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Polynomial term structure models



Term structure of interest rates
I P(t,T ) = time t price of zero-coupon bond maturing at T ≥ t

I Yields are defined by: P(t,T ) = e−(T−t) yield(t,T )
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State price density models
I Filtered probability space (Ω,F ,Ft ,P)

I State price density: positive process ζt
I Model price of claim CT maturing at T :

price at t =
1
ζt
E[ ζTCT | Ft ]



State price density models
I Filtered probability space (Ω,F ,Ft ,P)

I State price density: positive process ζt
I Model price of claim CT maturing at T :

price at t =
1
ζt
E[ ζTCT | Ft ]

Note:

I Arbitrage-free price system is guaranteed (NUPBR)

I
ζt
ζ0

= e−
∫ t
0 rsds × dQ

dP

∣∣∣∣
Ft

I Model is under P: Time series properties, risk management

I Risk-free zero-coupon bond: P(t,T ) =
1
ζt
E[ ζT | Ft ]



State price density models
I Filtered probability space (Ω,F ,Ft ,P)

I State price density: positive process ζt
I Model price of claim CT maturing at T :

price at t =
1
ζt
E[ ζTCT | Ft ]

Previous literature:

I Constantinides (92)

I Flesaker & Hughston (96)

I Rogers (97)

I Carr, Gabaix & Wu (10)

I etc.



State price density models
Factor model:

I Xt multivariate factor process

I Postulate ζt = f (t,Xt) for some function f (t, x)

I Bond prices:

P(t,T ) =
E [f (T ,XT ) | Ft ]

f (t,Xt)



State price density models
Factor model:

I Xt multivariate factor process

I Postulate ζt = f (t,Xt) for some function f (t, x)

I Bond prices:

P(t,T ) =
E [f (T ,XT ) | Ft ]

f (t,Xt)

I Need f (t, x) and X so that E [f (T ,XT ) | Ft ] is easy to compute



Polynomial preserving processes
Polynomial-preserving factor process

I Time-homogeneous Markov semimartingale X , state space E ⊂ Rd

I Transition semigroup Tt f (x) = Ex [f (Xt)]

Polynomials:

Poln(Rd) =
{
polynomials on Rd of degree ≤ n

}
Poln(E ) =

{
p|E : p ∈ Poln(Rd)

}

Definition. X is called Polynomial Preserving (PP) if

Tt Poln(E ) ⊂ Poln(E ) for all n ∈ N, t ≥ 0.
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Polynomial preserving processes
Let G be the extended generator of X : For all f ∈ Dom(G ),

f (Xt)− f (X0)−
∫ t

0
G f (Xs)ds = local martingale

Formally: G =
dTt

dt

∣∣∣
t=0

i.e.: Tt = etG



Polynomial preserving processes
Let G be the extended generator of X : For all f ∈ Dom(G ),

f (Xt)− f (X0)−
∫ t

0
G f (Xs)ds = local martingale

Formally: G =
dTt

dt

∣∣∣
t=0

i.e.: Tt = etG

Theorem (Mazet (’97), Zhou (’03), Cuchiero et al. (’10,’11), etc.)

X is (PP) ⇐⇒ G Poln(E ) ⊂ Poln(E ), all n ∈ N.

Hence: G restricts to an operator G |Poln(E) on the finite-dimensional
vector space Poln(E )



Polynomial preserving processes

Functions/operators In coordinates

G |Poln(E) G ∈ RN×N

p P ∈ RN

q := Ttp = etG p Q = etGP ∈ RN
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Consequence:

I Finding Ttp(x) = Ex [p(Xt)], for p ∈ Poln(E ), only requires
computing a matrix exponential.

I This should be contrasted with solving a PDE
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Functions/operators In coordinates

G |Poln(E) G ∈ RN×N

p P ∈ RN

q := Ttp = etG p Q = etGP ∈ RN

Consequence:

I Finding Ttp(x) = Ex [p(Xt)], for p ∈ Poln(E ), only requires
computing a matrix exponential.

