NOTES ON CONTACT CONVEXITY

1. Characteristic foliation

Let M be a contact manifold of dimension $2 n+1$ with a co-oriented contact structure $\xi=\{\alpha=0\}$. Note that if $n=2 k+1$ then any contact structure defines an orientation of the manifold, and if $n=2 k+1$ then a choice of a co-orientation defines an orientation of the manifold because for odd values of n a contact structure defines an orientation of contact planes.

Let $\Sigma \subset M$ be a co-oriented hypersurface. As M is oriented by the volume form $\alpha \wedge d \alpha^{n}$, the co-orientation of Σ defines its orientation. At any point $p \in \Sigma$, where $\xi(p) \pitchfork T_{p} \Sigma$, there is defined a characteristic line $\lambda_{p} \subset \xi(p) \cap T_{p} \Sigma=\operatorname{Ker}\left(\left.d \alpha\right|_{\left.\xi(p) \cap T_{p} \Sigma\right)}\right.$. Note that the co-orientation of Σ defines a co-orientation of $\xi_{p} \cap T_{p} \Sigma$ in $\xi(p)$. We orient λ_{p} by the vector which is $\left.d \alpha_{p}\right|_{\xi(p)}$-dual to a form on $\xi(p)$ annihilating $\xi_{p} \cap T_{p} \Sigma$ and defining its co-orientation. Thus, the line field λ, which is defined in the complement of the tangency locus T of ξ and Σ, integrates to a singular foliation on Σ with singularities at the points of T. We will keep the notation ℓ for this foliation, and write $\ell_{\Sigma}, \ell_{\xi}$ or $e l l_{\xi, \Sigma}$ when it will be important to stress the dependence of ℓ on Σ, ξ, or both.

The singular locus T naturally can be presented as a union of disjoint closed subsets, $T=T_{+} \cup T_{-}$, where T_{+}(resp. T_{-}) consists of positive, where the orientations of ξ_{p} and $T_{p}(\Sigma)$ coiuncide (resp. opposite). On a neighborhood $U_{ \pm} \supset T_{ \pm}$the form $\left.d \alpha\right|_{U_{ \pm}}$is symplectic. We define a vector field X on Σ directing ℓ as equal to the Liouville field, $\left.d \alpha\right|_{U_{+}}$-dual to $\left.\alpha\right|_{U_{+}}$on U_{+}, negative of the Liouville field, $\left.d \alpha\right|_{U_{-}-\text {dual }}$ to $\left.\alpha\right|_{U_{-}}$on U_{-}, and extend it to the rest of Σ as any non-vanishing vector field defining the given orientation of ℓ.

All singularities of X can be made non-degenerate by a C^{∞}-small perturbation of Σ, see e.g [1]. It will then automatically follow that they are hyperbolic, i.e. for each zero p the linearization $d_{p} X$ is non-degenerate and has no pure imaginary eigenvalues.

2. LyApunov functions

Let X be a vector field on a compact manifold Σ. A function $\phi: \Sigma \rightarrow \mathbb{R}$ is called Lyapunov for X if

$$
d \phi(X) \geq C\left(\|X\|^{2}+\|d \phi\|^{2}\right)
$$

for a positive constant C. We assume here that Σ is endowed with a background Riemannian metric.

Suppose that X has isolated non-degenerate hyperbolic zeroes (i.e the linearizations of X at zeroes have no pure imaginary eigenvalues. A neighborhood of a hyperbolic zero always admits a Lyapunov function.

Date: May 29, 2022.
1991 Mathematics Subject Classification. Primary ; Secondary .

In the case of a vector field directing a characteristic foliation stable manifolds of singular points of X are isotropic (with respect to the form $\left.d \alpha\right|_{\Sigma}$) for positive zeroes and co-isotropic for the negative ones, see [1], and hence the local Lyapunov function on $\mathcal{O} p\left(T_{+} \cup T_{-}\right)$, have critical points of index $\leq n$ at positive points, and index $\geq n$ in the negative ones. Let us stress the point, that index n critical points can be either negative or positive.

