}_s(u^{\mathrm{e}},B_r^+(\mathbf{x}))$ is nondecreasing in (0,R), where

$$\mathbf{E}_s(u^{\mathrm{e}}, B_r^+(\mathbf{x})) := \int_{B_r^+(\mathbf{x})} |\nabla u^{\mathrm{e}}|^2 z^{1-2s} \, \mathrm{d}\mathbf{x}$$

$$\implies u \in {\rm BMO}(B_R).$$

ightharpoonup Fractional **s-gradient:** for $u\in \widehat{H}^s(\Omega)$, we define

$$d_{\mathbf{s}} u(x,y) = \frac{\sqrt{\gamma_{n,s}}}{\sqrt{2}} \frac{u(x) - u(y)}{|x - y|^s} \in L^2_{\mathrm{od}}(\Omega)$$

ightharpoonup Fractional **s-gradient:** for $u\in \widehat{H}^s(\Omega)$, we define

$$\mathrm{d_s}\,u(x,y) = \frac{\sqrt{\gamma_{n,s}}}{\sqrt{2}} \frac{u(x) - u(y)}{|x - y|^s} \in L^2_{\mathrm{od}}(\Omega)$$

• "vector fields" in Ω : functions $F:(\mathbb{R}^n\times\mathbb{R}^n)\setminus(\Omega^c\times\Omega^c)\to\mathbb{R}$ st

$$\|F\|_{L^2_{\mathrm{od}}(\Omega)}^2 := \iint_{(\mathbb{R}^n \times \mathbb{R}^n) \backslash (\Omega^c \times \Omega^c)} |F(x,y)|^2 \frac{\mathrm{d} x \, \mathrm{d} y}{|x-y|^n} < +\infty$$

ightharpoonup Fractional ${f s}$ -gradient: for $u\in \widehat{H}^s(\Omega)$, we define

$$\mathrm{d_s}\,u(x,y) = \frac{\sqrt{\gamma_{n,s}}}{\sqrt{2}} \frac{u(x) - u(y)}{|x - y|^s} \in L^2_{\mathrm{od}}(\Omega)$$

• "vector fields" in Ω : functions $F:(\mathbb{R}^n\times\mathbb{R}^n)\setminus(\Omega^c\times\Omega^c)\to\mathbb{R}$ st

$$\|F\|_{L^2_{\rm od}(\Omega)}^2:=\iint_{(\mathbb{R}^n\times\mathbb{R}^n)\backslash(\Omega^c\times\Omega^c)}|F(x,y)|^2\frac{{\rm d} x\,{\rm d} y}{|x-y|^n}<+\infty$$

• "scalar product": $\odot: L^2_{\rm od}(\Omega) \times L^2_{\rm od}(\Omega) \to L^1(\Omega)$ defined by

$$F \odot G(x) = \int_{\mathbb{R}^n} F(x, y) G(x, y) \frac{\mathrm{d}y}{|x - y|^n}.$$

ightharpoonup Fractional ${f s}$ -gradient: for $u\in \widehat{H}^s(\Omega)$, we define

$$\mathrm{d_s}\,u(x,y) = \frac{\sqrt{\gamma_{n,s}}}{\sqrt{2}} \frac{u(x) - u(y)}{|x - y|^s} \in L^2_\mathrm{od}(\Omega)$$

• "vector fields" in Ω : functions $F:(\mathbb{R}^n\times\mathbb{R}^n)\setminus(\Omega^c\times\Omega^c)\to\mathbb{R}$ st

$$\|F\|_{L^2_{\mathrm{od}}(\Omega)}^2 := \iint_{(\mathbb{R}^n \times \mathbb{R}^n) \backslash (\Omega^c \times \Omega^c)} |F(x,y)|^2 \frac{\mathrm{d} x \, \mathrm{d} y}{|x-y|^n} < +\infty$$

• "scalar product": $\odot: L^2_{\rm od}(\Omega) \times L^2_{\rm od}(\Omega) \to L^1(\Omega)$ defined by

$$F \odot G(x) = \int_{\mathbb{R}^n} F(x, y) G(x, y) \frac{\mathrm{d}y}{|x - y|^n}.$$

ightharpoonup s-divergence: by duality ${
m div}_s:L^2_{
m od}(\Omega) o H^{-s}(\Omega)$ defined by

$$\langle \operatorname{div}_s F, \varphi \rangle = \int_{\Omega} F \odot \operatorname{d}_{\mathbf{s}} \varphi \, \mathrm{d}x.$$

Fractional div-curl lemma

Theorem (Mazowiecka and Schikorra, 2018)

If $F\in L^2_{\mathrm{od}}(\mathbb{R}^n)$ satisfies $\operatorname{div}_s F=0$ in $H^{-s}(\mathbb{R}^n)$ and $v\in H^s(\mathbb{R}^n)$, then $F\odot \operatorname{d}_{\mathrm{s}} v\in \mathcal{H}^1(\mathbb{R}^n)$.

Fractional div-curl lemma

Theorem (Mazowiecka and Schikorra, 2018)

If $F\in L^2_{\mathrm{od}}(\mathbb{R}^n)$ satisfies $\operatorname{div}_s F=0$ in $H^{-s}(\mathbb{R}^n)$ and $v\in H^s(\mathbb{R}^n)$, then $F\odot \operatorname{d}_{\operatorname{s}} v\in \mathcal{H}^1(\mathbb{R}^n)$.