I This should be contrasted with solving a PDE

Building G from G :

I C++ implementation (with Wahid Khosrawi-Sardroudi)



Polynomial preserving processes
Examples:

I Affine processes

I Pearson diffusions (Forman, Sørensen (’08)), E ⊂ R:

dXt = (β + bXt)dt +
√
α + aXt + AX 2

t dWt



Polynomial preserving processes
Examples:

I Affine processes

I Pearson diffusions (Forman, Sørensen (’08)), E ⊂ R:

dXt = (β + bXt)dt +
√
α + aXt + AX 2

t dWt

I Representation of G |Poln(R) with respect to 1, x , x2, . . .:

G =



0 β 2α
2 0 . . . 0

0 b 2
(
β + a

2

)
3 · 2α

2 0
...

0 0 2
(
b + A

2

)
3
(
β0 + 2 a

2

) . . . 0

0 0 0 3
(
b + 3A

2

) . . . n(n − 1)α2
... 0

. . . n
(
β + (n − 1) a

2

)
0 0 n

(
b + (n − 1)A

2

)





Polynomial term structure models

Polynomial Term Structure Model:

ζt = p(Xt) for some positive p ∈ Poln(E ) and X (PP)

Bond prices are explicit rational functions:

P(t,T ) =
1
ζt
E[ζT | Ft ] =

TT−tp(Xt)

p(Xt)

Next: Option pricing, estimation, filtering, etc.
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Linear-rational term structure models (Filipović-L.-Trolle, 2013)

I Factor process and state price density:

dXt = κ(θ − Xt)dt + dMt

ζt = e−αt(1 + ψ>Xt)

for some martingale M, κ ∈ Rd×d , θ ∈ Rd , α ∈ R, ψ ∈ Rd

I Conditional expectation of Xt :

E[Xt | Ft ] = θ + e−κ(T−t)(Xt − θ)

I Linear-rational bond prices and short rate:

P(t,T ) = F (T − t,Xt) = e−α(T−t) 1 + ψ>Xt + ψ>e−κ(T−t)(Xt − θ)

1 + ψ>Xt

rt = −∂ logP(t,T )|T=t = α− ψ>κ(θ − Xt)

1 + ψ>Xt
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Linear-rational term structure models (Filipović-L.-Trolle, 2013)

Highlights:

(i) Nonnegative short rate: choose α suitably

(ii) Unspanned stochastic volatility (USV):

I Empirical fact: volatility risk cannot be hedged using bonds
(Collin-Dufresne & Goldstein (02), Heidari & Wu (03), etc.)

I Operationalize by enforcing

λ 7→ F (τ, x + λu) constant for certain u ∈ Rd

. . . with bond volatilities not constant

(iii) Tractable swaption pricing:

1
ζt
E
[
ζT
(∑n

i=1ciP(T ,Ti )
)+ ∣∣∣Ft

]
=

1
ζt
E
[
polynomial(XT )+ | Ft

]
(iv) Extensive empirical analysis, estimation using 15 years of weekly

swaps and swaptions data
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Polynomial preserving diffusions
Suppose X is a diffusion: for some b : E → Rd , σ : E → Rd×d ,

dXt = b(Xt)dt + σ(Xt)dWt

With a = σσ>, we have

G f =
1
2
Tr
(
a∇2f

)
+ b>∇f

Theorem (Cuchiero et al. (’12))

X is (PP) ⇐⇒

{
aij ∈ Pol2(E ) i , j = 1, . . . , d
bi ∈ Pol1(E ) i = 1, . . . , d

(∗)

Question: For given E , a, b, what are the conditions under which the
above SDE has a unique (in law) weak solution starting from any x ∈ E?

I Want (PP), so always assume (∗) holds
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Existence of (PP) diffusions
Challenges:

I Non-Lipschitz volatility, e.g. σ(x) = a(x)1/2

I G not uniformly elliptic

I State space may have complicated geometry

Why care about more general state spaces?