We call a Lyapunov function $f: \Sigma \rightarrow \mathbb{R}$ for X good if there exists a regular value c such that all positive zeroes of X are in $f>c$ and all negative ones are in $f<c$.

We say that the characteristic foliation on a hypersurface Σ in a contact manifold (M, ξ) is of Morse-Smale type if the vector field X directing characteristic foliation λ on Σ has isolated non-degenerate zeroes, all trajectories of X originate and terminate at zeroes of X, and the flow of X satisfies the Morse-Smale condition.

Lemma 2.1. Suppose that the characteristic foliation λ on Σ is of Morse-Smale type. Then the vector field X directing λ admits a good global Lyapunov function $f: \Sigma \rightarrow \mathbb{R}$. Moreover, one choose f in such a way that the critical points of index $k<n$ correspond to the critical value k, the critical points of index $k>n$ correspond to the critical value $k+1$, the positive critical points of index n correspond to the critical value n, while the negative critical points of index n correspond to the critical value $n+1$.

Proof. We begin constructing a Lyapunov function $f: \Sigma \rightarrow \mathbb{R}$ from singular points of index 0 . We can assume that the critical value of f at all index 0 points is 0 , and that $f=\epsilon$ on the boundary of a neighborhood of index 0 locus. Arguing by induction suppose that we already constructed a Lyapunov function f on a domain $\Sigma_{k}, 0 \leq k=2 n-1$, with boundary $\partial \Sigma_{k}$ such that $\left.f\right|_{\partial \Sigma_{k}}=k+\epsilon$, and all singularities of X of index $\leq k$ are contained in $\operatorname{Int} \Sigma_{k}, k=0, \ldots, n-2$. Let $p_{j} \in \Sigma \backslash \Sigma_{k}, j=, \ldots, n-1$, be critical points of index $k+1$ and P_{j} there $(k+1)$-dimensional stable manifolds. There is an extension of f to $U=\mathcal{O} p\left(\Sigma_{k} \cup \bigcup_{1}^{m} P_{j}\right)$ as a Lyapunov function for X such that $f\left(p_{j}\right)=k+1$ and the regular level set $\{f=k+1+\epsilon\}$ is compact and contained in U, see Fig. ??. To achieve this When extending the function over neighborhoods of stable manifolds of critical points of index n we first construct an extension to neighborhoods of positive index n singular points, with the critical value n, and then to neighborhoods of negative ones with the critical value $n+1$. The Morse-Smale property ensures that stable manifolds of index n negative points do not enter sufficiently small neighborhoods of index n positive points, and hence the process can go through. After that we continue the original process successively extending the function over stable manifolds of critical points of indices $k=n+1, \ldots, 2 n$ with the critical values $k+1$.

3. Various flavors of contact convexity

3.1. Contact convexity. The notion of contact convexity was first defined in [2] and then intensively studied by Emmanuel Giroux, [3], Ko Honda, [4], and others.

A hypersurface $\Sigma \subset(M, \xi)$ is called convex if it admits a transverse contact vector field Z.

The set of points $S:=\left\{x \in \Sigma ; X(x) \in \xi_{x}\right\}$ is called the dividing set of Σ.

Lemma 3.1. Suppose X is a contact vector field transverse to a hypersurface Σ and S the corresponding dividing set set. Let t be the flow coordinate such that $\Sigma=\{t=0\}$ and $X=\frac{\partial}{\partial t}$. Then ξ on $\mathcal{O} p \Sigma$ can be defined by a 1 -form $f(x) d t+\mu$, where $f: \Sigma \rightarrow \mathbb{R}$ is a function transversely changing sign across Σ.

Note that the contact condition implies that $d f \neq 0$ along S, and $\left.\alpha\right|_{S}$ is a contact form. Hence, we have

Lemma 3.2. Dividing set S is a smooth submanifold, which is transverse to the characteristic foliation, and independent of the choice of a contact vector field transverse to Σ, up to an isotopy transverse to the characteristic foliation.

Indeed, the space of contact vector fields transverse to Σ is a convex subset of the vector space of all contact vector fields, and hence, contractible.