Proposition (Local version)

There exists C>0 and $\Lambda\in(0,1)$ universal constant s.t., if $F\in L^2_{\mathrm{od}}(B_r)$ satisfies $\mathrm{div}_s\,F=0$ in $H^{-s}(B_r)$ and $v\in\widehat{H}^s(B_r)$, then

$$\begin{split} \left| \int_{\mathbb{R}^n} (F \odot \operatorname{d}_{\operatorname{s}} v) \varphi \operatorname{d} x \right| \\ & \leq C \|F\|_{L^2_{\operatorname{od}}(B_{\Lambda r})} \underbrace{\| \operatorname{d}_{\operatorname{s}} v \|_{L^2_{\operatorname{od}}(B_{\Lambda r})}}_{\simeq \ \mathcal{E}_s(v, B_{\Lambda r})} \left([\varphi]_{\operatorname{BMO}} + r^{-n} \| \varphi \|_{L^1} \right), \end{split}$$

for every $\varphi \in C_c^{\infty}(B_{\Lambda r})$.

► Recall

$$(-\Delta)^s u = |\mathrm{d_s}\, u|^2 u = (\mathrm{d_s}\, u \odot \mathrm{d_s}\, u) u \quad \text{ in } \mathscr{D}'(\Omega)$$

► Recall

$$(-\Delta)^s u = |\mathrm{d}_{\mathrm{s}}\, u|^2 u = (\mathrm{d}_{\mathrm{s}}\, u \odot \mathrm{d}_{\mathrm{s}}\, u) u \quad \text{ in } \mathscr{D}'(\Omega)$$

► Rewriting (cf Hélein 1990)

$$(-\Delta)^s u^i = \sum_{i=1}^d \left(\mathbf{\Omega}^{ij} \odot \operatorname{d}_{\operatorname{s}} u^j \right) + T^i \quad \text{ in } \mathscr{D}'(\Omega),$$

for all
$$i\in\{1,\ldots,d\}$$
, where $u=(u^1,\ldots,u^d)$, et
$$\mathbf{\Omega}^{ij}(x,y)=u^i(x)\operatorname{d_s} u^j(x,y)-u^j(x)\operatorname{d_s} u^i(x,y)$$

$$T^i(x) = \frac{\gamma_{n,s}}{4} \int_{\mathbb{R}^n} |u(x)-u(y)|^2 \big(u^i(x)-u^i(y)\big) \, \frac{\mathrm{d}y}{|x-y|^{n+2s}}$$

► Recall

$$(-\Delta)^s u = |\mathrm{d}_{\mathrm{s}}\, u|^2 u = (\mathrm{d}_{\mathrm{s}}\, u \odot \mathrm{d}_{\mathrm{s}}\, u) u \quad \text{ in } \mathscr{D}'(\Omega)$$

► Rewriting (cf Hélein 1990)

$$(-\Delta)^s u^i = \sum_{j=1}^d \left(\mathbf{\Omega}^{ij} \odot \operatorname{d}_{\operatorname{s}} u^j \right) + T^i \quad \text{ in } \mathscr{D}'(\Omega),$$

for all $i \in \{1, \dots, d\}$, where $u = (u^1, \dots, u^d)$, et

$$\mathbf{\Omega}^{ij}(x,y) = u^i(x) \operatorname{d}_{\mathbf{s}} u^j(x,y) - u^j(x) \operatorname{d}_{\mathbf{s}} u^i(x,y)$$

$$T^i(x) = \frac{\gamma_{n,s}}{4} \int_{\mathbb{R}^n} |u(x) - u(y)|^2 \left(u^i(x) - u^i(y)\right) \frac{\mathrm{d}y}{|x - y|^{n + 2s}}$$

Proposition (Conservation law)

$$u \in \widehat{H}^s(\Omega;\mathbb{S}^{d-1})$$
 is s-harmonic iff $\forall i,j \in \{1,\dots,d\}$,

$$\operatorname{div}_s \mathbf{\Omega}^{ij} = 0 \quad \text{ in } H^{-s}(\Omega).$$

► Recall

$$(-\Delta)^s u = |\mathrm{d}_{\mathrm{s}}\, u|^2 u = (\mathrm{d}_{\mathrm{s}}\, u \odot \mathrm{d}_{\mathrm{s}}\, u) u \quad \text{ in } \mathscr{D}'(\Omega)$$

► Rewriting (cf Hélein 1990)

$$(-\Delta)^s u^i = \sum_{j=1}^d \left(\mathbf{\Omega}^{ij} \odot \operatorname{d}_{\operatorname{s}} u^j \right) + T^i \quad \text{ in } \mathscr{D}'(\Omega),$$

for all $i \in \{1, ..., d\}$, where $u = (u^1, ..., u^d)$, et

$$\mathbf{\Omega}^{ij}(x,y) = u^i(x) \operatorname{d}_{\mathbf{s}} u^j(x,y) - u^j(x) \operatorname{d}_{\mathbf{s}} u^i(x,y)$$

$$T^{i}(x) = \frac{\gamma_{n,s}}{4} \int_{\mathbb{R}^{n}} \underbrace{|u(x) - u(y)|^{2} (u^{i}(x) - u^{i}(y))}_{\leq |u(x) - u(y)|^{3}} \frac{\mathrm{d}y}{|x - y|^{n+2s}}$$

Proposition (Conservation law)

$$u \in \widehat{H}^s(\Omega; \mathbb{S}^{d-1})$$
 is s-harmonic iff $\forall i, j \in \{1, \dots, d\}$,

$$\operatorname{div}_s \mathbf{\Omega}^{ij} = 0 \quad \text{ in } H^{-s}(\Omega).$$

Proposition (Energy improvement)

There exists $\boldsymbol{\varepsilon}_* = \boldsymbol{\varepsilon}_*(n,s) > 0$ and $\boldsymbol{\tau} = \boldsymbol{\tau}(n,s) \in (0,1/4)$ s.t., if $u \in \widehat{H}^s(B_1;\mathbb{S}^{d-1})$ is a **stationary** s-harmonic map in B_1 satisfying

$$\mathcal{E}_s(u,B_1) \leq \pmb{\varepsilon}_*\,,$$

then

$$\boldsymbol{\tau}^{2s-n}\mathcal{E}_s(u,B_{\boldsymbol{\tau}}) \leq \frac{1}{2}\mathcal{E}_s(u,B_1).$$

Proposition (Energy improvement)

There exists $\varepsilon_* = \varepsilon_*(n,s) > 0$ and $\tau = \tau(n,s) \in (0,1/4)$ s.t., if $u \in \widehat{H}^s(B_1;\mathbb{S}^{d-1})$ is a **stationary** s-harmonic map in B_1 satisfying

$$\mathcal{E}_s(u,B_1) \leq \pmb{\varepsilon}_*\,,$$

then

$$\boldsymbol{\tau}^{2s-n}\mathcal{E}_s(u,B_{\boldsymbol{\tau}}) \leq \frac{1}{2}\mathcal{E}_s(u,B_1).$$

- Proof
 - · For a fixed au, assume that there is no such $arepsilon_*$.

