Polynomial Preserving Diffusions and Models of the Term Structure

Martin Larsson
Swiss Finance Institute @ Ecole Polytechnique Fédérale de Lausanne (based on joint work with Damir Filipović and Anders Trolle)

Finance and Insurance Mathematics Seminar, ETH Zürich 20 March 2014

- Polynomial term structure models
- Polynomial preserving diffusions
- Existence
- Uniqueness
- Boundary attainment
- Examples
- Moment asymptotics

Polynomial term structure models

Term structure of interest rates

- $P(t, T)=$ time t price of zero-coupon bond maturing at $T \geq t$
- Yields are defined by: $P(t, T)=e^{-(T-t) \operatorname{yield}(t, T)}$

Term structure of interest rates

- $P(t, T)=$ time t price of zero-coupon bond maturing at $T \geq t$
- Yields are defined by: $P(t, T)=e^{-(T-t) \text { yield }(t, T)}$
- The term structure of interest rates (or yield curve) at time t :

$$
\tau \mapsto \operatorname{yield}(t, t+\tau)
$$

Term structure of interest rates

- $P(t, T)=$ time t price of zero-coupon bond maturing at $T \geq t$
- Yields are defined by: $P(t, T)=e^{-(T-t) \text { yield }(t, T)}$
- The term structure of interest rates (or yield curve) at time t :

$$
\tau \mapsto \operatorname{yield}(t, t+\tau)
$$

State price density models

- Filtered probability space $\left(\Omega, \mathscr{F}, \mathscr{F}_{t}, \mathbb{P}\right)$
- State price density: positive process ζ_{t}
- Model price of claim C_{T} maturing at T :

$$
\text { price at } t=\frac{1}{\zeta_{t}} \mathbb{E}\left[\zeta_{T} C_{T} \mid \mathscr{F}_{t}\right]
$$

State price density models

- Filtered probability space $\left(\Omega, \mathscr{F}, \mathscr{F}_{t}, \mathbb{P}\right)$
- State price density: positive process ζ_{t}
- Model price of claim C_{T} maturing at T :

$$
\text { price at } t=\frac{1}{\zeta_{t}} \mathbb{E}\left[\zeta_{T} C_{T} \mid \mathscr{F}_{t}\right]
$$

Note:

- Arbitrage-free price system is guaranteed (NUPBR)
- $\frac{\zeta_{t}}{\zeta_{0}}=e^{-\int_{0}^{t} r_{s} \mathrm{~d} s} \times\left.\frac{\mathrm{d} \mathbb{Q}}{\mathrm{dP}}\right|_{\mathscr{F}_{t}}$
- Model is under $\mathbb{P}:$ Time series properties, risk management
- Risk-free zero-coupon bond: $P(t, T)=\frac{1}{\zeta_{t}} \mathbb{E}\left[\zeta_{T} \mid \mathscr{F}_{t}\right]$

State price density models

- Filtered probability space $\left(\Omega, \mathscr{F}, \mathscr{F}_{t}, \mathbb{P}\right)$
- State price density: positive process ζ_{t}
- Model price of claim C_{T} maturing at T :

$$
\text { price at } t=\frac{1}{\zeta_{t}} \mathbb{E}\left[\zeta_{T} C_{T} \mid \mathscr{F}_{t}\right]
$$

Previous literature:

- Constantinides (92)
- Flesaker \& Hughston (96)
- Rogers (97)
- Carr, Gabaix \& Wu (10)
- etc.

State price density models

Factor model:

- X_{t} multivariate factor process
- Postulate $\zeta_{t}=f\left(t, X_{t}\right)$ for some function $f(t, x)$
- Bond prices:

$$
P(t, T)=\frac{\mathbb{E}\left[f\left(T, X_{T}\right) \mid \mathscr{F}_{t}\right]}{f\left(t, X_{t}\right)}
$$

State price density models

Factor model:

- X_{t} multivariate factor process
- Postulate $\zeta_{t}=f\left(t, X_{t}\right)$ for some function $f(t, x)$
- Bond prices:

$$
P(t, T)=\frac{\mathbb{E}\left[f\left(T, X_{T}\right) \mid \mathscr{F}_{t}\right]}{f\left(t, X_{t}\right)}
$$

- Need $f(t, x)$ and X so that $\mathbb{E}\left[f\left(T, X_{T}\right) \mid \mathscr{F}_{t}\right]$ is easy to compute

Polynomial preserving processes

Polynomial-preserving factor process

- Time-homogeneous Markov semimartingale X, state space $E \subset \mathbb{R}^{d}$
- Transition semigroup $T_{t} f(x)=\mathbb{E}_{x}\left[f\left(X_{t}\right)\right]$

Polynomial preserving processes

Polynomial-preserving factor process

- Time-homogeneous Markov semimartingale X, state space $E \subset \mathbb{R}^{d}$
- Transition semigroup $T_{t} f(x)=\mathbb{E}_{\times}\left[f\left(X_{t}\right)\right]$

Polynomials:

$$
\begin{aligned}
\operatorname{Pol}_{n}\left(\mathbb{R}^{d}\right) & =\left\{\text { polynomials on } \mathbb{R}^{d} \text { of degree } \leq n\right\} \\
\operatorname{Pol}_{n}(E) & =\left\{\left.p\right|_{E}: p \in \operatorname{Pol}_{n}\left(\mathbb{R}^{d}\right)\right\}
\end{aligned}
$$

Polynomial preserving processes

Polynomial-preserving factor process

- Time-homogeneous Markov semimartingale X, state space $E \subset \mathbb{R}^{d}$
- Transition semigroup $T_{t} f(x)=\mathbb{E}_{x}\left[f\left(X_{t}\right)\right]$

Polynomials:

$$
\begin{aligned}
\operatorname{Pol}_{n}\left(\mathbb{R}^{d}\right) & =\left\{\text { polynomials on } \mathbb{R}^{d} \text { of degree } \leq n\right\} \\
\operatorname{Pol}_{n}(E) & =\left\{\left.p\right|_{E}: p \in \operatorname{Pol}_{n}\left(\mathbb{R}^{d}\right)\right\}
\end{aligned}
$$

Definition. X is called Polynomial Preserving (PP) if

$$
T_{t} \operatorname{Pol}_{n}(E) \subset \operatorname{Pol}_{n}(E) \quad \text { for all } \quad n \in \mathbb{N}, \quad t \geq 0
$$

Polynomial preserving processes

Let \mathscr{G} be the extended generator of X : For all $f \in \operatorname{Dom}(\mathscr{G})$,

$$
f\left(X_{t}\right)-f\left(X_{0}\right)-\int_{0}^{t} \mathscr{G} f\left(X_{s}\right) \mathrm{d} s=\text { local martingale }
$$

Formally: $\mathscr{G}=\left.\frac{\mathrm{d} T_{t}}{\mathrm{~d} t}\right|_{t=0} \quad$ i.e.: $T_{t}=e^{t \mathscr{G}}$

Polynomial preserving processes

Let \mathscr{G} be the extended generator of X : For all $f \in \operatorname{Dom}(\mathscr{G})$,

$$
f\left(X_{t}\right)-f\left(X_{0}\right)-\int_{0}^{t} \mathscr{G} f\left(X_{s}\right) \mathrm{d} s=\text { local martingale }
$$

Formally: $\mathscr{G}=\left.\frac{\mathrm{d} T_{t}}{\mathrm{~d} t}\right|_{t=0} \quad$ i.e.: $T_{t}=e^{t \mathscr{G}}$

Theorem (Mazet ('97), Zhou ('03), Cuchiero et al. ('10,'11), etc.)

$$
X \text { is }(\mathrm{PP}) \quad \Longleftrightarrow \quad \mathscr{G} \operatorname{Pol}_{n}(E) \subset \operatorname{Pol}_{n}(E), \text { all } n \in \mathbb{N} .
$$

Hence: \mathscr{G} restricts to an operator $\left.\mathscr{G}\right|_{\mathrm{Pol}_{n}(E)}$ on the finite-dimensional vector space $\mathrm{Pol}_{n}(E)$