The dividing surface Σ divides Σ into $\Sigma_{+}:=\{f>0\}, \Sigma_{-}:=\{f<0\}$. The form $\alpha=\left.(f(x) d t+\mu)\right|_{\Sigma \backslash S}$ can be divided by f,

$$
\frac{\alpha}{f}=d t+\frac{\mu}{f} .
$$

Denote $\lambda_{ \pm}:=\left.\left(\frac{\mu}{f}\right)\right|_{\Sigma_{ \pm}}$. The contact condition for $\frac{\alpha}{f}$ is equivalent to $\left(d \lambda_{ \pm}\right)^{n} \neq 0$. In other words, $\lambda_{ \pm}$are Liouville forms on $\Sigma_{ \pm}$. Note that the corresponding Liouville fields $Z_{ \pm}$directs the characteristic foliation on Σ. Indeed, $\lambda_{ \pm} \wedge \iota\left(Z_{ \pm}\right) d \lambda_{ \pm}=\lambda_{ \pm} \wedge \lambda_{ \pm}=0$.

Note that

$$
\frac{\alpha}{f} \wedge\left(d\left(\frac{\alpha}{f}\right)\right)^{n}=\frac{1}{f^{n+1}} \alpha \wedge(d \alpha)^{n}=d t \wedge d \lambda_{ \pm}^{n}
$$

Hence, the orientation defined by $d \lambda_{-}$on Σ_{-}differs from the given orientation of Σ_{-}by $(-1)^{n+1}$. Note that near zero locus of $\left.\alpha\right|_{\Sigma}$ the form $d \alpha$ is also symplectic and near the negative points it defines the orientation opposite to the given orientation of the manifold. This agrees with the fact that this orientation differs by $(-1)^{n}$ from the orientation defined by the form $d \lambda_{-}$.

Given a Liouville manifold (Σ, λ) we say that it has a cylindrical end if the corresponding Liouville field Z is complete and there exists a compact domain Σ_{0} with boundary $S:=\partial \Sigma_{0}$, such that Z is outwardly transverse to S and each point of $\Sigma \backslash \Sigma_{0}$ belongs to a trajectory of Z intersecting S. There is a canonical Liouville isomorphism $\left(\Sigma \backslash \operatorname{Int} \Sigma_{0}, \lambda\right) \rightarrow(S \times[1, \infty), s \alpha)$, where α is the contact form $\left.\lambda\right|_{S}$ and s the coordinate corresponding to the second factor. Note that any two hypersurfaces in the complement of Σ_{0} which transverse to Z can be canonically identified via a holonomy along the trajectories of Z, and the identification preserves the contact structure $\xi:=\operatorname{Ker} \alpha$ on S. We call (S, ξ) the ideal contact boundary of Σ.

Lemma 3.3. Any two Liouville manifolds with contactomorphic ideal boundaries can be glued into a convex hypersurface.
Proof. Let $\left(\Sigma_{+}, \lambda_{+}\right),\left(\Sigma_{-}, \lambda_{-}\right)$be two Liouville manifolds with cylindrical ends and $\left(S_{+}, \xi_{+}\right)$ and $\left(S_{-}, \xi_{-}\right)$be their ideal boundaries. Suppose we are given a contactomorphism $\left(S_{+}, \xi_{-}\right) \rightarrow$
$\left(S_{-}, \xi_{+}\right)$. By choosing appropriate slices $S_{ \pm} \subset \Sigma_{ \pm}$we can assume that $f^{*} \beta_{+}=\beta_{-}$, where $\beta_{ \pm}:=\left.\lambda_{ \pm}\right|_{S_{ \pm}}$. Denote by $\Sigma_{ \pm}^{0}$ domains bounded by $S_{ \pm}$in $\Sigma_{ \pm}$and identify the ends $\Sigma_{ \pm} \backslash \operatorname{Int} \Sigma_{ \pm}^{0}$ with $\left(S_{ \pm} \times[0, \infty), s \beta_{ \pm}\right.$. Define a manifold $\Sigma:=\Sigma_{+} \cup_{f} \Sigma_{-}$by gluing $S_{+} \times[-1,1]$ to Σ_{+}and Σ_{-}via diffeomorphisms $\Theta_{+}: S \times[-1,0) \rightarrow S_{+} \times[1, \infty) \Theta_{-}: S \times(0,1] \rightarrow S_{-} \times[1, \infty)$ given, respectively, by the formulas

$$
\Theta_{+}(x, u)=\left(x,-\frac{1}{u}\right), \Theta_{-}(x, u)=\left(f(x), \frac{1}{u}\right) .
$$