I Boundary geometry affects factor covariation structure

I Boundary attainment (important for implementation) can be
analyzed in a general setting
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Existence of (PP) diffusions
Class of state spaces: Let E be a basic closed semialgebraic set:

E =
{
x ∈ Rd : p(x) ≥ 0 for all p ∈P

}
,

for a finite collection P ⊂ Pol(Rd) of irreducible polynomials with
non-constant sign.

𝑝ଵ = 0  

𝑝ଶ = 0  

𝑝ଷ = 0  
∇𝑝ଵ 

∇𝑝ଷ 

∇𝑝ଶ 



Existence of (PP) diffusions
Class of state spaces: Let E be a basic closed semialgebraic set:

E =
{
x ∈ Rd : p(x) ≥ 0 for all p ∈P

}
,

for a finite collection P ⊂ Pol(Rd) of irreducible polynomials with
non-constant sign.

Lemma from real algebraic geometry on real principal ideals:
Assume p ∈ Pol(Rd) is irreducible. The following are equivalent:

(i) p changes sign on Rd

(ii) Every q ∈ Pol(Rd) with q = 0 on {p = 0} satisfies
q = pr for some r ∈ Pol(Rd).



Existence of (PP) diffusions
Class of state spaces: Let E be a basic closed semialgebraic set:

E =
{
x ∈ Rd : p(x) ≥ 0 for all p ∈P

}
,

for a finite collection P ⊂ Pol(Rd) of irreducible polynomials with
non-constant sign.

Lemma (Real Nullstellensatz). Let I be the ideal generated by a
family {r1, . . . , rm} of polynomials. The following are equivalent:

I The ideal I is real: for any f1, . . . , fk ∈ Pol(Rd),

f 2
1 + · · ·+ f 2

k ∈ I =⇒ f1, . . . , fk ∈ I .

I Any f ∈ Pol(Rd) vanishing on
⋂m

i=1{ri = 0} lies in I :

f = f1r1 + · · ·+ fmrm for some f1, . . . , fm ∈ Pol(Rd).



Existence of (PP) diffusions
Class of state spaces: Let E be a basic closed semialgebraic set:

E =
{
x ∈ Rd : p(x) ≥ 0 for all p ∈P

}
,

for a finite collection P ⊂ Pol(Rd) of irreducible polynomials with
non-constant sign.

Examples:

Rd
+ : P = {pi (x) = xi , i = 1, . . . , d}

[0, 1]d : P = {pi (x) = xi , pd+i (x) = 1− xi , i = 1, . . . , d}

unit ball : P = {p(x) = 1− ‖x‖2}

Sm
+ : P = {pI (x) = det xII , I ⊂ {1, . . . ,m}},

(In the last example, Sm
+ ⊂ Sm ∼= Rd , d = m(m + 1)/2.)
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Class of state spaces: Let E be a basic closed semialgebraic set:

E =
{
x ∈ Rd : p(x) ≥ 0 for all p ∈P

}
,

for a finite collection P ⊂ Pol(Rd) of irreducible polynomials with
non-constant sign.

Candidate coefficients: Let a, b satisfy

a ∈ Sd
+ on E , aij ∈ Pol2(Rd), bi ∈ Pol1(Rd).



Existence of (PP) diffusions
Class of state spaces: Let E be a basic closed semialgebraic set:

E =
{
x ∈ Rd : p(x) ≥ 0 for all p ∈P

}
,

for a finite collection P ⊂ Pol(Rd) of irreducible polynomials with
non-constant sign.

Candidate coefficients: Let a, b satisfy

a ∈ Sd
+ on E , aij ∈ Pol2(Rd), bi ∈ Pol1(Rd).

Question: Set σ = a1/2 on E . For which a, b, P does

dXt = b(Xt)dt + σ(Xt)dWt , X0 = x .

have a unique (in law) E -valued weak solution for all x ∈ E?



