
NOTES ON CONTACT CONVEXITY

1. Characteristic foliation

Let M be a contact manifold of dimension 2n + 1 with a co-oriented contact structure
ξ = {α = 0}. Note that if n = 2k + 1 then any contact structure defines an orientation of
the manifold, and if n = 2k+ 1 then a choice of a co-orientation defines an orientation of the
manifold because for odd values of n a contact structure defines an orientation of contact
planes.

Let Σ ⊂M be a co-oriented hypersurface. As M is oriented by the volume form α∧ dαn,
the co-orientation of Σ defines its orientation. At any point p ∈ Σ, where ξ(p) t TpΣ,
there is defined a characteristic line λp ⊂ ξ(p) ∩ TpΣ = Ker

(
dα|ξ(p)∩TpΣ

)
. Note that the

co-orientation of Σ defines a co-orientation of ξp ∩ TpΣ in ξ(p). We orient λp by the vector
which is dαp|ξ(p)-dual to a form on ξ(p) annihilating ξp ∩TpΣ and defining its co-orientation.
Thus, the line field λ, which is defined in the complement of the tangency locus T of ξ and
Σ, integrates to a singular foliation on Σ with singularities at the points of T . We will keep
the notation ` for this foliation, and write `Σ, `ξ or ellξ,Σ when it will be important to stress
the dependence of ` on Σ, ξ, or both.

The singular locus T naturally can be presented as a union of disjoint closed subsets,
T = T+∪T−, where T+ (resp. T−) consists of positive, where the orientations of ξp and Tp(Σ)
coiuncide (resp. opposite). On a neighborhood U± ⊃ T± the form dα|U± is symplectic. We
define a vector field X on Σ directing ` as equal to the Liouville field, dα|U+-dual to α|U+ on
U+,negative of the Liouville field, dα|U−-dual to α|U− on U−, and extend it to the rest of Σ
as any non-vanishing vector field defining the given orientation of `.

All singularities of X can be made non-degenerate by a C∞-small perturbation of Σ, see
e.g [1]. It will then automatically follow that they are hyperbolic, i.e. for each zero p the
linearization dpX is non-degenerate and has no pure imaginary eigenvalues.

2. Lyapunov functions

Let X be a vector field on a compact manifold Σ. A function φ : Σ→ R is called Lyapunov
for X if

dφ(X) ≥ C(||X||2 + ||dφ||2)

for a positive constant C. We assume here that Σ is endowed with a background Riemannian
metric.

Suppose that X has isolated non-degenerate hyperbolic zeroes (i.e the linearizations of X
at zeroes have no pure imaginary eigenvalues. A neighborhood of a hyperbolic zero always
admits a Lyapunov function.
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In the case of a vector field directing a characteristic foliation stable manifolds of singular
points of X are isotropic (with respect to the form dα|Σ) for positive zeroes and co-isotropic
for the negative ones, see [1], and hence the local Lyapunov function on Op (T+ ∪ T−), have
critical points of index ≤ n at positive points, and index ≥ n in the negative ones. Let us
stress the point, that index n critical points can be either negative or positive.

We call a Lyapunov function f : Σ → R for X good if there exists a regular value c such
that all positive zeroes of X are in f > c and all negative ones are in f < c.

We say that the characteristic foliation on a hypersurface Σ in a contact manifold (M, ξ)
is of Morse-Smale type if the vector field X directing characteristic foliation λ on Σ has
isolated non-degenerate zeroes, all trajectories of X originate and terminate at zeroes of X,
and the flow of X satisfies the Morse-Smale condition.

Lemma 2.1. Suppose that the characteristic foliation λ on Σ is of Morse-Smale type. Then
the vector field X directing λ admits a good global Lyapunov function f : Σ→ R. Moreover,
one choose f in such a way that the critical points of index k < n correspond to the critical
value k, the critical points of index k > n correspond to the critical value k + 1, the positive
critical points of index n correspond to the critical value n, while the negative critical points
of index n correspond to the critical value n+ 1.