Proposition (Energy improvement)

There exists $\pmb{\varepsilon}_* = \pmb{\varepsilon}_*(n,s) > 0$ and $\pmb{\tau} = \pmb{\tau}(n,s) \in (0,1/4)$ s.t., if $u \in \widehat{H}^s(B_1;\mathbb{S}^{d-1})$ is a **stationary** s-harmonic map in B_1 satisfying

$$\mathcal{E}_s(u,B_1) \leq \pmb{\varepsilon}_*\,,$$

then

$$\boldsymbol{\tau}^{2s-n}\mathcal{E}_s(u,B_{\boldsymbol{\tau}}) \leq \frac{1}{2}\mathcal{E}_s(u,B_1)\,.$$

- Proof
 - · For a fixed au_r , assume that there is no such $arepsilon_*$.

$$\begin{split} \boldsymbol{\cdot} \ \exists (u_k) \subset \widehat{H}^s(B_1;\mathbb{S}^{d-1}) \text{ s.t.} \\ \mathcal{E}_s(u_k,B_1) =: & \boldsymbol{\varepsilon_k^2} \to 0 \\ \boldsymbol{\tau}^{2s-n} \mathcal{E}_s(u_k,B_\tau) > & \frac{1}{2} \mathcal{E}_s(u_k,B_1). \end{split}$$

Proposition (Energy improvement)

There exists $\varepsilon_* = \varepsilon_*(n,s) > 0$ and $\tau = \tau(n,s) \in (0,1/4)$ s.t., if $u \in \widehat{H}^s(B_1;\mathbb{S}^{d-1})$ is a **stationary** s-harmonic map in B_1 satisfying

$$\mathcal{E}_s(u,B_1) \leq \pmb{\varepsilon}_*\,,$$

then

$$\boldsymbol{\tau}^{2s-n}\mathcal{E}_s(u,B_{\boldsymbol{\tau}}) \leq \frac{1}{2}\mathcal{E}_s(u,B_1)\,.$$

- Proof
 - · For a fixed au, assume that there is no such $arepsilon_*$.

+
$$\exists (u_k) \subset \widehat{H}^s(B_1;\mathbb{S}^{d-1})$$
 s.t.

$$\mathcal{E}_s(u_k, B_1) =: \frac{\varepsilon_k^2}{\epsilon_k} \to 0$$

$$\boldsymbol{\tau}^{2s-n}\mathcal{E}_s(u_k,B_\tau)> \frac{1}{2}\mathcal{E}_s(u_k,B_1).$$

 $\cdot \text{ Let } w_k := \frac{u_k - [u_k]_{B_1}}{\varepsilon_k} \text{, then } \mathcal{E}_s(w_k, B_1) = 1 \text{ and } \tau^{2s-n} \mathcal{E}_s(w_k, B_\tau) > \frac{1}{2}.$

• Up to a subsequence, $w_k \xrightarrow{\widehat{H}^s(B_1)} w_*$, $w_k \xrightarrow{L^2(B_1)} w_*$, where $(-\Delta)^s w_* = 0$ in B_1 .

- Up to a subsequence, $w_k \xrightarrow{\widehat{H}^s(B_1)} w_*$, $w_k \xrightarrow{L^2(B_1)} w_*$, where $(-\Delta)^s w_* = 0$ in B_1 .
- Temp. assumption: w_k converges strongly to w_* in $H^s(B_{1/2}; \mathbb{R}^d)$.

- Up to a subsequence, $w_k \xrightarrow{\widehat{H}^s(B_1)} w_*$, $w_k \xrightarrow{L^2(B_1)} w_*$, where $(-\Delta)^s w_* = 0$ in B_1 .
- Temp. assumption: w_k converges strongly to w_* in $H^s(B_{1/2}; \mathbb{R}^d)$.
- \cdot For any k large

$$\tau^{2s-n}[w_k]_{H^s(B_{\tau})}^2 \approx \tau^{2s-n}[w_*]_{H^s(B_{\tau})}^2 \tag{strong CV}$$

- Up to a subsequence, $w_k \xrightarrow{\widehat{H}^s(B_1)} w_*$, $w_k \xrightarrow{L^2(B_1)} w_*$, where $(-\Delta)^s w_* = 0$ in B_1 .
- Temp. assumption: w_k converges strongly to w_* in $H^s(B_{1/2}; \mathbb{R}^d)$.
- For any k large

$$\begin{split} \pmb{\tau}^{2s-n}[w_k]_{H^s(B_{\pmb{\tau}})}^2 &\approx \pmb{\tau}^{2s-n}[w_*]_{H^s(B_{\pmb{\tau}})}^2 & \text{(strong CV)} \\ &\leq C \pmb{\tau}^{2s} \|\nabla w_*\|_{\infty,B_{1/2}}^2 & (w_* \text{ smooth)} \end{split}$$