Existence (necessity)

Theorem. Assume for each x ∈ E there exists an E -valued weak
solution to

dXt = b(Xt)dt + σ(Xt)dWt , X0 = x .

Then the condition

∀p ∈P, G p ≥ 0, a∇p = 0 on E ∩ {p = 0}

necessarily holds.

Reason: If X is E -valued, then p(Xt) ≥ 0, all p ∈P. And,

p(Xt) = p(x) +

∫ t

0
G p(Xs)ds +

∫ t

0
∇p(Xs)>σ(Xs)dWs
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Existence (sufficiency)

Theorem. Assume

∀p ∈P, G p > 0, a∇p = 0 on {p = 0}.

Then for each x ∈ E there exists an E -valued weak solution to

dXt = b(Xt)dt + σ(Xt)dWt , X0 = x ,

Furthermore, for each p ∈P the set {t : p(Xt) = 0} is almost surely
Lebesgue-null.

Note:

I X spends zero time at ∂E . . .

I . . . but it can nonetheless hit ∂E in general, e.g. BESQ(β):

dXt = βdt + 2
√

XtdWt , 0 < β < 2.
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Existence (sufficiency)
Key step of proof: Suppose we have a not necessarily E -valued solution
X . Must prove p(X ) ≥ 0 for all p ∈P.

I a∇p = 0 on {p = 0} implies

a∇p = hp for some polynomial h = (h1, . . . , hd)

I Occupation density formula with Ly
t := Ly

t (p(X )):∫ ∞
0

1
y

Ly
t dy =

∫ t

0
1{p(Xs)>0}

d〈p(X ), p(X )〉s
p(Xs)

=

∫ t

0
1{p(Xs)>0}

∇p>a∇p(Xs)

p(Xs)
ds
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Existence (sufficiency)
Now apply the following lemma with Y = p(X ):

Lemma. Let Y be a continuous semimartingale with decomposition

Yt = Y0 +

∫ t

0
µsds + Mt , Y0 ≥ 0,

where µ is continuous. If

µt > 0 on {Yt = 0}, L0(Y ) = 0,

then Y ≥ 0 and {t : Yt = 0} is Lebesgue-null.

Note: For Y = p(X ) we have µt = G p(Xt) > 0 on {p(Xt) = 0}
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I For each p ∈P, either G p > 0 everywhere on E ∩ {p = 0}, or
G p = 0 everywhere on E ∩ {p = 0}. Thus P = Prefl ∪Pabs,
where

Prefl = {p ∈P : G p > 0 on E ∩ {p = 0}}
Pabs = {p ∈P : G p = 0 on E ∩ {p = 0}}

I For each p ∈P we have a∇p = 0 on E ∩ {p = 0}.
I For any subset R ⊂Pabs, the gradients ∇r , r ∈ R, are linearly

independent on the set E ∩
⋂

r∈R{r = 0}.
I Each p ∈P is irreducible and changes sign, and the set

E ∩ {p = 0} is Zariski dense in {p = 0}.
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Existence: (a fairly) general case

Theorem. Suppose Assumption (∗) holds. Then for each x ∈ E there
exists an E -valued weak solution to

dXt = b(Xt)dt + σ(Xt)dWt , X0 = x .

This solution satisfies the following properties:

I for any p ∈Prefl, the set {t : p(Xt) = 0} is Lebesgue-null,
I for any p ∈Pabs, the process p(Xt) is absorbed at zero,

p(Xt) = 0 for all t ≥ inf{s ≥ 0 : p(Xs) = 0}.



Uniqueness in law
I Non-trivial without Lipschitz coefficients or uniformly elliptic G

I Consequence of (PP) property: all expectations of the form

E[p1(Xt1) · · · pm(Xtm )], pi ∈ Poln(E )

are uniquely determined by a and b.

I Do we have determinacy of the moment problem?

I First answer: Not always! The log-normal distribution is
indeterminate in the sense of the moment problem.
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Uniqueness in law

Lemma. Assume exponential moments exist:

For each t ≥ 0, there is ε > 0 with E
[
eε ‖Xt‖

]
<∞.