Polynomial preserving processes

Functions/operators	In coordinates	
$\left.\mathscr{G}\right\|_{\mathrm{Pol}_{\mathbf{n}}(E)}$	G	$\in \mathbb{R}^{N \times N}$
p	P	$\in \mathbb{R}^{N}$
$q:=T_{t} p=e^{t \mathscr{G}} p$	$Q=e^{t G} P$	$\in \mathbb{R}^{N}$

Polynomial preserving processes

Functions/operators	In coordinates	
$\left.\mathscr{G}\right\|_{\operatorname{Pol}_{\boldsymbol{n}}(E)}$	G	$\in \mathbb{R}^{N \times N}$
p	P	$\in \mathbb{R}^{N}$
$q:=T_{t} p=e^{t G} p$	$Q=e^{t G} P$	$\in \mathbb{R}^{N}$

Consequence:

- Finding $T_{t} p(x)=\mathbb{E}_{x}\left[p\left(X_{t}\right)\right]$, for $p \in \operatorname{Pol}_{n}(E)$, only requires computing a matrix exponential.
- This should be contrasted with solving a PDE

Polynomial preserving processes

Functions/operators	In coordinates	
$\left.\mathscr{G}\right\|_{\operatorname{Pol}_{n}(E)}$	G	$\in \mathbb{R}^{N \times N}$
p	P	$\in \mathbb{R}^{N}$
$q:=T_{t} p=e^{t \mathscr{G}} p$	$Q=e^{t G} P$	$\in \mathbb{R}^{N}$

Consequence:

- Finding $T_{t} p(x)=\mathbb{E}_{x}\left[p\left(X_{t}\right)\right]$, for $p \in \operatorname{Pol}_{n}(E)$, only requires computing a matrix exponential.
- This should be contrasted with solving a PDE

Building G from \mathscr{G} :

- C++ implementation (with Wahid Khosrawi-Sardroudi)

Polynomial preserving processes

Examples:

- Affine processes
- Pearson diffusions (Forman, Sørensen ('08)), $E \subset \mathbb{R}$:

$$
\mathrm{d} X_{t}=\left(\beta+b X_{t}\right) \mathrm{d} t+\sqrt{\alpha+a X_{t}+A X_{t}^{2}} \mathrm{~d} W_{t}
$$

Polynomial preserving processes

Examples:

- Affine processes
- Pearson diffusions (Forman, Sørensen ('08)), $E \subset \mathbb{R}$:

$$
\mathrm{d} X_{t}=\left(\beta+b X_{t}\right) \mathrm{d} t+\sqrt{\alpha+a X_{t}+A X_{t}^{2}} \mathrm{~d} W_{t}
$$

- Representation of $\left.\mathscr{G}\right|_{\text {Pol }_{\boldsymbol{n}}(\mathbb{R})}$ with respect to $1, x, x^{2}, \ldots$:

$$
G=\left(\begin{array}{cccccc}
0 & \beta & 2 \frac{\alpha}{2} & 0 & \cdots & 0 \\
0 & b & 2\left(\beta+\frac{a}{2}\right) & 3 \cdot 2 \frac{\alpha}{2} & 0 & \vdots \\
0 & 0 & 2\left(b+\frac{A}{2}\right) & 3\left(\beta_{0}+2 \frac{a}{2}\right) & \ddots & 0 \\
0 & 0 & 0 & 3\left(b+3 \frac{A}{2}\right) & \ddots & n(n-1) \frac{\alpha}{2} \\
\vdots & & 0 & \ddots & n\left(\beta+(n-1) \frac{a}{2}\right) \\
0 & & & & 0 & n\left(b+(n-1) \frac{A}{2}\right)
\end{array}\right)
$$

Polynomial term structure models

Polynomial Term Structure Model:

$$
\zeta_{t}=p\left(X_{t}\right) \text { for some positive } p \in \operatorname{Pol}_{n}(E) \text { and } X(\mathrm{PP})
$$

Polynomial term structure models

Polynomial Term Structure Model:

$$
\zeta_{t}=p\left(X_{t}\right) \text { for some positive } p \in \operatorname{Pol}_{n}(E) \text { and } X(\mathrm{PP})
$$

Bond prices are explicit rational functions:

$$
P(t, T)=\frac{1}{\zeta_{t}} \mathbb{E}\left[\zeta_{T} \mid \mathscr{F}_{t}\right]=\frac{T_{T-t} p\left(X_{t}\right)}{p\left(X_{t}\right)}
$$

Polynomial term structure models

Polynomial Term Structure Model:

$$
\zeta_{t}=p\left(X_{t}\right) \text { for some positive } p \in \operatorname{Pol}_{n}(E) \text { and } X(\mathrm{PP})
$$

Bond prices are explicit rational functions:

$$
P(t, T)=\frac{1}{\zeta_{t}} \mathbb{E}\left[\zeta_{T} \mid \mathscr{F}_{t}\right]=\frac{T_{T-t} p\left(X_{t}\right)}{p\left(X_{t}\right)}
$$

Next: Option pricing, estimation, filtering, etc.

Linear-rational term structure models (Filipović-L.-Trolle, 2013)

- Factor process and state price density:

$$
\begin{aligned}
\mathrm{d} X_{t} & =\kappa\left(\theta-X_{t}\right) \mathrm{d} t+\mathrm{d} M_{t} \\
\zeta_{t} & =e^{-\alpha t}\left(1+\psi^{\top} X_{t}\right)
\end{aligned}
$$

for some martingale $M, \kappa \in \mathbb{R}^{d \times d}, \theta \in \mathbb{R}^{d}, \alpha \in \mathbb{R}, \psi \in \mathbb{R}^{d}$

Linear-rational term structure models (Filipović-L.-Trolle, 2013)

- Factor process and state price density:

$$
\begin{aligned}
\mathrm{d} X_{t} & =\kappa\left(\theta-X_{t}\right) \mathrm{d} t+\mathrm{d} M_{t} \\
\zeta_{t} & =e^{-\alpha t}\left(1+\psi^{\top} X_{t}\right)
\end{aligned}
$$

for some martingale $M, \kappa \in \mathbb{R}^{d \times d}, \theta \in \mathbb{R}^{d}, \alpha \in \mathbb{R}, \psi \in \mathbb{R}^{d}$

- Conditional expectation of X_{t} :

$$
\mathbb{E}\left[X_{t} \mid \mathscr{F}_{t}\right]=\theta+e^{-\kappa(T-t)}\left(X_{t}-\theta\right)
$$

Linear-rational term structure models (Filipovié-L.-Trolle, 2013)

- Factor process and state price density:

$$
\begin{aligned}
\mathrm{d} X_{t} & =\kappa\left(\theta-X_{t}\right) \mathrm{d} t+\mathrm{d} M_{t} \\
\zeta_{t} & =e^{-\alpha t}\left(1+\psi^{\top} X_{t}\right)
\end{aligned}
$$

for some martingale $M, \kappa \in \mathbb{R}^{d \times d}, \theta \in \mathbb{R}^{d}, \alpha \in \mathbb{R}, \psi \in \mathbb{R}^{d}$

- Conditional expectation of X_{t} :

$$
\mathbb{E}\left[X_{t} \mid \mathscr{F}_{t}\right]=\theta+e^{-\kappa(T-t)}\left(X_{t}-\theta\right)
$$

- Linear-rational bond prices and short rate:

$$
\begin{aligned}
P(t, T) & =F\left(T-t, X_{t}\right)=e^{-\alpha(T-t)} \frac{1+\psi^{\top} X_{t}+\psi^{\top} e^{-\kappa(T-t)}\left(X_{t}-\theta\right)}{1+\psi^{\top} X_{t}} \\
r_{t} & =-\left.\partial \log P(t, T)\right|_{T=t}=\alpha-\frac{\psi^{\top} \kappa\left(\theta-X_{t}\right)}{1+\psi^{\top} X_{t}}
\end{aligned}
$$

Linear-rational term structure models (Filipovié-L.-Trolle, 2013)

Highlights:
(i) Nonnegative short rate: choose α suitably

Linear-rational term structure models (Filipović-L.-Trolle, 2013)

Highlights:

(i) Nonnegative short rate: choose α suitably
(ii) Unspanned stochastic volatility (USV):

- Empirical fact: volatility risk cannot be hedged using bonds (Collin-Dufresne \& Goldstein (02), Heidari \& Wu (03), etc.)