- Up to a subsequence, $w_k \xrightarrow{\widehat{H}^s(B_1)} w_*$, $w_k \xrightarrow{L^2(B_1)} w_*$, where $(-\Delta)^s w_* = 0$ in B_1 .
- Temp. assumption: w_k converges strongly to w_* in $H^s(B_{1/2}; \mathbb{R}^d)$.
- For any k large

$$\begin{split} \pmb{\tau}^{2s-n}[w_k]_{H^s(B_{\pmb{\tau}})}^2 &\approx \pmb{\tau}^{2s-n}[w_*]_{H^s(B_{\pmb{\tau}})}^2 & \text{(strong CV)} \\ &\leq C \pmb{\tau}^{2s} \|\nabla w_*\|_{\infty,B_{1/2}}^2 & (w_* \text{ smooth)} \\ &\leq C \pmb{\tau}^{2s} \|w_*\|_{\widehat{H}^s(B_1)}^2 & (w_* \text{ s-harm fct)} \end{split}$$

- $\text{ Up to a subsequence, } w_k \xrightarrow{\widehat{H}^s(B_1)} w_*\text{, } w_k \xrightarrow{L^2(B_1)} w_*\text{, where } \\ (-\Delta)^s w_* = 0 \text{ in } B_1.$
- Temp. assumption: w_k converges strongly to w_* in $H^s(B_{1/2}; \mathbb{R}^d)$.
- \cdot For any k large

$$\begin{split} \boldsymbol{\tau}^{2s-n}[w_k]_{H^s(B_{\boldsymbol{\tau}})}^2 &\approx \boldsymbol{\tau}^{2s-n}[w_*]_{H^s(B_{\boldsymbol{\tau}})}^2 & \text{(strong CV)} \\ &\leq C \boldsymbol{\tau}^{2s} \|\nabla w_*\|_{\infty,B_{1/2}}^2 & (w_* \text{ smooth)} \\ &\leq C \boldsymbol{\tau}^{2s} \|w_*\|_{\widehat{H}^s(B_1)}^2 & (w_* \text{ s-harm fct)} \\ &\leq C \boldsymbol{\tau}^{2s} \liminf_k \|w_k\|_{\widehat{H}^s(B_1)}^2 & \text{(l.s.c.)} \end{split}$$

- $\text{ Up to a subsequence, } w_k \xrightarrow{\widehat{H}^s(B_1)} w_*\text{, } w_k \xrightarrow{L^2(B_1)} w_*\text{, where } \\ (-\Delta)^s w_* = 0 \text{ in } B_1.$
- Temp. assumption: w_k converges strongly to w_* in $H^s(B_{1/2}; \mathbb{R}^d)$.
- For any k large

$$\begin{split} \tau^{2s-n}[w_k]_{H^s(B_\tau)}^2 &\approx \tau^{2s-n}[w_*]_{H^s(B_\tau)}^2 & \text{(strong CV)} \\ &\leq C\tau^{2s}\|\nabla w_*\|_{\infty,B_{1/2}}^2 & \text{(w_* smooth)} \\ &\leq C\tau^{2s}\|w_*\|_{\widehat{H}^s(B_1)}^2 & \text{(w_* s-harm fct)} \\ &\leq C\tau^{2s} \liminf_k \|w_k\|_{\widehat{H}^s(B_1)}^2 & \text{(l.s.c.)} \\ &\leq C\tau^{2s} \end{split}$$

- Up to a subsequence, $w_k \xrightarrow{\widehat{H}^s(B_1)} w_*$, $w_k \xrightarrow{L^2(B_1)} w_*$, where $(-\Delta)^s w_* = 0$ in B_1 .
- Temp. assumption: w_k converges strongly to w_* in $H^s(B_{1/2}; \mathbb{R}^d)$.
- For any k large

$$\begin{split} \boldsymbol{\tau}^{2s-n}[\boldsymbol{w}_k]_{H^s(\boldsymbol{B}_{\boldsymbol{\tau}})}^2 &\approx \boldsymbol{\tau}^{2s-n}[\boldsymbol{w}_*]_{H^s(\boldsymbol{B}_{\boldsymbol{\tau}})}^2 & \text{(strong CV)} \\ &\leq C\boldsymbol{\tau}^{2s}\|\nabla \boldsymbol{w}_*\|_{\infty,\boldsymbol{B}_{1/2}}^2 & (\boldsymbol{w}_* \text{ smooth}) \\ &\leq C\boldsymbol{\tau}^{2s}\|\boldsymbol{w}_*\|_{\widehat{H}^s(\boldsymbol{B}_1)}^2 & (\boldsymbol{w}_* \text{ s-harm fct}) \\ &\leq C\boldsymbol{\tau}^{2s} \liminf_k \|\boldsymbol{w}_k\|_{\widehat{H}^s(\boldsymbol{B}_1)}^2 & \text{(l.s.c.)} \\ &\leq C\boldsymbol{\tau}^{2s} \\ &\Rightarrow \boldsymbol{\tau}^{2s-n}\mathcal{E}_s(\boldsymbol{w}_k,\boldsymbol{B}_{\boldsymbol{\tau}}) < C\boldsymbol{\tau}^{2s} \end{split}$$

- Up to a subsequence, $w_k \xrightarrow{\widehat{H}^s(B_1)} w_*$, $w_k \xrightarrow{L^2(B_1)} w_*$, where $(-\Delta)^s w_* = 0$ in B_1 .
- Temp. assumption: w_k converges strongly to w_* in $H^s(B_{1/2}; \mathbb{R}^d)$.
- For any k large

$$\begin{split} \boldsymbol{\tau}^{2s-n}[\boldsymbol{w}_k]_{H^s(B_{\boldsymbol{\tau}})}^2 &\approx \boldsymbol{\tau}^{2s-n}[\boldsymbol{w}_*]_{H^s(B_{\boldsymbol{\tau}})}^2 & \text{(strong CV)} \\ &\leq C\boldsymbol{\tau}^{2s}\|\nabla \boldsymbol{w}_*\|_{\infty,B_{1/2}}^2 & (\boldsymbol{w}_* \text{ smooth}) \\ &\leq C\boldsymbol{\tau}^{2s}\|\boldsymbol{w}_*\|_{\widehat{H}^s(B_1)}^2 & (\boldsymbol{w}_* \text{ s-harm fct}) \\ &\leq C\boldsymbol{\tau}^{2s} \liminf_k \|\boldsymbol{w}_k\|_{\widehat{H}^s(B_1)}^2 & \text{(l.s.c.)} \\ &\leq C\boldsymbol{\tau}^{2s} \\ &\Rightarrow \boldsymbol{\tau}^{2s-n}\mathcal{E}_s(\boldsymbol{w}_k,B_{\boldsymbol{\tau}}) \leq C\boldsymbol{\tau}^{2s} \leq \frac{1}{2} & (\boldsymbol{\tau} \text{ small}) \end{split}$$