Proof. We begin constructing a Lyapunov function f : Σ→ R from singular points of index
0. We can assume that the critical value of f at all index 0 points is 0, and that f = ε
on the boundary of a neighborhood of index 0 locus. Arguing by induction suppose that
we already constructed a Lyapunov function f on a domain Σk, 0 ≤ k = 2n − 1, with
boundary ∂Σk such that f |∂Σk

= k+ ε, and all singularities of X of index ≤ k are contained
in IntΣk, k = 0, . . . , n − 2. Let pj ∈ Σ \ Σk, j =, . . . , n − 1, be critical points of index
k + 1 and Pj there (k + 1)-dimensional stable manifolds. There is an extension of f to

U = Op (Σk ∪
m⋃
1

Pj) as a Lyapunov function for X such that f(pj) = k + 1 and the regular

level set {f = k + 1 + ε} is compact and contained in U , see Fig. ??. To achieve this When
extending the function over neighborhoods of stable manifolds of critical points of index n
we first construct an extension to neighborhoods of positive index n singular points, with
the critical value n, and then to neighborhoods of negative ones with the critical value n+1.
The Morse-Smale property ensures that stable manifolds of index n negative points do not
enter sufficiently small neighborhoods of index n positive points, and hence the process can
go through. After that we continue the original process successively extending the function
over stable manifolds of critical points of indices k = n + 1, . . . , 2n with the critical values
k + 1. �

3. Various flavors of contact convexity

3.1. Contact convexity. The notion of contact convexity was first defined in [2] and then
intensively studied by Emmanuel Giroux, [3], Ko Honda, [4], and others.

A hypersurface Σ ⊂ (M, ξ) is called convex if it admits a transverse contact vector field
Z.

The set of points S := {x ∈ Σ;X(x) ∈ ξx} is called the dividing set of Σ.
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Lemma 3.1. Suppose X is a contact vector field transverse to a hypersurface Σ and S the
corresponding dividing set set. Let t be the flow coordinate such that Σ = {t = 0} and
X = ∂

∂t
. Then ξ on Op Σ can be defined by a 1-form f(x)dt + µ, where f : Σ → R is a

function transversely changing sign across Σ.

Note that the contact condition implies that df 6= 0 along S, and α|S is a contact form.
Hence, we have

Lemma 3.2. Dividing set S is a smooth submanifold, which is transverse to the character-
istic foliation, and independent of the choice of a contact vector field transverse to Σ, up to
an isotopy transverse to the characteristic foliation.

Indeed, the space of contact vector fields transverse to Σ is a convex subset of the vector
space of all contact vector fields, and hence, contractible.

The dividing surface Σ divides Σ into Σ+ := {f > 0}, Σ− := {f < 0}. The form
α = (f(x)dt+ µ)|Σ\S can be divided by f ,

α

f
= dt+

µ

f
.

Denote λ± :=
(
µ
f

) ∣∣
Σ±

. The contact condition for α
f

is equivalent to (dλ±)n 6= 0. In other

words, λ± are Liouville forms on Σ±. Note that the corresponding Liouville fields Z± directs
the characteristic foliation on Σ. Indeed, λ± ∧ ι(Z±)dλ± = λ± ∧ λ± = 0.

Note that

α

f
∧
(
d

(
α

f

))n
=

1

fn+1
α ∧ (dα)n = dt ∧ dλn±.

Hence, the orientation defined by dλ− on Σ− differs from the given orientation of Σ− by
(−1)n+1. Note that near zero locus of α|Σ the form dα is also symplectic and near the
negative points it defines the orientation opposite to the given orientation of the manifold.
This agrees with the fact that this orientation differs by (−1)n from the orientation defined
by the form dλ−.

Given a Liouville manifold (Σ, λ) we say that it has a cylindrical end if the corresponding
Liouville field Z is complete and there exists a compact domain Σ0 with boundary S := ∂Σ0,
such that Z is outwardly transverse to S and each point of Σ\Σ0 belongs to a trajectory of Z
intersecting S. There is a canonical Liouville isomorphism (Σ \ IntΣ0, λ)→ (S× [1,∞), sα),
where α is the contact form λ|S and s the coordinate corresponding to the second factor.
Note that any two hypersurfaces in the complement of Σ0 which transverse to Z can be
canonically identified via a holonomy along the trajectories of Z, and the identification
preserves the contact structure ξ := Kerα on S. We call (S, ξ) the ideal contact boundary
of Σ.

Lemma 3.3. Any two Liouville manifolds with contactomorphic ideal boundaries can be
glued into a convex hypersurface.