Linear-rational term structure models (Filipović-L.-Trolle, 2013)

Highlights:

(i) Nonnegative short rate: choose α suitably
(ii) Unspanned stochastic volatility (USV):

- Empirical fact: volatility risk cannot be hedged using bonds (Collin-Dufresne \& Goldstein (02), Heidari \& Wu (03), etc.)
- Operationalize by enforcing

$$
\lambda \mapsto F(\tau, x+\lambda u) \text { constant for certain } u \in \mathbb{R}^{d}
$$

Linear-rational term structure models (Filipovic--L.-Trolle, 2013)

Highlights:

(i) Nonnegative short rate: choose α suitably
(ii) Unspanned stochastic volatility (USV):

- Empirical fact: volatility risk cannot be hedged using bonds (Collin-Dufresne \& Goldstein (02), Heidari \& Wu (03), etc.)
- Operationalize by enforcing

$$
\lambda \mapsto F(\tau, x+\lambda u) \text { constant for certain } u \in \mathbb{R}^{d}
$$

... with bond volatilities not constant

Linear-rational term structure models (Filipović-L.-Trolle, 2013)

Highlights:

(i) Nonnegative short rate: choose α suitably
(ii) Unspanned stochastic volatility (USV):

- Empirical fact: volatility risk cannot be hedged using bonds (Collin-Dufresne \& Goldstein (02), Heidari \& Wu (03), etc.)
- Operationalize by enforcing

$$
\lambda \mapsto F(\tau, x+\lambda u) \text { constant for certain } u \in \mathbb{R}^{d}
$$

... with bond volatilities not constant
(iii) Tractable swaption pricing:

$$
\frac{1}{\zeta_{t}} \mathbb{E}\left[\zeta_{T}\left(\sum_{i=1}^{n} c_{i} P\left(T, T_{i}\right)\right)^{+} \mid \mathscr{F}_{t}\right]=\frac{1}{\zeta_{t}} \mathbb{E}\left[\text { polynomial }\left(X_{T}\right)^{+} \mid \mathscr{F}_{t}\right]
$$

Linear-rational term structure models (Filipović-L.-Trolle, 2013)

Highlights:

(i) Nonnegative short rate: choose α suitably
(ii) Unspanned stochastic volatility (USV):

- Empirical fact: volatility risk cannot be hedged using bonds (Collin-Dufresne \& Goldstein (02), Heidari \& Wu (03), etc.)
- Operationalize by enforcing

$$
\lambda \mapsto F(\tau, x+\lambda u) \text { constant for certain } u \in \mathbb{R}^{d}
$$

... with bond volatilities not constant
(iii) Tractable swaption pricing:

$$
\frac{1}{\zeta_{t}} \mathbb{E}\left[\zeta_{T}\left(\sum_{i=1}^{n} c_{i} P\left(T, T_{i}\right)\right)^{+} \mid \mathscr{F}_{t}\right]=\frac{1}{\zeta_{t}} \mathbb{E}\left[\text { polynomial }\left(X_{T}\right)^{+} \mid \mathscr{F}_{t}\right]
$$

(iv) Extensive empirical analysis, estimation using 15 years of weekly swaps and swaptions data

Polynomial preserving diffusions

Polynomial preserving diffusions

Suppose X is a diffusion: for some $b: E \rightarrow \mathbb{R}^{d}, \sigma: E \rightarrow \mathbb{R}^{d \times d}$,

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}
$$

With $a=\sigma \sigma^{\top}$, we have

$$
\mathscr{G} f=\frac{1}{2} \operatorname{Tr}\left(a \nabla^{2} f\right)+b^{\top} \nabla f
$$

Polynomial preserving diffusions

Suppose X is a diffusion: for some $b: E \rightarrow \mathbb{R}^{d}, \sigma: E \rightarrow \mathbb{R}^{d \times d}$,

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}
$$

With $a=\sigma \sigma^{\top}$, we have

$$
\mathscr{G} f=\frac{1}{2} \operatorname{Tr}\left(a \nabla^{2} f\right)+b^{\top} \nabla f
$$

Theorem (Cuchiero et al. ('12))

$$
X \text { is }(\mathrm{PP}) \quad \Longleftrightarrow \quad \begin{cases}a_{i j} \in \operatorname{Pol}_{2}(E) & i, j=1, \ldots, d \tag{*}\\ b_{i} \in \operatorname{Pol}_{1}(E) & i=1, \ldots, d\end{cases}
$$

Polynomial preserving diffusions

Suppose X is a diffusion: for some $b: E \rightarrow \mathbb{R}^{d}, \sigma: E \rightarrow \mathbb{R}^{d \times d}$,

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}
$$

With $a=\sigma \sigma^{\top}$, we have

$$
\mathscr{G} f=\frac{1}{2} \operatorname{Tr}\left(a \nabla^{2} f\right)+b^{\top} \nabla f
$$

Theorem (Cuchiero et al. ('12))

$$
X \text { is (PP) } \Longleftrightarrow \begin{cases}a_{i j} \in \operatorname{Pol}_{2}(E) & i, j=1, \ldots, d \tag{*}\\ b_{i} \in \operatorname{Pol}_{1}(E) & i=1, \ldots, d\end{cases}
$$

Question: For given E, a, b, what are the conditions under which the above SDE has a unique (in law) weak solution starting from any $x \in E$?

- Want (PP), so always assume (*) holds

Existence of (PP) diffusions

Challenges:

- Non-Lipschitz volatility, e.g. $\sigma(x)=a(x)^{1 / 2}$
- \mathscr{G} not uniformly elliptic
- State space may have complicated geometry

Existence of (PP) diffusions

Challenges:

- Non-Lipschitz volatility, e.g. $\sigma(x)=a(x)^{1 / 2}$
- \mathscr{G} not uniformly elliptic
- State space may have complicated geometry

Why care about more general state spaces?

- Boundary geometry affects factor covariation structure
- Boundary attainment (important for implementation) can be analyzed in a general setting

Existence of (PP) diffusions

Class of state spaces: Let E be a basic closed semialgebraic set:

$$
E=\left\{x \in \mathbb{R}^{d}: p(x) \geq 0 \text { for all } p \in \mathscr{P}\right\}
$$

for a finite collection $\mathscr{P} \subset \operatorname{Pol}\left(\mathbb{R}^{d}\right)$ of irreducible polynomials with non-constant sign.

Existence of (PP) diffusions

Class of state spaces: Let E be a basic closed semialgebraic set:

$$
E=\left\{x \in \mathbb{R}^{d}: p(x) \geq 0 \text { for all } p \in \mathscr{P}\right\},
$$

for a finite collection $\mathscr{P} \subset \operatorname{Pol}\left(\mathbb{R}^{d}\right)$ of irreducible polynomials with non-constant sign.

Lemma from real algebraic geometry on real principal ideals:
Assume $p \in \operatorname{Pol}\left(\mathbb{R}^{d}\right)$ is irreducible. The following are equivalent:
(i) p changes sign on \mathbb{R}^{d}
(ii) Every $q \in \operatorname{Pol}\left(\mathbb{R}^{d}\right)$ with $q=0$ on $\{p=0\}$ satisfies $q=p r$ for some $r \in \operatorname{Pol}\left(\mathbb{R}^{d}\right)$.

Existence of (PP) diffusions

Class of state spaces: Let E be a basic closed semialgebraic set:

$$
E=\left\{x \in \mathbb{R}^{d}: p(x) \geq 0 \text { for all } p \in \mathscr{P}\right\},
$$

for a finite collection $\mathscr{P} \subset \operatorname{Pol}\left(\mathbb{R}^{d}\right)$ of irreducible polynomials with non-constant sign.