- Up to a subsequence, $w_k \xrightarrow{\widehat{H}^s(B_1)} w_*$, $w_k \xrightarrow{L^2(B_1)} w_*$, where $(-\Delta)^s w_* = 0$ in B_1 .
- Temp. assumption: w_k converges strongly to w_* in $H^s(B_{1/2}; \mathbb{R}^d)$.
- \cdot For any k large

$$\begin{split} \boldsymbol{\tau}^{2s-n}[\boldsymbol{w}_k]_{H^s(B_{\boldsymbol{\tau}})}^2 &\approx \boldsymbol{\tau}^{2s-n}[\boldsymbol{w}_*]_{H^s(B_{\boldsymbol{\tau}})}^2 & \text{(strong CV)} \\ &\leq C\boldsymbol{\tau}^{2s}\|\nabla \boldsymbol{w}_*\|_{\infty,B_{1/2}}^2 & (\boldsymbol{w}_* \text{ smooth}) \\ &\leq C\boldsymbol{\tau}^{2s}\|\boldsymbol{w}_*\|_{\widehat{H}^s(B_1)}^2 & (\boldsymbol{w}_* \text{ s-harm fct}) \\ &\leq C\boldsymbol{\tau}^{2s} \liminf_k \|\boldsymbol{w}_k\|_{\widehat{H}^s(B_1)}^2 & \text{(l.s.c.)} \\ &\leq C\boldsymbol{\tau}^{2s} \\ &\Rightarrow \boldsymbol{\tau}^{2s-n}\mathcal{E}_s(\boldsymbol{w}_k,B_{\boldsymbol{\tau}}) \leq C\boldsymbol{\tau}^{2s} \leq \frac{1}{2} & (\boldsymbol{\tau} \text{ small}) \\ &\Rightarrow \text{ contradiction with } \boldsymbol{\tau}^{2s-n}\mathcal{E}_s(\boldsymbol{w}_k,B_{\boldsymbol{\tau}}) > \frac{1}{2} \end{split}$$

▶ Strong convergence of w_k in $H^s(B_\sigma)$ for some $\sigma \in (0,1)$?

- ▶ Strong convergence of w_k in $H^s(B_\sigma)$ for some $\sigma \in (0,1)$?
- $ightharpoonup w_k w_*$ satisfies

$$(-\Delta)^s(w_k^i-w_*^i) = \Big(\sum_i \mathbf{\Omega}_k^{ij} \odot \operatorname{d_s} w_k^j\Big) + \varepsilon_k^2 T_k^i,$$

- ▶ Strong convergence of w_k in $H^s(B_\sigma)$ for some $\sigma \in (0,1)$?
- $ightharpoonup w_k w_*$ satisfies

$$(-\Delta)^s(w_k^i-w_*^i) = \Big(\sum_j \mathbf{\Omega}_k^{ij} \odot \operatorname{d}_{\mathbf{s}} w_k^j\Big) + \varepsilon_k^2 T_k^i,$$

with
$$\operatorname{div}_s \mathbf{\Omega}_k^{ij} = 0$$
, $\|\mathbf{\Omega}_k^{ij}\|_{L^2_{\operatorname{ad}}} = O(\varepsilon_k)$ and

$$|T_k^i(x)| \le C \int_{\mathbb{R}^n} \frac{|w_k(x) - w_k(y)|^3}{|x - y|^{n+2s}} \, \mathrm{d}y.$$

- ▶ Strong convergence of w_k in $H^s(B_\sigma)$ for some $\sigma \in (0,1)$?
- $ightharpoonup w_k w_*$ satisfies

$$(-\Delta)^s(w_k^i-w_*^i) = \Big(\sum_j \mathbf{\Omega}_k^{ij} \odot \operatorname{d_s} w_k^j\Big) + \varepsilon_k^2 T_k^i,$$

with $\operatorname{div}_s \mathbf{\Omega}_k^{ij} = 0$, $\|\mathbf{\Omega}_k^{ij}\|_{L^2_{\mathrm{ad}}} = O(\varepsilon_k)$ and

$$|T_k^i(x)| \le C \int_{\mathbb{R}^n} \frac{|w_k(x) - w_k(y)|^3}{|x - y|^{n+2s}} \, \mathrm{d}y.$$

lacktriangle Test equation against $\zeta(w_k-w_*)$, ζ cutoff

- ▶ Strong convergence of w_k in $H^s(B_\sigma)$ for some $\sigma \in (0,1)$?
- $ightharpoonup w_k w_*$ satisfies

$$(-\Delta)^s(w_k^i-w_*^i) = \Big(\sum_j \mathbf{\Omega}_k^{ij} \odot \operatorname{d}_{\mathbf{s}} w_k^j\Big) + \varepsilon_k^2 T_k^i,$$

with $\operatorname{div}_s \mathbf{\Omega}_k^{ij} = 0$, $\|\mathbf{\Omega}_k^{ij}\|_{L^2_{\operatorname{ad}}} = O(\varepsilon_k)$ and

$$|T_k^i(x)| \le C \int_{\mathbb{R}^n} \frac{|w_k(x) - w_k(y)|^3}{|x - y|^{n+2s}} \, \mathrm{d}y.$$