Denote $S:=S_{+} \times 0 \subset \Sigma$.
We endow $\Sigma \backslash S$ with the form λ which is equal to $\pm \lambda_{ \pm}$on $\Sigma_{ \pm}^{0}$, equal to $\Theta_{+}^{*}\left(s \beta_{+}\right)$on $S_{+} \times$ $[-1,0)$, and equal to $-\Theta_{-}^{*}\left(s \beta_{-}\right)=$on $S_{+} \times(0,-1]$. We note that $\lambda=\frac{\beta_{+}}{s}$ on $S_{+} \times([-1,1] \backslash 0)$. Choose a non-increasing function $\tau:[-1,1] \rightarrow \mathbb{R}$ such that $\tau(u)=-u, \tau=\mp 1$ near ± 1, and define a function $\Psi: \Sigma \rightarrow \mathbb{R}$ by the formula $\Psi(x, u)=\tau(u)$ on $S_{+} \times[-1,1]$ and extend it to the rest of Σ as equal to ± 1 on $\Sigma_{ \pm}^{0}$.

Define a 1 -form β on $\Sigma \backslash S$ by the formula $\beta=\Psi \lambda$. Note that near S we have $\beta=\beta_{+}$, and therefore, β smoothly extends to the whole Σ. Finally define a 1 -form $\alpha=\beta+\Psi d t$ on $\Sigma \times \mathbb{R}$. Let us check that α is a contact form. It is sufficient to verify the property in a neighborhood of S because elsewhere α is proportional to $d t+\lambda_{ \pm}$which is contact. On $\mathcal{O} p S$ we have $\alpha=u d t+\beta_{+}$, and hence, it is also contact.

It remains to observe that $\Sigma \times 0$ is convex in $(\Sigma \times \mathbb{R}, \alpha)$ because the vector field $\frac{\partial}{\partial t}$ is contact.
3.2. Weinstein contact convexity. A hypersurface Σ is called Weinstein convex if the vector field X directing the characteristic foliation λ is of Morse-Smale type.

Lemma 3.4. Any Weinstein convex hypersurface is convex.
We begin the proof with the following technical lemma.
Lemma 3.5. Let $\Sigma=S \times[0,1]$, where S is a compact manifold with boundary, be a cooriented hypersurface in a co-oriented ($2 n+1$)-dimensional contact manifold ($M, \xi=\operatorname{Ker} \alpha$). Suppose that the characteristic foliation ℓ on Σ is formed by fibers $x \times[-1,1], x \in S$. Set $\beta=\left.\alpha\right|_{\Sigma}$.
a) Suppose that $\left.(d \beta)^{n}\right|_{O p(S \times(-1)}>0$. Then there exists a function $h:[-1,1] \rightarrow \mathbb{R}$ such that $h(u)=0$ near -1 and $h(u)=C$ near 1 such that $\left(d\left(e^{h} \beta\right)\right)^{n}>0$ everywhere on Σ.
b) Suppose that $\left.(d \beta)^{n}\right|_{O p(S \times(-1))}>0$ and $\left.(d \beta)^{n}\right|_{O p(S \times 1)}<0$. Consider a function μ : $[-1,1] \rightarrow \mathbb{R}$ such that $\mu(u)=-1$ near $-1, \mu(u)=-u$ on $\left[-\frac{1}{2}, \frac{1}{2}\right], \mu(u)=-1$ near 1 and $\mu^{\prime}(u) \leq 0$ everywhere on $[-1,1]$. Then there exists a function $h:[-1,1] \rightarrow \mathbb{R}$ such that $h(u)=0$ near -1 and 1 such that the 1 -form $\alpha_{0}:=e^{h} \beta+\mu(u) d t$ is contact on $\Sigma \times \mathbb{R}$.