Lemma (Real Nullstellensatz). Let I be the ideal generated by a family $\left\{r_{1}, \ldots, r_{m}\right\}$ of polynomials. The following are equivalent:

- The ideal I is real: for any $f_{1}, \ldots, f_{k} \in \operatorname{Pol}\left(\mathbb{R}^{d}\right)$,

$$
f_{1}^{2}+\cdots+f_{k}^{2} \in I \quad \Longrightarrow \quad f_{1}, \ldots, f_{k} \in I .
$$

- Any $f \in \operatorname{Pol}\left(\mathbb{R}^{d}\right)$ vanishing on $\bigcap_{i=1}^{m}\left\{r_{i}=0\right\}$ lies in I :

$$
f=f_{1} r_{1}+\cdots+f_{m} r_{m} \quad \text { for some } \quad f_{1}, \ldots, f_{m} \in \operatorname{Pol}\left(\mathbb{R}^{d}\right) .
$$

Existence of (PP) diffusions

Class of state spaces: Let E be a basic closed semialgebraic set:

$$
E=\left\{x \in \mathbb{R}^{d}: p(x) \geq 0 \text { for all } p \in \mathscr{P}\right\},
$$

for a finite collection $\mathscr{P} \subset \operatorname{Pol}\left(\mathbb{R}^{d}\right)$ of irreducible polynomials with non-constant sign.

Examples:

$$
\begin{array}{ll}
\mathbb{R}_{+}^{d}: & \mathscr{P}=\left\{p_{i}(x)=x_{i}, i=1, \ldots, d\right\} \\
{[0,1]^{d}:} & \mathscr{P}=\left\{p_{i}(x)=x_{i}, p_{d+i}(x)=1-x_{i}, i=1, \ldots, d\right\} \\
\text { unit ball : } & \mathscr{P}=\left\{p(x)=1-\|x\|^{2}\right\} \\
\mathbb{S}_{+}^{m}: & \mathscr{P}=\left\{p_{I}(x)=\operatorname{det} x_{I I}, I \subset\{1, \ldots, m\}\right\},
\end{array}
$$

(In the last example, $\mathbb{S}_{+}^{m} \subset \mathbb{S}^{m} \cong \mathbb{R}^{d}, d=m(m+1) / 2$.)

Existence of (PP) diffusions

Class of state spaces: Let E be a basic closed semialgebraic set:

$$
E=\left\{x \in \mathbb{R}^{d}: p(x) \geq 0 \text { for all } p \in \mathscr{P}\right\},
$$

for a finite collection $\mathscr{P} \subset \operatorname{Pol}\left(\mathbb{R}^{d}\right)$ of irreducible polynomials with non-constant sign.

Candidate coefficients: Let a, b satisfy

$$
a \in \mathbb{S}_{+}^{d} \text { on } E, \quad a_{i j} \in \operatorname{Pol}_{2}\left(\mathbb{R}^{d}\right), \quad b_{i} \in \operatorname{Pol}_{1}\left(\mathbb{R}^{d}\right)
$$

Existence of (PP) diffusions

Class of state spaces: Let E be a basic closed semialgebraic set:

$$
E=\left\{x \in \mathbb{R}^{d}: p(x) \geq 0 \text { for all } p \in \mathscr{P}\right\},
$$

for a finite collection $\mathscr{P} \subset \operatorname{Pol}\left(\mathbb{R}^{d}\right)$ of irreducible polynomials with non-constant sign.

Candidate coefficients: Let a, b satisfy

$$
a \in \mathbb{S}_{+}^{d} \text { on } E, \quad a_{i j} \in \operatorname{Pol}_{2}\left(\mathbb{R}^{d}\right), \quad b_{i} \in \operatorname{Pol}_{1}\left(\mathbb{R}^{d}\right)
$$

Question: Set $\sigma=a^{1 / 2}$ on E. For which a, b, \mathscr{P} does

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}, \quad X_{0}=x
$$

have a unique (in law) E-valued weak solution for all $x \in E$?

Existence (necessity)

Theorem. Assume for each $x \in E$ there exists an E-valued weak solution to

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}, \quad X_{0}=x
$$

Then the condition

$$
\forall p \in \mathscr{P}, \quad \mathscr{G} p \geq 0, \quad a \nabla p=0 \quad \text { on } \quad E \cap\{p=0\}
$$

necessarily holds.

Existence (necessity)

Theorem. Assume for each $x \in E$ there exists an E-valued weak solution to

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}, \quad X_{0}=x .
$$

Then the condition

$$
\forall p \in \mathscr{P}, \quad \mathscr{G} p \geq 0, \quad a \nabla p=0 \quad \text { on } \quad E \cap\{p=0\}
$$

necessarily holds.

Reason: If X is E-valued, then $p\left(X_{t}\right) \geq 0$, all $p \in \mathscr{P}$. And,

$$
p\left(X_{t}\right)=p(x)+\int_{0}^{t} \mathscr{G} p\left(X_{s}\right) \mathrm{d} s+\int_{0}^{t} \nabla p\left(X_{s}\right)^{\top} \sigma\left(X_{s}\right) \mathrm{d} W_{s}
$$

Existence (sufficiency)

Theorem. Assume

$$
\forall p \in \mathscr{P}, \quad \mathscr{G} p>0, \quad a \nabla p=0 \quad \text { on } \quad\{p=0\} .
$$

Then for each $x \in E$ there exists an E-valued weak solution to

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}, \quad X_{0}=x,
$$

Furthermore, for each $p \in \mathscr{P}$ the set $\left\{t: p\left(X_{t}\right)=0\right\}$ is almost surely Lebesgue-null.

Existence (sufficiency)

Theorem. Assume

$$
\forall p \in \mathscr{P}, \quad \mathscr{G} p>0, \quad a \nabla p=0 \quad \text { on } \quad\{p=0\} .
$$

Then for each $x \in E$ there exists an E-valued weak solution to

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}, \quad X_{0}=x,
$$

Furthermore, for each $p \in \mathscr{P}$ the set $\left\{t: p\left(X_{t}\right)=0\right\}$ is almost surely Lebesgue-null.

Note:

- X spends zero time at $\partial E \ldots$
- ... but it can nonetheless hit ∂E in general, e.g. $\operatorname{BESQ}(\beta)$:

$$
\mathrm{d} X_{t}=\beta \mathrm{d} t+2 \sqrt{X_{t}} \mathrm{~d} W_{t}, \quad 0<\beta<2
$$

Existence (sufficiency)

Key step of proof: Suppose we have a not necessarily E-valued solution X. Must prove $p(X) \geq 0$ for all $p \in \mathscr{P}$.

Existence (sufficiency)

Key step of proof: Suppose we have a not necessarily E-valued solution X. Must prove $p(X) \geq 0$ for all $p \in \mathscr{P}$.

- $a \nabla p=0$ on $\{p=0\}$ implies

$$
a \nabla p=h p \text { for some polynomial } h=\left(h_{1}, \ldots, h_{d}\right)
$$

Existence (sufficiency)

Key step of proof: Suppose we have a not necessarily E-valued solution X. Must prove $p(X) \geq 0$ for all $p \in \mathscr{P}$.

- $a \nabla p=0$ on $\{p=0\}$ implies

$$
a \nabla p=h p \text { for some polynomial } h=\left(h_{1}, \ldots, h_{d}\right)
$$

- Occupation density formula with $L_{t}^{y}:=L_{t}^{y}(p(X))$:

$$
\begin{aligned}
\int_{0}^{\infty} \frac{1}{y} L_{t}^{y} \mathrm{~d} y & =\int_{0}^{t} \mathbf{1}_{\left\{p\left(X_{s}\right)>0\right\}} \frac{\mathrm{d}\langle p(X), p(X)\rangle_{s}}{p\left(X_{s}\right)} \\
& =\int_{0}^{t} \mathbf{1}_{\left\{p\left(X_{s}\right)>0\right\}} \frac{\nabla p^{\top} a \nabla p\left(X_{s}\right)}{p\left(X_{s}\right)} \mathrm{d} s
\end{aligned}
$$

Existence (sufficiency)

Key step of proof: Suppose we have a not necessarily E-valued solution X. Must prove $p(X) \geq 0$ for all $p \in \mathscr{P}$.