 \blacktriangleright Test equation against $\zeta(w_k-w_*)$, ζ cutoff

· LHS =
$$[w_k - w_*]_{H^s(B_\sigma)}^2 + o(1)$$

Proof of energy improvement (3)

- ▶ Strong convergence of w_k in $H^s(B_\sigma)$ for some $\sigma \in (0,1)$?
- $ightharpoonup w_k w_*$ satisfies

$$(-\Delta)^s(w_k^i-w_*^i) = \Big(\sum_j \mathbf{\Omega}_k^{ij} \odot \operatorname{d_s} w_k^j\Big) + \varepsilon_k^2 T_k^i,$$

with $\operatorname{div}_s \mathbf{\Omega}_k^{ij} = 0$, $\|\mathbf{\Omega}_k^{ij}\|_{L^2_{\operatorname{ad}}} = O(\varepsilon_k)$ and

$$|T_k^i(x)| \le C \int_{\mathbb{R}^n} \frac{|w_k(x) - w_k(y)|^3}{|x - y|^{n+2s}} \, \mathrm{d}y.$$

- ▶ Test equation against $\zeta(w_k w_*)$, ζ cutoff
 - LHS = $[w_k w_*]_{H^s(B_{\sigma})}^2 + o(1)$
 - 1st term of the RHS is $O(arepsilon_k)$ by div-curl Lemma

Proof of energy improvement (3)

- ▶ Strong convergence of w_k in $H^s(B_\sigma)$ for some $\sigma \in (0,1)$?
- $\blacktriangleright w_k w_*$ satisfies

$$(-\Delta)^s(w_k^i-w_*^i) = \Big(\sum_j \mathbf{\Omega}_k^{ij} \odot \operatorname{d}_{\mathbf{s}} w_k^j\Big) + \varepsilon_k^2 T_k^i,$$

with $\operatorname{div}_s \Omega_k^{ij} = 0$, $\|\Omega_k^{ij}\|_{L^2_{-1}} = O(\varepsilon_k)$ and

$$|T_k^i(x)| \le C \int_{\mathbb{R}^n} \frac{|w_k(x) - w_k(y)|^3}{|x - y|^{n+2s}} \, \mathrm{d}y.$$

- lacktriangle Test equation against $\zeta(w_k-w_*)$, ζ cutoff
 - LHS = $[w_k w_*]_{H^s(B_{\sigma})}^2 + o(1)$
 - 1st term of the RHS is $O(\varepsilon_k)$ by div-curl Lemma
 - · 2nd term of RHS

$$|{\rm RHS2}| \leq C \varepsilon_k^2 [w_k]_{W^{s/3,6}(B_{1/2})}^3 \|w_k\|_{H^s(B_1)} \tag{H\"{o}lder}$$

Proof of energy improvement (3)

- **Strong convergence** of w_k in $H^s(B_\sigma)$ for some $\sigma \in (0,1)$?
- $w_k w_*$ satisfies

$$(-\Delta)^s(w_k^i-w_*^i) = \Big(\sum_{\cdot} \mathbf{\Omega}_k^{ij} \odot \operatorname{d}_{\mathbf{s}} w_k^j\Big) + \varepsilon_k^2 T_k^i,$$

with $\operatorname{div}_s \mathbf{\Omega}_k^{ij} = 0$, $\|\mathbf{\Omega}_k^{ij}\|_{L^2} = O(arepsilon_k)$ and

$$|T_k^i(x)| \le C \int_{\mathbb{R}^n} \frac{|w_k(x) - w_k(y)|^3}{|x - y|^{n+2s}} \, \mathrm{d}y.$$

- ▶ Test equation against $\zeta(w_k w_*)$, ζ cutoff
 - LHS = $[w_k w_*]_{H^s(B_-)}^2 + o(1)$
 - 1st term of the RHS is $O(\varepsilon_k)$ by div-curl Lemma
 - · 2nd term of RHS

$$\begin{split} |\mathrm{RHS2}| & \leq C \varepsilon_k^2 [w_k]_{W^{s/3,6}(B_{1/2})}^3 \|w_k\|_{H^s(B_1)} & \text{(H\"older)} \\ & \lesssim C \varepsilon_k^2 \bigg(\sup_{B_r(x) \subset B_1} r^{2s-n} [w_k]_{H^s(B_r(x))} \bigg)^3 \|w_k\|_{H^s(B_1)} & \text{(\mathcal{Q}-spaces)} \end{split}$$

Improvement in the minimizing case s=1/2

Improvement in the minimizing case s=1/2

• Previously known: if $u\in \widehat{H}^{1/2}(\Omega;\mathbb{S}^{d-1})$ a minimizing 1/2-harmonic map, $\dim_{\mathscr{H}}\mathrm{sing}(u)\leq \pmb{n-2}$ for $n\geq 2$.

Improvement in the minimizing case s=1/2

• Previously known: if $u\in \widehat{H}^{1/2}(\Omega;\mathbb{S}^{d-1})$ a minimizing 1/2-harmonic map, $\dim_{\mathscr{H}} \mathrm{sing}(u) \leq \mathbf{n-2}$ for $n\geq 2$.

Theorem $(d \ge 3)$

If $u \in \widehat{H}^{1/2}(\Omega; \mathbb{S}^{d-1})$ is a minimizing 1/2-harmonic map, where $d \geq 3$, then $u \in C^{\infty}(\Omega \setminus \operatorname{sing}(u))$ with $\dim_{\mathscr{H}} \operatorname{sing}(u) \leq n-3$.

Improvement in the minimizing case s = 1/2

• Previously known: if $u\in \widehat{H}^{1/2}(\Omega;\mathbb{S}^{d-1})$ a minimizing 1/2-harmonic map, $\dim_{\mathscr{H}} \mathrm{sing}(u) \leq \mathbf{n-2}$ for $n\geq 2$.