Proof. Let (Σ+, λ+), (Σ−, λ−) be two Liouville manifolds with cylindrical ends and (S+, ξ+)
and (S−, ξ−) be their ideal boundaries. Suppose we are given a contactomorphism (S+, ξ−)→
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(S−, ξ+). By choosing appropriate slices S± ⊂ Σ± we can assume that f ∗β+ = β−, where
β± := λ±|S± . Denote by Σ0

± domains bounded by S± in Σ± and identify the ends Σ± \ IntΣ0
±

with (S± × [0,∞), sβ±. Define a manifold Σ := Σ+ ∪
f

Σ− by gluing S+ × [−1, 1] to Σ+ and

Σ− via diffeomorphisms Θ+ : S× [−1, 0)→ S+× [1,∞) Θ− : S× (0, 1]→ S−× [1,∞) given,
respectively, by the formulas

Θ+(x, u) = (x,−1

u
), Θ−(x, u) = (f(x),

1

u
).

Denote S := S+ × 0 ⊂ Σ.
We endow Σ \S with the form λ which is equal to ±λ± on Σ0

±, equal to Θ∗+(sβ+) on S+×
[−1, 0), and equal to −Θ∗−(sβ−) = on S+×(0,−1]. We note that λ = β+

s
on S+×([−1, 1]\0).

Choose a non-increasing function τ : [−1, 1] → R such that τ(u) = −u, τ = ∓1 near ±1,
and define a function Ψ : Σ→ R by the formula Ψ(x, u) = τ(u) on S+ × [−1, 1] and extend
it to the rest of Σ as equal to ±1 on Σ0

±.
Define a 1-form β on Σ \ S by the formula β = Ψλ. Note that near S we have β = β+,

and therefore, β smoothly extends to the whole Σ. Finally define a 1-form α = β + Ψdt
on Σ × R. Let us check that α is a contact form. It is sufficient to verify the property in
a neighborhood of S because elsewhere α is proportional to dt + λ± which is contact. On
Op S we have α = udt+ β+, and hence, it is also contact.

It remains to observe that Σ × 0 is convex in (Σ × R, α) because the vector field ∂
∂t

is
contact. �

3.2. Weinstein contact convexity. A hypersurface Σ is called Weinstein convex if the
vector field X directing the characteristic foliation λ is of Morse-Smale type.

Lemma 3.4. Any Weinstein convex hypersurface is convex.

We begin the proof with the following technical lemma.

Lemma 3.5. Let Σ = S × [0, 1], where S is a compact manifold with boundary, be a co-
oriented hypersurface in a co-oriented (2n+1)-dimensional contact manifold (M, ξ = Kerα).
Suppose that the characteristic foliation ` on Σ is formed by fibers x × [−1, 1], x ∈ S. Set
β = α|Σ.

a) Suppose that (dβ)n|Op(S×(−1) > 0. Then there exists a function h : [−1, 1] → R such
that h(u) = 0 near −1 and h(u) = C near 1 such that (d(ehβ))n > 0 everywhere on
Σ.

b) Suppose that (dβ)n|Op(S×(−1)) > 0 and (dβ)n|Op(S×1) < 0. Consider a function µ :

[−1, 1] → R such that µ(u) = −1 near −1, µ(u) = −u on
[
−1

2
, 1

2

]
, µ(u) = −1 near

1 and µ′(u) ≤ 0 everywhere on [−1, 1]. Then there exists a function h : [−1, 1]→ R
such that h(u) = 0 near −1 and 1 such that the 1-form α0 := ehβ+µ(u)dt is contact
on Σ× R.

Proof. a) Any 1-form β with the characteristic foliation ` can be written as β = fγ, where β
is a contact form on S and f : Σ→ R is a non-vanishing function. Hence, dβ = fudu∧γ+fdγ
and (dβ)n = nfn−1fudu∧γ∧(dγ)n−1. The form Ω := du∧γ∧(dγ)n is a positive volume form,
and hence the sign of (dβ)n coincides with the sign of the derivative fu. Hence, multiplying
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by eh where h by a function eh with a large positive derivative has away from a neighborhood
of −1 does the job.

b) As above, we have β = fγ. Denote f̃ := feh. We have α0 = f̃γ + µ(u)dt and

dα0 = f̃udu∧ γ + dS f̃ ∧ γf̃dγ + µ′du∧ dt, where dS is the differential along S. Furthermore,