- $a \nabla p=0$ on $\{p=0\}$ implies

$$
a \nabla p=h p \text { for some polynomial } h=\left(h_{1}, \ldots, h_{d}\right)
$$

- Occupation density formula with $L_{t}^{y}:=L_{t}^{y}(p(X))$:

$$
\begin{aligned}
\int_{0}^{\infty} \frac{1}{y} L_{t}^{y} \mathrm{~d} y & =\int_{0}^{t} \mathbf{1}_{\left\{p\left(X_{s}\right)>0\right\}} \frac{\mathrm{d}\langle p(X), p(X)\rangle_{s}}{p\left(X_{s}\right)} \\
& =\int_{0}^{t} \mathbf{1}_{\left\{p\left(X_{s}\right)>0\right\}} \frac{\nabla p^{\top} a \nabla p\left(X_{s}\right)}{p\left(X_{s}\right)} \mathrm{d} s \\
& =\int_{0}^{t} \mathbf{1}_{\left\{p\left(X_{s}\right)>0\right\}} \nabla p^{\top} h\left(X_{s}\right) \mathrm{d} s<\infty
\end{aligned}
$$

Existence (sufficiency)

Key step of proof: Suppose we have a not necessarily E-valued solution X. Must prove $p(X) \geq 0$ for all $p \in \mathscr{P}$.

- $a \nabla p=0$ on $\{p=0\}$ implies

$$
a \nabla p=h p \text { for some polynomial } h=\left(h_{1}, \ldots, h_{d}\right)
$$

- Occupation density formula with $L_{t}^{y}:=L_{t}^{y}(p(X))$:

$$
\begin{aligned}
\int_{0}^{\infty} \frac{1}{y} L_{t}^{y} \mathrm{~d} y & =\int_{0}^{t} \mathbf{1}_{\left\{p\left(X_{s}\right)>0\right\}} \frac{\mathrm{d}\langle p(X), p(X)\rangle_{s}}{p\left(X_{s}\right)} \\
& =\int_{0}^{t} \mathbf{1}_{\left\{p\left(X_{s}\right)>0\right\}} \frac{\nabla p^{\top} a \nabla p\left(X_{s}\right)}{p\left(X_{s}\right)} \mathrm{d} s \\
& =\int_{0}^{t} \mathbf{1}_{\left\{p\left(X_{s}\right)>0\right\}} \nabla p^{\top} h\left(X_{s}\right) \mathrm{d} s<\infty
\end{aligned}
$$

- Hence $L^{0}=0$

Existence (sufficiency)

Now apply the following lemma with $Y=p(X)$:

Lemma. Let Y be a continuous semimartingale with decomposition

$$
Y_{t}=Y_{0}+\int_{0}^{t} \mu_{s} \mathrm{~d} s+M_{t}, \quad Y_{0} \geq 0
$$

where μ is continuous. If

$$
\mu_{t}>0 \quad \text { on } \quad\left\{Y_{t}=0\right\}, \quad L^{0}(Y)=0,
$$

then $Y \geq 0$ and $\left\{t: Y_{t}=0\right\}$ is Lebesgue-null.

Note: For $Y=p(X)$ we have $\mu_{t}=\mathscr{G} p\left(X_{t}\right)>0$ on $\left\{p\left(X_{t}\right)=0\right\}$

Existence: (a fairly) general case

Goal: Relax $\mathscr{G} p>0$ on $\{p=0\}$: Allow boundary absorption

Existence: (a fairly) general case

Goal: Relax $\mathscr{G} p>0$ on $\{p=0\}$: Allow boundary absorption
Assumption (*):

- For each $p \in \mathscr{P}$, either $\mathscr{G} p>0$ everywhere on $E \cap\{p=0\}$, or $\mathscr{G} p=0$ everywhere on $E \cap\{p=0\}$. Thus $\mathscr{P}=\mathscr{P}_{\text {ref }} \cup \mathscr{P}_{\text {abs }}$, where

$$
\begin{aligned}
& \mathscr{P}_{\text {refl }}=\{p \in \mathscr{P}: \mathscr{G} p>0 \text { on } E \cap\{p=0\}\} \\
& \mathscr{P}_{\text {abs }}=\{p \in \mathscr{P}: \mathscr{G} p=0 \text { on } E \cap\{p=0\}\}
\end{aligned}
$$

- For each $p \in \mathscr{P}$ we have $a \nabla p=0$ on $E \cap\{p=0\}$.
- For any subset $\mathscr{R} \subset \mathscr{P}_{\text {abs }}$, the gradients $\nabla r, r \in \mathscr{R}$, are linearly independent on the set $E \cap \bigcap_{r \in \mathscr{R}}\{r=0\}$
- Each $p \in \mathscr{P}$ is irreducible and changes sign, and the set $E \cap\{p=0\}$ is Zariski dense in $\{p=0\}$.

Existence: (a fairly) general case

Goal: Relax $\mathscr{G} p>0$ on $\{p=0\}$: Allow boundary absorption
Assumption (*):

- For each $p \in \mathscr{P}$, either $\mathscr{G} p>0$ everywhere on $E \cap\{p=0\}$, or $\mathscr{G} p=0$ everywhere on $E \cap\{p=0\}$. Thus $\mathscr{P}=\mathscr{P}_{\text {ref }} \cup \mathscr{P}_{\text {abs }}$, where

$$
\begin{aligned}
& \mathscr{P}_{\text {refl }}=\{p \in \mathscr{P}: \mathscr{G} p>0 \text { on } E \cap\{p=0\}\} \\
& \mathscr{P}_{\text {abs }}=\{p \in \mathscr{P}: \mathscr{G} p=0 \text { on } E \cap\{p=0\}\}
\end{aligned}
$$

- For each $p \in \mathscr{P}$ we have $a \nabla p=0$ on $E \cap\{p=0\}$.
- For any subset $\mathscr{R} \subset \mathscr{P}_{\text {abs, }}$, the gradients $\nabla r, r \in \mathscr{R}$, are linearly independent on the set $E \cap \bigcap_{r \in \mathscr{R}}\{r=0\}$.
- Each $p \in \mathscr{D}$ is irreducible and changes sign, and the set $E \cap\{p=0\}$ is Zariski dense in $\{p=0\}$.

Existence: (a fairly) general case

Goal: Relax $\mathscr{G} p>0$ on $\{p=0\}$: Allow boundary absorption
Assumption (*):

- For each $p \in \mathscr{P}$, either $\mathscr{G} p>0$ everywhere on $E \cap\{p=0\}$, or $\mathscr{G} p=0$ everywhere on $E \cap\{p=0\}$. Thus $\mathscr{P}=\mathscr{P}_{\text {ref }} \cup \mathscr{P}_{\text {abs }}$, where

$$
\begin{aligned}
& \mathscr{P}_{\text {refl }}=\{p \in \mathscr{P}: \mathscr{G} p>0 \text { on } E \cap\{p=0\}\} \\
& \mathscr{P}_{\text {abs }}=\{p \in \mathscr{P}: \mathscr{G} p=0 \text { on } E \cap\{p=0\}\}
\end{aligned}
$$

- For each $p \in \mathscr{P}$ we have $a \nabla p=0$ on $E \cap\{p=0\}$.
- For any subset $\mathscr{R} \subset \mathscr{P}_{\text {abs }}$, the gradients $\nabla r, r \in \mathscr{R}$, are linearly independent on the set $E \cap \bigcap_{r \in \mathscr{R}}\{r=0\}$.
- Each $p \in \mathscr{P}$ is irreducible and changes sign, and the set $E \cap\{p=0\}$ is Zariski dense in $\{p=0\}$.