Then all finite-dimensional distributions (Xt1 , . . . ,Xtm ), and hence the
law of X , are uniquely determined by a and b.

Theorem. Assume the quadratic part of a is bounded on E . Then
exponential moments exist.

Note: In particular, this covers

I (PP) diffusions on compact state spaces

I All affine diffusions

I Many interesting intermediate examples
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An open question
I The proof of the lemma uses the following result by Petersen (’82):

Univariate determinacy =⇒ multivariate determinacy

to deduce all finite-dimensional distributions are determinate.

I For geometric Brownian motion, the proof breaks because univariate
determinacy fails. But does multivariate determinacy fail?

I Open problem: Find a process X , not geometric Brownian motion,
such that for all 0 ≤ t1 < . . . < tm, (α1, . . . , αm) ∈ Nm

0 ,

E
[
Xα1

t1 · · ·X
αm
tm

]
= E

[
Y α1

t1 · · ·Y
αm
tm

]
,

where Y is geometric Brownian motion.

I Can X be taken continuous?
I Can X be taken Markovian?
I . . .
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a∇p = hp for some polynomial h = (h1, . . . , hd).

Theorem. Suppose p ∈Prefl, p(X0) > 0, or both. Assume one of the
following two conditions holds:

I 2G p − h>∇p > 0 on E ∩ {p = 0},
I 2G p − h>∇p = 0 on E ∩ {p = 0}.

Then p(Xt) > 0 for all t > 0.
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a∇p = hp for some polynomial h = (h1, . . . , hd).

Theorem. Suppose p ∈Prefl, p(X0) > 0, or both. Assume one of the
following two conditions holds:

I 2G p − h>∇p > 0 on E ∩ {p = 0},
I 2G p − h>∇p = 0 on E ∩ {p = 0}.

Then p(Xt) > 0 for all t > 0.

Example. BESQ(β): dXt = βdt + 2
√

XtdWt , P = {p(x) = x}
I a(x)p′(x) = 4x · 1 = 4p(x). Hence h = 4

I 2G p − hp′ = 2β − 4

I Theorem: β ≥ 2 implies non-attainment (this is tight)



Boundary attainment
Suppose Assumption (∗) holds, fix any p ∈P, and write

a∇p = hp for some polynomial h = (h1, . . . , hd).

Theorem. Suppose p ∈Prefl, p(X0) > 0, or both. Assume one of the
following two conditions holds:

I 2G p − h>∇p > 0 on E ∩ {p = 0},
I 2G p − h>∇p = 0 on E ∩ {p = 0}.

Then p(Xt) > 0 for all t > 0.

Theorem. Suppose x∗ ∈ E ∩ {p = 0} satisfies

2G p(x∗)− h(x∗)>∇p(x∗) < 0.

Then p(Xt) hits zero with positive probability, if X0 is sufficiently near x∗.



Examples



Example 1
G p > 0 does not mean inward-pointing drift

I Consider the bivariate process (U,V ) on R× R+ with dynamics

dUt = dW1t U0 ∈ R

dVt = α dt + 2
√

VtdW2t V0 ∈ R+

I Set (X ,Y ) = (U,V − U2) on E = {(x , y) ∈ R2 : x2 + y ≥ 0}:

dXt = dW1t

dYt = (α− 1)dt − 2XtdW1t + 2
√

X 2
t + Yt dW2t

I For 0 < α < 1, the drift of (X ,Y ) points out of E :

b(x , y) =

(
0

α− 1

)
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Example 1
G p > 0 does not mean inward-pointing drift

𝑏 = − 0
1 − 

 