α0 ∧ (dα0)n = (f̃γ + µdt) ∧ (f̃udu ∧ γ + dSf ∧ γ + f̃dγ + µ′du ∧ dt)n

= nf̃n−1(f̃uµ− f̃µ′)dt ∧ du ∧ γ ∧ (dγ)n−1

Hence, the contact condition is equivalent to the inequality

f̃uµ− f̃µ′ > 0.(1)

We have f̃uµ− f̃µ′ = ehf((h′ + (ln f)u)µ− hµ′), and hence, (1) can be rewritten as

h′µ− hµ′ > µ(ln f)u =: µg.(2)

By a) near u = −1 we have fu > 0, and hence g is negative, and the inequality is satisfied.
Similarly, near u = +1 we have fu < 0, and thus the inequality is satisfied as well. Note
that µ′ ≤ 0 while µ is negative on [0, 1]. Hence, by making the function h growing fast on
[−1,−1

2
] and decreasing fast on [1

2
, 1] we can satisfy the inequality (2) away from [−1

2
, 1

2
] and

have h(−1
2
) = h(1

2
) = C > 0 and h′(−1

2
) = −h(1

2
) = C1 > 0. Recall that µ(u) = −u on

[−1
2
, 1

2
]. Hence, (2). takes the form

h > u(h′ + g).(3)

Suppose the constant C is chosen to satisfy the inequality C > max
S×[− 1

2
, 1
2 ]
|g(x, u)|. Then the

inequality (3) will be satisfied as long as we extend h to
[
−1

2
, 1

2

]
to have a unique critical

point, the maximum, at 0. �

Proof of Lemma 3.4. We call a 2n-form on Σ positive (resp. negative) if it defines the given
(resp. opposite) orientation. Choose a contact form α for the contact structure ξ and set
β := α|Σ. Note that (dβ)n is positive in a neighborhood of the positive critical point locus
of `, and negative in a neighborhood of the negative one.

Let Φ : Σ→ R be a good Lyapunov function for the characteristic foliation ` constructed
in Lemma 2.1, and X be a vector field directing `. Let N1 be the union of stable manifolds
of all critical points of index 1. Denote N ε

1 := N1 ∩ {ε ≤ Φ ≤ 1− ε}. For a sufficiently small
ε > 0 denote Fk,± := {Φ = k ± ε}, k = 0, . . . , 2n+ 1},

Consider a closed tubular neighborhood Σ1 of N ε
1 in {ε ≤ f ≤ 1−ε} foliated by trajectories

of `. We can present Σ1 as a product S1× [0, 1], where the fibers x× [0, 1], x ∈ Σ1 are arcs of
leaves of ` connecting points in F0,+ and F1,−. Let us apply Lemma 3.5a) to find a function
h : Σ1 → R which is equal to 0 on Op (Σ1 ∩ F0,+) and to a constant C on Op (Σ1 ∩ F1,−)
and such that the form d(ehβ)n > 0 on Σ1. We extend h in any way to the rest of M and
set α1 := ehα and β1 := ehβ = α1|Σ. To simplify the notation we rename β1 back to β. By
flowing the level sets of the function Φ with the flow of −X we can arrange without changing
the critical values that {Φ ≤ 1 + ε} ⊂ {f ≤ ε} ∪Σ1. In particular the form (dβ)n is positive
in Φ ≤ 1+ε}. Continuing inductively the process for positive critical points of index 2, . . . , n
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we similarly arrange that (dβ)n is positive in Φ ≤ n + ε}. Similarly, by arguing downward
from index 2n negative points we arrange that (dβ)n is negative in Φ ≥ n+ 1− ε}.

Let θ : R→ R such that θ(u) = u if −ε ≤ u ≤ ε, equal to 2ε for u > 2ε, to −2ε for u < −2ε
and satisfies the condition θ′(u) ≥ 0. Set Ψ := θ(Φ − n − 1

2
). Using Lemma 3.5b) we can

scale the form β over Σ̃ := {n+ ε ≤ Φ ≤ n+ 1− ε} to ensure that the 1-form α0 := β + Ψdt
on Σ×R is contact. Note that the form β is invariant with respect to translations along the
t-axis, and hence, ∂

∂t
is contact. But germs of contact forms along a hypersurface Σ which

have the same restriction to Σ are diffeomorphic via a diffeomorphism fixed on Σ. �
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