Existence: (a fairly) general case

Goal: Relax $\mathscr{G} p>0$ on $\{p=0\}$: Allow boundary absorption
Assumption (*):

- For each $p \in \mathscr{P}$, either $\mathscr{G} p>0$ everywhere on $E \cap\{p=0\}$, or $\mathscr{G} p=0$ everywhere on $E \cap\{p=0\}$. Thus $\mathscr{P}=\mathscr{P}_{\text {refl }} \cup \mathscr{P}_{\text {abs }}$, where

$$
\begin{aligned}
& \mathscr{P}_{\text {refl }}=\{p \in \mathscr{P}: \mathscr{G} p>0 \text { on } E \cap\{p=0\}\} \\
& \mathscr{P}_{\text {abs }}=\{p \in \mathscr{P}: \mathscr{G} p=0 \text { on } E \cap\{p=0\}\}
\end{aligned}
$$

- For each $p \in \mathscr{P}$ we have $a \nabla p=0$ on $E \cap\{p=0\}$.
- For any subset $\mathscr{R} \subset \mathscr{P}_{\text {abs }}$, the gradients $\nabla r, r \in \mathscr{R}$, are linearly independent on the set $E \cap \bigcap_{r \in \mathscr{R}}\{r=0\}$.
- Each $p \in \mathscr{P}$ is irreducible and changes sign, and the set $E \cap\{p=0\}$ is Zariski dense in $\{p=0\}$.

Existence: (a fairly) general case

Theorem. Suppose Assumption (*) holds. Then for each $x \in E$ there exists an E-valued weak solution to

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}, \quad X_{0}=x .
$$

This solution satisfies the following properties:

- for any $p \in \mathscr{P}_{\text {refl }}$, the set $\left\{t: p\left(X_{t}\right)=0\right\}$ is Lebesgue-null,
- for any $p \in \mathscr{P}_{\text {abs }}$, the process $p\left(X_{t}\right)$ is absorbed at zero,

$$
p\left(X_{t}\right)=0 \text { for all } t \geq \inf \left\{s \geq 0: p\left(X_{s}\right)=0\right\}
$$

Uniqueness in law

- Non-trivial without Lipschitz coefficients or uniformly elliptic \mathscr{G}

Uniqueness in law

- Non-trivial without Lipschitz coefficients or uniformly elliptic \mathscr{G}
- Consequence of (PP) property: all expectations of the form

$$
\mathbb{E}\left[p_{1}\left(X_{t_{1}}\right) \cdots p_{m}\left(X_{t_{m}}\right)\right], \quad p_{i} \in \operatorname{Pol}_{n}(E)
$$

are uniquely determined by a and b.

Uniqueness in law

- Non-trivial without Lipschitz coefficients or uniformly elliptic \mathscr{G}
- Consequence of (PP) property: all expectations of the form

$$
\mathbb{E}\left[p_{1}\left(X_{t_{1}}\right) \cdots p_{m}\left(X_{t_{m}}\right)\right], \quad p_{i} \in \operatorname{Pol}_{n}(E)
$$

are uniquely determined by a and b.

- Do we have determinacy of the moment problem?

Uniqueness in law

- Non-trivial without Lipschitz coefficients or uniformly elliptic \mathscr{G}
- Consequence of (PP) property: all expectations of the form

$$
\mathbb{E}\left[p_{1}\left(X_{t_{1}}\right) \cdots p_{m}\left(X_{t_{m}}\right)\right], \quad p_{i} \in \operatorname{Pol}_{n}(E)
$$

are uniquely determined by a and b.

- Do we have determinacy of the moment problem?
- First answer: Not always! The log-normal distribution is indeterminate in the sense of the moment problem.

Uniqueness in law

Lemma. Assume exponential moments exist:
For each $t \geq 0$, there is $\varepsilon>0$ with $\mathbb{E}\left[e^{\varepsilon\left\|X_{t}\right\|}\right]<\infty$.
Then all finite-dimensional distributions $\left(X_{t_{1}}, \ldots, X_{t_{m}}\right)$, and hence the law of X, are uniquely determined by a and b.

Uniqueness in law

Lemma. Assume exponential moments exist:
For each $t \geq 0$, there is $\varepsilon>0$ with $\mathbb{E}\left[e^{\varepsilon\left\|X_{t}\right\|}\right]<\infty$.
Then all finite-dimensional distributions $\left(X_{t_{1}}, \ldots, X_{t_{m}}\right)$, and hence the law of X, are uniquely determined by a and b.

Theorem. Assume the quadratic part of a is bounded on E. Then exponential moments exist.

Uniqueness in law

Lemma. Assume exponential moments exist:
For each $t \geq 0$, there is $\varepsilon>0$ with $\mathbb{E}\left[e^{\varepsilon\left\|X_{t}\right\|}\right]<\infty$.
Then all finite-dimensional distributions $\left(X_{t_{1}}, \ldots, X_{t_{m}}\right)$, and hence the law of X, are uniquely determined by a and b.

Theorem. Assume the quadratic part of a is bounded on E. Then exponential moments exist.

Note: In particular, this covers

- (PP) diffusions on compact state spaces
- All affine diffusions
- Many interesting intermediate examples

An open question

- The proof of the lemma uses the following result by Petersen ('82):

Univariate determinacy \Longrightarrow multivariate determinacy
to deduce all finite-dimensional distributions are determinate.

An open question

- The proof of the lemma uses the following result by Petersen ('82):

Univariate determinacy \Longrightarrow multivariate determinacy
to deduce all finite-dimensional distributions are determinate.

- For geometric Brownian motion, the proof breaks because univariate determinacy fails. But does multivariate determinacy fail?

An open question

- The proof of the lemma uses the following result by Petersen ('82):

Univariate determinacy \Longrightarrow multivariate determinacy
to deduce all finite-dimensional distributions are determinate.

- For geometric Brownian motion, the proof breaks because univariate determinacy fails. But does multivariate determinacy fail?
- Open problem: Find a process X, not geometric Brownian motion, such that for all $0 \leq t_{1}<\ldots<t_{m},\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{N}_{0}^{m}$,

$$
\mathbb{E}\left[X_{t_{1}}^{\alpha_{1}} \cdots X_{t_{m}}^{\alpha_{m}}\right]=\mathbb{E}\left[Y_{t_{1}}^{\alpha_{1}} \cdots Y_{t_{m}}^{\alpha_{m}}\right]
$$

where Y is geometric Brownian motion.

- Can X be taken continuous?
- Can X be taken Markovian?
- ...

Boundary attainment

Boundary attainment

Suppose Assumption (*) holds, fix any $p \in \mathscr{P}$, and write $a \nabla p=h p$ for some polynomial $h=\left(h_{1}, \ldots, h_{d}\right)$.

Boundary attainment

Suppose Assumption (*) holds, fix any $p \in \mathscr{P}$, and write

$$
a \nabla p=h p \text { for some polynomial } h=\left(h_{1}, \ldots, h_{d}\right) .
$$

Theorem. Suppose $p \in \mathscr{P}_{\text {reff }}, p\left(X_{0}\right)>0$, or both. Assume one of the following two conditions holds:

- $2 \mathscr{G} p-h^{\top} \nabla p>0$ on $E \cap\{p=0\}$,
- $2 \mathscr{G} p-h^{\top} \nabla p=0$ on $E \cap\{p=0\}$.

Then $p\left(X_{t}\right)>0$ for all $t>0$.

Boundary attainment

Suppose Assumption (*) holds, fix any $p \in \mathscr{P}$, and write

$$
a \nabla p=h p \text { for some polynomial } h=\left(h_{1}, \ldots, h_{d}\right) .
$$

Theorem. Suppose $p \in \mathscr{P}_{\text {reff }}, p\left(X_{0}\right)>0$, or both. Assume one of the following two conditions holds:

- $2 \mathscr{G} p-h^{\top} \nabla p>0$ on $E \cap\{p=0\}$,
- $2 \mathscr{G} p-h^{\top} \nabla p=0$ on $E \cap\{p=0\}$.

Then $p\left(X_{t}\right)>0$ for all $t>0$.