This happens for non-convex state spaces
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I Let β ∈ Rd , B ∈ Rd×d , α ∈ Sd
+. The SDE

dXt = (β + BXt)dt +
√

1− ‖Xt‖2 α1/2 dWt

has unique solution if max{β>x + x>Bx : ‖x‖2 = 1} < 0
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I But richer diffusion dynamics is possible:
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}
I Then, with c ∈ C ,

a(x) = (1− ‖x‖2)α + c(x) b(x) = β + Bx

works, if max{β>x + x>Bx + 1
2 Tr(c(x)) : ‖x‖2 = 1} < 0



Example 2
The closed unit ball E = {x : 1− ‖x‖2 ≥ 0}

I Let β ∈ Rd , B ∈ Rd×d , α ∈ Sd
+. The SDE

dXt = (β + BXt)dt +
√

1− ‖Xt‖2 α1/2 dWt

has unique solution if max{β>x + x>Bx : ‖x‖2 = 1} < 0
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C =

{
c : Rd → Sd

+ :
cij is hom. poly. of degree 2 for all i , j
c(0) = 0, c(x)x = 0 for all x ∈ Rd

}
I Then, with c ∈ C ,

a(x) = (1− ‖x‖2)α + c(x) b(x) = β + Bx

works, if max{β>x + x>Bx + 1
2 Tr(c(x)) : ‖x‖2 = 1} < 0

I This is exhaustive among (PP) diffusions on E reflected at ∂E



Example 2
Examples of maps c ∈ C

I Let S1, . . . ,Sm be a basis for Skew(d), the space of d × d
skew-symmetric matrices (m = d(d−1)

2 ).

I Then, for any γkl ∈ R+,

c(x) =
∑
k≤l

γkl (Sk + Sl) x x>(Sk + Sl)
>

defines an element of C .

I This gives a large class of factor processes with nontrivial correlation
and compact state space
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2 ).
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Example 2’
Variations:

I The exterior of the unit ball: E = {x : 1− ‖x‖2≤ 0}

I Other quadratic (non-parabolic) sets: E = {x : 1− x>Hx ≥≤ 0},

where
H = Diag(±1, . . . ,±1)

Conclusions



Moment asymptotics



Moments of (PP) diffusions
Recall the scalar case:

dXt = (β + bXt)dt +
√
α + aXt + AX 2

t dWt

Drift of (1,Xt ,X 2
t , . . . ,X n

t ):



0 β 2α
2 0 . . . 0

0 b 2
(
β + a

2

)
3 · 2α

2 0
...

0 0 2
(
b + A

2

)
3
(
β0 + 2 a

2

) . . . 0

0 0 0 3
(
b + 3A

2

) . . . n(n − 1)α2
... 0

. . . n
(
β + (n − 1) a

2

)
0 0 n

(
b + (n − 1)A

2

)



>

1

Xt

X 2
t

X 3
t

...

Xn
t


dt

Note: Moment asymptotics as t →∞ depends on diagonal entries

Goal: Look for something similar in the general case



Moments of (PP) diffusions
I Derive dynamics of (1,Xt ,Xt ⊗ Xt ,X⊗3

t , · · · ,X⊗m
t ) in⊕

n≥0

(Rd)⊗n



Moments of (PP) diffusions
I Derive dynamics of (1,Xt ,Xt ⊗ Xt ,X⊗3

t , · · · ,X⊗m
t ) in⊕

n≥0

(Rd)⊗n

I Think of Xt ⊗ Xt as

Xt X>t =


X 2

1t X1tX2t · · · X1tXdt

X2tX1t X 2
2t

...
. . .

XdtX1t X 2
dt


I Think of X⊗3

t as a 3-dimensional array with entries XitXjtXkt

I Etc.
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=
∑

k1,...,km+n

xk1 ⊗ · · · ⊗ xkm+n

where the sum runs over all shuffles of (i1, . . . , im) and (j1, . . . , jn)
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t , · · · ,X⊗m
t ) in⊕
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I Consider the shuffle product ш:

(xi1 ⊗ · · · ⊗ xim )︸ ︷︷ ︸
∈ (Rd )⊗m

ш (xj1 ⊗ · · · ⊗ xjn )︸ ︷︷ ︸
∈ (Rd )⊗n

=
∑

k1,...,km+n

xk1 ⊗ · · · ⊗ xkm+n

where the sum runs over all shuffles of (i1, . . . , im) and (j1, . . . , jn)