Proof. a) Any 1-form β with the characteristic foliation ℓ can be written as $\beta=f \gamma$, where β is a contact form on S and $f: \Sigma \rightarrow \mathbb{R}$ is a non-vanishing function. Hence, $d \beta=f_{u} d u \wedge \gamma+f d \gamma$ and $(d \beta)^{n}=n f^{n-1} f_{u} d u \wedge \gamma \wedge(d \gamma)^{n-1}$. The form $\Omega:=d u \wedge \gamma \wedge(d \gamma)^{n}$ is a positive volume form, and hence the sign of $(d \beta)^{n}$ coincides with the sign of the derivative f_{u}. Hence, multiplying
by e^{h} where h by a function e^{h} with a large positive derivative has away from a neighborhood of -1 does the job.
b) As above, we have $\beta=f \gamma$. Denote $\tilde{f}:=f e^{h}$. We have $\alpha_{0}=\tilde{f} \gamma+\mu(u) d t$ and $d \alpha_{0}=\widetilde{f}_{u} d u \wedge \gamma+d_{S} \widetilde{f} \wedge \gamma \widetilde{f} d \gamma+\mu^{\prime} d u \wedge d t$, where d_{S} is the differential along S. Furthermore,

$$
\begin{aligned}
& \alpha_{0} \wedge\left(d \alpha_{0}\right)^{n}=(\widetilde{f} \gamma+\mu d t) \wedge\left(\widetilde{f}_{u} d u \wedge \gamma+d_{S} f \wedge \gamma+\widetilde{f} d \gamma+\mu^{\prime} d u \wedge d t\right)^{n} \\
& =n \widetilde{f}^{n-1}\left(\widetilde{f}_{u} \mu-\widetilde{f} \mu^{\prime}\right) d t \wedge d u \wedge \gamma \wedge(d \gamma)^{n-1}
\end{aligned}
$$

Hence, the contact condition is equivalent to the inequality

$$
\begin{equation*}
\widetilde{f}_{u} \mu-\widetilde{f} \mu^{\prime}>0 \tag{1}
\end{equation*}
$$

We have $\tilde{f}_{u} \mu-\widetilde{f} \mu^{\prime}=e^{h} f\left(\left(h^{\prime}+(\ln f)_{u}\right) \mu-h \mu^{\prime}\right)$, and hence, (1) can be rewritten as

$$
\begin{equation*}
h^{\prime} \mu-h \mu^{\prime}>\mu(\ln f)_{u}=: \mu g \tag{2}
\end{equation*}
$$

By a) near $u=-1$ we have $f_{u}>0$, and hence g is negative, and the inequality is satisfied. Similarly, near $u=+1$ we have $f_{u}<0$, and thus the inequality is satisfied as well. Note that $\mu^{\prime} \leq 0$ while μ is negative on $[0,1]$. Hence, by making the function h growing fast on $\left[-1,-\frac{1}{2}\right]$ and decreasing fast on $\left[\frac{1}{2}, 1\right]$ we can satisfy the inequality (2) away from $\left[-\frac{1}{2}, \frac{1}{2}\right]$ and have $h\left(-\frac{1}{2}\right)=h\left(\frac{1}{2}\right)=C>0$ and $h^{\prime}\left(-\frac{1}{2}\right)=-h\left(\frac{1}{2}\right)=C_{1}>0$. Recall that $\mu(u)=-u$ on $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Hence, (2). takes the form

$$
\begin{equation*}
h>u\left(h^{\prime}+g\right) . \tag{3}
\end{equation*}
$$

Suppose the constant C is chosen to satisfy the inequality $C>\max _{S \times\left[-\frac{1}{2}, \frac{1}{2}\right]}|g(x, u)|$. Then the inequality (3) will be satisfied as long as we extend h to $\left[-\frac{1}{2}, \frac{1}{2}\right]$ to have a unique critical point, the maximum, at 0 .
Proof of Lemma 3.4. We call a $2 n$-form on Σ positive (resp. negative) if it defines the given (resp. opposite) orientation. Choose a contact form α for the contact structure ξ and set $\beta:=\left.\alpha\right|_{\Sigma}$. Note that $(d \beta)^{n}$ is positive in a neighborhood of the positive critical point locus of ℓ, and negative in a neighborhood of the negative one.