Example. $\operatorname{BESQ}(\beta): \quad \mathrm{d} X_{t}=\beta \mathrm{d} t+2 \sqrt{X_{t}} \mathrm{~d} W_{t}, \quad \mathscr{P}=\{p(x)=x\}$

- $a(x) p^{\prime}(x)=4 x \cdot 1=4 p(x)$. Hence $h=4$
- $2 \mathscr{G} p-h p^{\prime}=2 \beta-4$
- Theorem: $\beta \geq 2$ implies non-attainment (this is tight)

Boundary attainment

Suppose Assumption (*) holds, fix any $p \in \mathscr{P}$, and write

$$
a \nabla p=h p \text { for some polynomial } h=\left(h_{1}, \ldots, h_{d}\right) .
$$

Theorem. Suppose $p \in \mathscr{P}_{\text {reff }}, p\left(X_{0}\right)>0$, or both. Assume one of the following two conditions holds:

- $2 \mathscr{G} p-h^{\top} \nabla p>0$ on $E \cap\{p=0\}$,
- $2 \mathscr{G} p-h^{\top} \nabla p=0$ on $E \cap\{p=0\}$.

Then $p\left(X_{t}\right)>0$ for all $t>0$.

Theorem. Suppose $x^{*} \in E \cap\{p=0\}$ satisfies

$$
2 \mathscr{G} p\left(x^{*}\right)-h\left(x^{*}\right)^{\top} \nabla p\left(x^{*}\right)<0 .
$$

Then $p\left(X_{t}\right)$ hits zero with positive probability, if X_{0} is sufficiently near x^{*}.

Examples

Example 1

$\mathscr{G} p>0$ does not mean inward-pointing drift

Example 1

$\mathscr{G} p>0$ does not mean inward-pointing drift

- Consider the bivariate process (U, V) on $\mathbb{R} \times \mathbb{R}_{+}$with dynamics

$$
\begin{array}{ll}
\mathrm{d} U_{t}=\mathrm{d} W_{1 t} & U_{0} \in \mathbb{R} \\
\mathrm{~d} V_{t}=\alpha \mathrm{d} t+2 \sqrt{V_{t}} \mathrm{~d} W_{2 t} & V_{0} \in \mathbb{R}_{+}
\end{array}
$$

Example 1

$\mathscr{G} p>0$ does not mean inward-pointing drift

- Consider the bivariate process (U, V) on $\mathbb{R} \times \mathbb{R}_{+}$with dynamics

$$
\begin{array}{ll}
\mathrm{d} U_{t}=\mathrm{d} W_{1 t} & U_{0} \in \mathbb{R} \\
\mathrm{~d} V_{t}=\alpha \mathrm{d} t+2 \sqrt{V_{t}} \mathrm{~d} W_{2 t} & V_{0} \in \mathbb{R}_{+}
\end{array}
$$

- Set $(X, Y)=\left(U, V-U^{2}\right)$ on $E=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y \geq 0\right\}$:

$$
\begin{aligned}
& \mathrm{d} X_{t}=\mathrm{d} W_{1 t} \\
& \mathrm{~d} Y_{t}=(\alpha-1) \mathrm{d} t-2 X_{t} \mathrm{~d} W_{1 t}+2 \sqrt{X_{t}^{2}+Y_{t}} \mathrm{~d} W_{2 t}
\end{aligned}
$$

Example 1

$\mathscr{G} p>0$ does not mean inward-pointing drift

- Consider the bivariate process (U, V) on $\mathbb{R} \times \mathbb{R}_{+}$with dynamics

$$
\begin{array}{ll}
\mathrm{d} U_{t}=\mathrm{d} W_{1 t} & U_{0} \in \mathbb{R} \\
\mathrm{~d} V_{t}=\alpha \mathrm{d} t+2 \sqrt{V_{t}} \mathrm{~d} W_{2 t} & V_{0} \in \mathbb{R}_{+}
\end{array}
$$

- Set $(X, Y)=\left(U, V-U^{2}\right)$ on $E=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y \geq 0\right\}$:

$$
\begin{aligned}
& \mathrm{d} X_{t}=\mathrm{d} W_{1 t} \\
& \mathrm{~d} Y_{t}=(\alpha-1) \mathrm{d} t-2 X_{t} \mathrm{~d} W_{1 t}+2 \sqrt{X_{t}^{2}+Y_{t}} \mathrm{~d} W_{2 t}
\end{aligned}
$$

- For $0<\alpha<1$, the drift of (X, Y) points out of E :

$$
b(x, y)=\binom{0}{\alpha-1}
$$

Example 1

$\mathscr{G} p>0$ does not mean inward-pointing drift

This happens for non-convex state spaces

Example 2

The closed unit ball $E=\left\{x: 1-\|x\|^{2} \geq 0\right\}$

Example 2

The closed unit ball $E=\left\{x: 1-\|x\|^{2} \geq 0\right\}$

- Let $\beta \in \mathbb{R}^{d}, B \in \mathbb{R}^{d \times d}, \alpha \in \mathbb{S}_{+}^{d}$. The SDE

$$
\mathrm{d} X_{t}=\left(\beta+B X_{t}\right) \mathrm{d} t+\sqrt{1-\left\|X_{t}\right\|^{2}} \alpha^{1 / 2} \mathrm{~d} W_{t}
$$

has unique solution if $\max \left\{\beta^{\top} x+x^{\top} B x:\|x\|^{2}=1\right\}<0$

Example 2

The closed unit ball $E=\left\{x: 1-\|x\|^{2} \geq 0\right\}$

- Let $\beta \in \mathbb{R}^{d}, B \in \mathbb{R}^{d \times d}, \alpha \in \mathbb{S}_{+}^{d}$. The SDE

$$
\mathrm{d} X_{t}=\left(\beta+B X_{t}\right) \mathrm{d} t+\sqrt{1-\left\|X_{t}\right\|^{2}} \alpha^{1 / 2} \mathrm{~d} W_{t}
$$

has unique solution if $\max \left\{\beta^{\top} x+x^{\top} B x:\|x\|^{2}=1\right\}<0$

- But richer diffusion dynamics is possible:

Example 2

The closed unit ball $E=\left\{x: 1-\|x\|^{2} \geq 0\right\}$

- Let $\beta \in \mathbb{R}^{d}, B \in \mathbb{R}^{d \times d}, \alpha \in \mathbb{S}_{+}^{d}$. The SDE

$$
\mathrm{d} X_{t}=\left(\beta+B X_{t}\right) \mathrm{d} t+\sqrt{1-\left\|X_{t}\right\|^{2}} \alpha^{1 / 2} \mathrm{~d} W_{t}
$$

has unique solution if $\max \left\{\beta^{\top} x+x^{\top} B x:\|x\|^{2}=1\right\}<0$

- Define

$$
\mathscr{C}=\left\{c: \mathbb{R}^{d} \rightarrow \mathbb{S}_{+}^{d}: \begin{array}{l}
c_{i j} \text { is hom. poly. of degree } 2 \text { for all } i, j \\
c(0)=0, c(x) x=0 \text { for all } x \in \mathbb{R}^{d}
\end{array}\right\}
$$

Example 2

The closed unit ball $E=\left\{x: 1-\|x\|^{2} \geq 0\right\}$

- Let $\beta \in \mathbb{R}^{d}, B \in \mathbb{R}^{d \times d}, \alpha \in \mathbb{S}_{+}^{d}$. The SDE

$$
\mathrm{d} X_{t}=\left(\beta+B X_{t}\right) \mathrm{d} t+\sqrt{1-\left\|X_{t}\right\|^{2}} \alpha^{1 / 2} \mathrm{~d} W_{t}
$$

has unique solution if $\max \left\{\beta^{\top} x+x^{\top} B x:\|x\|^{2}=1\right\}<0$

- Define

$$
\mathscr{C}=\left\{c: \mathbb{R}^{d} \rightarrow \mathbb{S}_{+}^{d}: \begin{array}{l}
c_{i j} \text { is hom. poly. of degree } 2 \text { for all } i, j \\
c(0)=0, c(x) x=0 \text { for all } x \in \mathbb{R}^{d}
\end{array}\right\}
$$

- Then, with $c \in \mathscr{C}$,

$$
a(x)=\left(1-\|x\|^{2}\right) \alpha+c(x) \quad b(x)=\beta+B x
$$

works, if $\max \left\{\beta^{\top} x+x^{\top} B x+\frac{1}{2} \operatorname{Tr}(c(x)):\|x\|^{2}=1\right\}<0$