I Example:

(x ⊗ y) ш (u ⊗ v) = x ⊗ y ⊗ u ⊗ v + x ⊗ u ⊗ y ⊗ v
+ x ⊗ u ⊗ v ⊗ y + u ⊗ x ⊗ y ⊗ v
+ u ⊗ x ⊗ v ⊗ y + u ⊗ v ⊗ x ⊗ y



Moments of (PP) diffusions

Lemma (formal Itô product rule) For n ≥ 2,

d(X⊗n
t ) = X⊗(n−1)

t ш dXt + X⊗(n−2)
t ш (dXt)⊗2

In our case:

I dXt = b(Xt)dt + σ(Xt)dWt , (dXt)⊗2 = a(Xt)

I Drift b(x) = β + Bx , where

β ∈ Rd , B : Rd → Rd (linear)

I Diffusion a(x) = α + A(x) + ℵ(x , x), where

α ∈ (Rd)⊗2, A : Rd → (Rd)⊗2, ℵ : (Rd)⊗2 → (Rd)⊗2

(A and ℵ linear)
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(A and ℵ linear)



Moments of (PP) diffusions

Lemma (formal Itô product rule) For n ≥ 2,

d(X⊗n
t ) = X⊗(n−1)

t ш dXt + X⊗(n−2)
t ш (dXt)⊗2

In our case:

I dXt = b(Xt)dt + σ(Xt)dWt , (dXt)⊗2 = a(Xt)

I Drift b(x) = β + Bx , where

β ∈ Rd , B : Rd → Rd (linear)

I Diffusion a(x) = α + A(x) + ℵ(x , x), where

α ∈ (Rd)⊗2, A : Rd → (Rd)⊗2, ℵ : (Rd)⊗2 → (Rd)⊗2

(A and ℵ linear)
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X⊗m
t


dt + (martingale)

where φn : (Rd )⊗(n−2) −→ (Rd )⊗n

ψn : (Rd )⊗(n−1) −→ (Rd )⊗n

πn : (Rd )⊗n −→ (Rd )⊗n

are linear maps given by

φn(x1 ⊗ · · · ⊗ xn−2) = (x1 ⊗ · · · ⊗ xn−2) ш α

ψn(x1 ⊗ · · · ⊗ xn−1) = (x1 ⊗ · · · ⊗ xn−2) ш A(xn−1) + (x1 ⊗ · · · ⊗ xn−1) ш β

πn(x1 ⊗ · · · ⊗ xn) = (x1 ⊗ · · · ⊗ xn−2) ш ℵ(xn−1, xn) + (x1 ⊗ · · · ⊗ xn−1) ш Bxn



This gives:
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

1

Xt

X⊗2
t

...

X⊗m
t


dt + (martingale)

I Taking expectations yields linear ODE for (1,E[Xt ], . . . ,E[X⊗n
t ])

I Convergence of moments as t →∞ depends on eigenvalues of πn:

πn(x1 ⊗ · · · ⊗ xn) = x1 ⊗ · · · ⊗ xn−1 ш Bxn

+ x1 ⊗ · · · ⊗ xn−2 ш ℵ(xn−1, xn),

which depend only on B and ℵ.

I Affine case: all moments converge ⇐⇒ Re(σ(B)) ⊂ (−∞, 0)



Conclusion
Summary:

I Polynomial term structure models provide a flexible, yet tractable
framework for term structure modeling

I Existence and uniqueness of (PP) diffusions on a large class of state
spaces

I Boundary attainment

I Moment asymptotics

I The semialgebraic structure of the state spaces connects the study
of (PP) processes to real algebraic geometry

I Connections to the classical moment problem

Going forward:

I Uniqueness in full generality

I Transition densities? Further large time properties? Jumps?

I Further applications: Equities, commodities, . . .
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Thank You!