Let $\Phi: \Sigma \rightarrow \mathbb{R}$ be a good Lyapunov function for the characteristic foliation ℓ constructed in Lemma 2.1, and X be a vector field directing ℓ. Let N_{1} be the union of stable manifolds of all critical points of index 1 . Denote $N_{1}^{\epsilon}:=N_{1} \cap\{\epsilon \leq \Phi \leq 1-\epsilon\}$. For a sufficiently small $\epsilon>0$ denote $\left.F_{k, \pm}:=\{\Phi=k \pm \epsilon\}, k=0, \ldots, 2 n+1\right\}$,

Consider a closed tubular neighborhood Σ_{1} of N_{1}^{ϵ} in $\{\epsilon \leq f \leq 1-\epsilon\}$ foliated by trajectories of ℓ. We can present Σ_{1} as a product $S_{1} \times[0,1]$, where the fibers $x \times[0,1], x \in \Sigma_{1}$ are arcs of leaves of ℓ connecting points in $F_{0,+}$ and $F_{1,-}$. Let us apply Lemma 3.5a) to find a function $h: \Sigma_{1} \rightarrow \mathbb{R}$ which is equal to 0 on $\mathcal{O} p\left(\Sigma_{1} \cap F_{0,+}\right)$ and to a constant C on $\mathcal{O} p\left(\Sigma_{1} \cap F_{1,-}\right)$ and such that the form $d\left(e^{h} \beta\right)^{n}>0$ on Σ_{1}. We extend h in any way to the rest of M and set $\alpha_{1}:=e^{h} \alpha$ and $\beta_{1}:=e^{h} \beta=\left.\alpha_{1}\right|_{\Sigma}$. To simplify the notation we rename β_{1} back to β. By flowing the level sets of the function Φ with the flow of $-X$ we can arrange without changing the critical values that $\{\Phi \leq 1+\epsilon\} \subset\{f \leq \epsilon\} \cup \Sigma_{1}$. In particular the form $(d \beta)^{n}$ is positive in $\Phi \leq 1+\epsilon\}$. Continuing inductively the process for positive critical points of index $2, \ldots, n$
we similarly arrange that $(d \beta)^{n}$ is positive in $\left.\Phi \leq n+\epsilon\right\}$. Similarly, by arguing downward from index $2 n$ negative points we arrange that $(d \beta)^{n}$ is negative in $\left.\Phi \geq n+1-\epsilon\right\}$.

Let $\theta: \mathbb{R} \rightarrow \mathbb{R}$ such that $\theta(u)=u$ if $-\epsilon \leq u \leq \epsilon$, equal to 2ϵ for $u>2 \epsilon$, to -2ϵ for $u<-2 \epsilon$ and satisfies the condition $\theta^{\prime}(u) \geq 0$. Set $\Psi:=\theta\left(\Phi-n-\frac{1}{2}\right)$. Using Lemma 3.5b) we can scale the form β over $\widetilde{\Sigma}:=\{n+\epsilon \leq \Phi \leq n+1-\epsilon\}$ to ensure that the 1-form $\alpha_{0}:=\beta+\Psi d t$ on $\Sigma \times \mathbb{R}$ is contact. Note that the form β is invariant with respect to translations along the t-axis, and hence, $\frac{\partial}{\partial t}$ is contact. But germs of contact forms along a hypersurface Σ which have the same restriction to Σ are diffeomorphic via a diffeomorphism fixed on Σ.

References

[1] K. Cieliebak and Y. Eliashberg, From Stein to Weinstein and back, Colloquium Publications, AMS, 59(2012).
[2] Y. Eliashberg and M. Gromov, Convex symplectic manifolds, Proceedings of Symposia in Pure Mathematics, vol. 52(1991), Part 2, 135-162.
[3] E. Giroux, Convexité en topologie de contact, Comm. Math. Helvet., 66(1991), 637677. 615-689.
[4] K. Honda, On the classification of tight contact structures. I, Geom. Topol. 4 (2000), 309368.