Theorem $(d \ge 3)$

If $u \in \widehat{H}^{1/2}(\Omega; \mathbb{S}^{d-1})$ is a minimizing 1/2-harmonic map, where $d \geq 3$, then $u \in C^{\infty}(\Omega \setminus \operatorname{sing}(u))$ with $\dim_{\mathscr{H}} \operatorname{sing}(u) \leq \mathbf{n} - \mathbf{3}$.

Theorem (n = d = 2)

- $u_*(x)=x/|x|$ from $\mathbb D$ into $\mathbb S^1$ is a **minimizing** 1/2-harmonic map.
- u_* is the only 0-homogeneous minimizing 1/2-harmonic map from \mathbb{R}^2 into \mathbb{S}^1 , up to an orthogonal transformation.
- If $u \in \widehat{H}^{1/2}(\Omega \subseteq \mathbb{R}^2; \mathbb{S}^1)$ is a minimizing 1/2-harmonic map, then the **topological degree** of u around its singularities is ± 1 .

• Federer: amounts to proving that any 0-homogeneous minimizing 1/2-harmonic map from \mathbb{R}^2 into \mathbb{S}^{d-1} is **constant**

- Federer: amounts to proving that any 0-homogeneous minimizing 1/2-harmonic map from \mathbb{R}^2 into \mathbb{S}^{d-1} is **constant**
- $\begin{array}{c} \cdot \ u(x) = g(x/|x|) \ \text{minimizing } 1/2\text{-harmonic} \\ \Longrightarrow \ g: \mathbb{S}^1 \to \mathbb{S}^{d-1} \ 1/2\text{-harmonic} \end{array}$

- Federer: amounts to proving that any 0-homogeneous minimizing 1/2-harmonic map from \mathbb{R}^2 into \mathbb{S}^{d-1} is **constant**
- u(x)=g(x/|x|) minimizing 1/2-harmonic $\implies g:\mathbb{S}^1\to\mathbb{S}^{d-1}$ 1/2-harmonic
- $g(\mathbb{S}^1)$ is **equatorial** (connection free boundary minimal surfaces):

- Federer: amounts to proving that any 0-homogeneous minimizing 1/2-harmonic map from \mathbb{R}^2 into \mathbb{S}^{d-1} is **constant**
- · u(x) = g(x/|x|) minimizing 1/2-harmonic $\implies g: \mathbb{S}^1 \to \mathbb{S}^{d-1}$ 1/2-harmonic
- $g(\mathbb{S}^1)$ is **equatorial** (connection free boundary minimal surfaces):
 - $\label{eq:wg} \begin{array}{l} \mbox{\downarrow harmonic extension $w_g:\mathbb{D}\to B^d$ s.t. $(w_g)_{|\partial\mathbb{D}}=g$} \\ w_g \mbox{ branched minimal immersion of the disk \mathbb{D} into B^d} \end{array}$

- Federer: amounts to proving that any 0-homogeneous minimizing 1/2-harmonic map from \mathbb{R}^2 into \mathbb{S}^{d-1} is **constant**
- · u(x) = g(x/|x|) minimizing 1/2-harmonic $\implies g: \mathbb{S}^1 \to \mathbb{S}^{d-1}$ 1/2-harmonic
- $g(\mathbb{S}^1)$ is **equatorial** (connection free boundary minimal surfaces):
 - $\label{eq:barmonic extension} \begin{array}{l} w_g:\mathbb{D}\to B^d \text{ s.t. } (w_g)_{|\partial\mathbb{D}}=g \\ \\ w_g \text{ branched minimal immersion of the disk } \mathbb{D} \text{ into } B^d \end{array}$
 - $\begin{array}{c} \ \, \sqcup \ \, w_g(\partial \mathbb D) \subseteq \mathbb S^{d-1} \ \, \text{and} \ \, \partial_\nu w_g = (-\Delta)^{1/2} g \perp \operatorname{Tan}(g=w_g,\mathbb S^{d-1}) \ \, \text{on} \ \, \partial \mathbb D \\ \Longrightarrow \ \, w_g(\overline{\mathbb D}) \ \, \text{is a flat equatorial disk (Fraser and R. Schoen; Nitsche)} \\ \text{ for example } \ \, w_g(\overline{\mathbb D}) = \overline{\mathbb D} \times \{0\}^{d-2}, \ \, \text{and} \ \, g(\mathbb S^1) = \mathbb S^1 \times \{0\}^{d-2}. \end{array}$

- Competitor $v_t = \frac{u + t \varphi e_d}{\sqrt{1 + t^2 \varphi^2}}$, $\varphi \in C_c^\infty(\mathbb{R}^2)$

- Competitor $v_t = \frac{u + t \varphi e_d}{\sqrt{1 + t^2 \varphi^2}}$, $\varphi \in C_c^\infty(\mathbb{R}^2)$

· Positive second variation (by minimality) gives

$$\iint_{\mathbb{R}^2 \times \mathbb{R}^2} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^3} dx dy \ge 4\mathcal{E}_{1/2}(g, \mathbb{S}^1) \int_{\mathbb{R}^2} \frac{|\varphi(x)|^2}{|x|} dx$$

- Competitor $v_t = \frac{u + t \varphi e_d}{\sqrt{1 + t^2 \varphi^2}}$, $\varphi \in C_c^\infty(\mathbb{R}^2)$

· Positive second variation (by minimality) gives

$$\iint_{\mathbb{R}^2 \times \mathbb{R}^2} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^3} \, \mathrm{d}x \, \mathrm{d}y \ge 4\mathcal{E}_{1/2}(g, \mathbb{S}^1) \int_{\mathbb{R}^2} \frac{|\varphi(x)|^2}{|x|} \, \mathrm{d}x$$

- Explicit optimal Hardy constant $\implies 4\mathcal{E}_{1/2}(g,\mathbb{S}^1) \leq C_*$

- Competitor $v_t = \frac{u + t\varphi e_d}{\sqrt{1 + t^2 \varphi^2}}, \, \varphi \in C_c^\infty(\mathbb{R}^2)$

Positive second variation (by minimality) gives

$$\iint_{\mathbb{R}^2 \times \mathbb{R}^2} \frac{|\varphi(x) - \varphi(y)|^2}{|x - y|^3} \, \mathrm{d}x \, \mathrm{d}y \ge 4\mathcal{E}_{1/2}(g, \mathbb{S}^1) \int_{\mathbb{R}^2} \frac{|\varphi(x)|^2}{|x|} \, \mathrm{d}x$$

- Explicit optimal Hardy constant $\implies 4\mathcal{E}_{1/2}(g,\mathbb{S}^1) \leq C_*$
- $$\begin{split} \cdot \ \mathcal{E}_{1/2}(g,\mathbb{S}^1) &= \pi \big| \mathrm{deg}(g,\mathbb{S}^1) \big| \\ &\implies \mathcal{E}_{1/2}(g,\mathbb{S}^1) = 0 \implies g \text{ constant.} \end{split}$$

Perspectives

- Improvement of the upper bound on $\dim_{\mathscr{H}} \operatorname{sing}(u)$ for minimizing s-harmonic maps into \mathbb{S}^{d-1} for s>1/2?
- Minimality of x/|x| when $s \neq 1/2$
- ► Construction of a 1/2-harmonic map from D into S¹ discontinuous everywhere
- ▶ Study of nonlocal PDE (fractional versions of Ginzburg-Landau, Cahn-Hilliard, ...)

div-curl structure of the RHS

▶ Recall

$$(-\Delta)^s u = |\mathbf{d}_s u|^2 u = (\mathbf{d}_s u \odot \mathbf{d}_s u) u$$

▶ Rewriting of the source term. For $i, j \in \{1, ..., d\}$

$$\begin{split} |\mathbf{d}_{\mathbf{s}} u^j|^2(x) u^i(x) \\ &= \int_{\mathbb{R}^n} \left(u^i(x) \, \mathbf{d}_{\mathbf{s}} \, u^j(x,y) \right) \mathbf{d}_{\mathbf{s}} \, u^j(x,y) \frac{\mathrm{d}y}{|x-y|^n} \\ &= \int_{\mathbb{R}^n} \underbrace{\left(u^i(x) \, \mathbf{d}_{\mathbf{s}} \, u^j(x,y) - u^j(x) \, \mathbf{d}_{\mathbf{s}} \, u^i(x,y) \right)}_{\mathbf{\Omega}^{ij}} \, \mathbf{d}_{\mathbf{s}} \, u^j(x,y) \frac{\mathrm{d}y}{|x-y|^n} \\ &+ \int_{\mathbb{R}^n} \left(\, \mathbf{d}_{\mathbf{s}} \, u^j \odot \, \mathbf{d}_{\mathbf{s}} \, u^i \right) u^j \, \mathrm{d}x \frac{\mathrm{d}y}{|x-y|^n} \end{split}$$

ightharpoonup Since |u|=1, we have

$$\sum_{j=1}^d \left(\mathrm{d}_s u^j \odot \mathrm{d}_s u^i\right) u^j = \underbrace{\frac{\gamma_{n,s}}{4} \int_{\mathbb{R}^n} \overline{|u(x) - u(y)|^2 (u^i(x) - u^i(y))}}_{T^i} \frac{\mathrm{d}y}{|x - y|^n}$$

Embeddings between $\mathcal{Q}_{\mathrm{p}}^{\alpha,\mathrm{q}}$ -spaces

Embeddings between $\mathcal{Q}_{\mathbf{p}}^{lpha,\mathbf{q}}$ -spaces

We have

$$|\text{RHS}| \le o(1) + C\varepsilon_k^2 [w_k]_{W^{s/3,6}(B_{\tau_0})}^3 ||w_k||_{H^s(B_1)}$$

 $ightarrow \mathcal{Q}_p^{lpha,q}(\mathbb{R}^n)$ seminormed space made of measurable functions f s.t.

$$[f]_{\mathcal{Q}_p^{\alpha,q}(\mathbb{R}^n)} := \sup_{Q} |Q|^{1/p-1/q} \left(\iint_{Q \times Q} \frac{|f(x) - f(y)|^q}{|x - y|^{n + \alpha q}} \, \mathrm{d}x \, \mathrm{d}y \right)^{1/q} < \infty \,.$$

 $ightarrow\dot{F}^{s,u}_{M_{p,q,\lambda}}(\mathbb{R}^n)$ Triebel-Lizorkin-Morrey-Lorentz spaces. We have

$$\begin{aligned} \mathcal{Q}_{\frac{nq_1}{\lambda}}^{\alpha_1,q_1}(\mathbb{R}^n) &= \dot{F}_{q_1,q_1}^{\alpha_1,\frac{n-\lambda}{nq_1}}(\mathbb{R}^n) \hookrightarrow \dot{F}_{q_2,q_2}^{\alpha_2,\frac{n-\lambda}{nq_2}}(\mathbb{R}^n) = \mathcal{Q}_{q_2,q_2}^{\alpha_2,\frac{n-\lambda}{nq_2}}(\mathbb{R}^n), \\ \text{for all } 0 < \alpha_1 < \alpha_2 < 1, \, 1 \leq q_2 < q_1 < \infty \text{ and } 0 < \lambda \leq n. \end{aligned}$$

▶ In particular

$$\mathcal{Q}_{n/s}^{s,2}(\mathbb{R}^n) \hookrightarrow \mathcal{Q}_{3n/s}^{s/3,6}(\mathbb{R}^n),$$

$$\sup_{B_r(x)\subseteq \mathbb{R}^n} r^{\frac{2s-n}{3}} [f]^2_{W^{s/3,6}(B_r(x))} \leq C \sup_{B_r(x)\subseteq \mathbb{R}^n} r^{2s-n} [f]^2_{H^s(B_r(x))}.$$