Example 2

The closed unit ball $E=\left\{x: 1-\|x\|^{2} \geq 0\right\}$

- Let $\beta \in \mathbb{R}^{d}, B \in \mathbb{R}^{d \times d}, \alpha \in \mathbb{S}_{+}^{d}$. The SDE

$$
\mathrm{d} X_{t}=\left(\beta+B X_{t}\right) \mathrm{d} t+\sqrt{1-\left\|X_{t}\right\|^{2}} \alpha^{1 / 2} \mathrm{~d} W_{t}
$$

has unique solution if $\max \left\{\beta^{\top} x+x^{\top} B x:\|x\|^{2}=1\right\}<0$

- Define

$$
\mathscr{C}=\left\{c: \mathbb{R}^{d} \rightarrow \mathbb{S}_{+}^{d}: \begin{array}{l}
c_{i j} \text { is hom. poly. of degree } 2 \text { for all } i, j \\
c(0)=0, c(x) x=0 \text { for all } x \in \mathbb{R}^{d}
\end{array}\right\}
$$

- Then, with $c \in \mathscr{C}$,

$$
a(x)=\left(1-\|x\|^{2}\right) \alpha+c(x) \quad b(x)=\beta+B x
$$

works, if $\max \left\{\beta^{\top} x+x^{\top} B x+\frac{1}{2} \operatorname{Tr}(c(x)):\|x\|^{2}=1\right\}<0$

- This is exhaustive among (PP) diffusions on E reflected at ∂E

Example 2

Examples of maps $c \in \mathscr{C}$

- Let S_{1}, \ldots, S_{m} be a basis for $\operatorname{Skew}(d)$, the space of $d \times d$ skew-symmetric matrices $\left(m=\frac{d(d-1)}{2}\right)$.
- Then, for any $\gamma_{k l} \in \mathbb{R}_{+}$,

$$
c(x)=\sum_{k \leq l} \gamma_{k l}\left(S_{k}+S_{l}\right) x x^{\top}\left(S_{k}+S_{l}\right)^{\top}
$$

defines an element of \mathscr{C}.

Example 2

Examples of maps $c \in \mathscr{C}$

- Let S_{1}, \ldots, S_{m} be a basis for $\operatorname{Skew}(d)$, the space of $d \times d$ skew-symmetric matrices $\left(m=\frac{d(d-1)}{2}\right)$.
- Then, for any $\gamma_{k l} \in \mathbb{R}_{+}$,

$$
c(x)=\sum_{k \leq 1} \gamma_{k l}\left(S_{k}+S_{l}\right) x x^{\top}\left(S_{k}+S_{l}\right)^{\top}
$$

defines an element of \mathscr{C}.

- This gives a large class of factor processes with nontrivial correlation and compact state space

Example 2'

Variations:

- The exterior of the unit ball: $E=\left\{x: 1-\|x\|^{2} \leq 0\right\}$
- Other quadratic (non-parabolic) sets: $E=\left\{x: 1-x^{\top} H x \geq 0\right\}$, where

$$
H=\operatorname{Diag}(\pm 1, \ldots, \pm 1)
$$

Moment asymptotics

Moments of (PP) diffusions

Recall the scalar case:

$$
\mathrm{d} X_{t}=\left(\beta+b X_{t}\right) \mathrm{d} t+\sqrt{\alpha+a X_{t}+A X_{t}^{2}} \mathrm{~d} W_{t}
$$

Drift of $\left(1, X_{t}, X_{t}^{2}, \ldots, X_{t}^{n}\right)$:

$$
\left(\begin{array}{cccccc}
0 & \beta & 2 \frac{\alpha}{2} & 0 & \cdots & 0 \\
0 & b & 2\left(\beta+\frac{a}{2}\right) & 3 \cdot 2 \frac{\alpha}{2} & 0 & \vdots \\
0 & 0 & 2\left(b+\frac{A}{2}\right) & 3\left(\beta_{0}+2 \frac{a}{2}\right) & \ddots & 0 \\
0 & 0 & 0 & 3\left(b+3 \frac{A}{2}\right) & \ddots & n(n-1) \frac{\alpha}{2} \\
\vdots & & & 0 & \ddots & n\left(\beta+(n-1) \frac{a}{2}\right) \\
0 & & & & 0 & n\left(b+(n-1) \frac{A}{2}\right)
\end{array}\right)^{\top}\left(\begin{array}{l}
1 \\
X_{t} \\
X_{t}^{2} \\
X_{t}^{3} \\
\vdots \\
X_{t}^{n}
\end{array}\right)
$$

Note: Moment asymptotics as $t \rightarrow \infty$ depends on diagonal entries
Goal: Look for something similar in the general case

Moments of (PP) diffusions

- Derive dynamics of $\left(1, X_{t}, X_{t} \otimes X_{t}, X_{t}^{\otimes 3}, \cdots, X_{t}^{\otimes m}\right)$ in

$$
\bigoplus_{n \geq 0}\left(\mathbb{R}^{d}\right)^{\otimes n}
$$

Moments of (PP) diffusions

- Derive dynamics of $\left(1, X_{t}, X_{t} \otimes X_{t}, X_{t}^{\otimes 3}, \cdots, X_{t}^{\otimes m}\right)$ in

$$
\bigoplus_{n \geq 0}\left(\mathbb{R}^{d}\right)^{\otimes n}
$$

- Think of $X_{t} \otimes X_{t}$ as

$$
X_{t} X_{t}^{\top}=\left(\begin{array}{cccc}
X_{1 t}^{2} & X_{1 t} X_{2 t} & \cdots & X_{1 t} X_{d t} \\
X_{2 t} X_{1 t} & X_{2 t}^{2} & & \\
\vdots & & \ddots & \\
X_{d t} X_{1 t} & & & X_{d t}^{2}
\end{array}\right)
$$

- Think of $X_{t}^{\otimes 3}$ as a 3-dimensional array with entries $X_{i t} X_{j t} X_{k t}$ - Etc.

Moments of (PP) diffusions

- Derive dynamics of $\left(1, X_{t}, X_{t} \otimes X_{t}, X_{t}^{\otimes 3}, \cdots, X_{t}^{\otimes m}\right)$ in

$$
\bigoplus_{n \geq 0}\left(\mathbb{R}^{d}\right)^{\otimes n}
$$

- Consider the shuffle product $ш$:

where the sum runs over all shuffles of $\left(i_{1}, \ldots, i_{m}\right)$ and $\left(j_{1}, \ldots, j_{n}\right)$

Moments of (PP) diffusions

- Derive dynamics of $\left(1, X_{t}, X_{t} \otimes X_{t}, X_{t}^{\otimes 3}, \cdots, X_{t}^{\otimes m}\right)$ in

$$
\bigoplus_{n \geq 0}\left(\mathbb{R}^{d}\right)^{\otimes n}
$$

- Consider the shuffle product $ш$:

where the sum runs over all shuffles of $\left(i_{1}, \ldots, i_{m}\right)$ and $\left(j_{1}, \ldots, j_{n}\right)$
- Example:

$$
\begin{aligned}
(x \otimes y) ш(u \otimes v) & =x \otimes y \otimes u \otimes v+x \otimes u \otimes y \otimes v \\
& +x \otimes u \otimes v \otimes y+u \otimes x \otimes y \otimes v \\
& +u \otimes x \otimes v \otimes y+u \otimes v \otimes x \otimes y
\end{aligned}
$$

Moments of (PP) diffusions

Lemma (formal Itô product rule) For $n \geq 2$,

$$
\mathrm{d}\left(X_{t}^{\otimes n}\right)=X_{t}^{\otimes(n-1)} ш \mathrm{~d} X_{t}+X_{t}^{\otimes(n-2)} ш\left(\mathrm{~d} X_{t}\right)^{\otimes 2}
$$

Moments of (PP) diffusions

Lemma (formal Itô product rule) For $n \geq 2$,

$$
\mathrm{d}\left(X_{t}^{\otimes n}\right)=X_{t}^{\otimes(n-1)} ш \mathrm{~d} X_{t}+X_{t}^{\otimes(n-2)} ш\left(\mathrm{~d} X_{t}\right)^{\otimes 2}
$$

In our case:

- $\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}, \quad\left(\mathrm{~d} X_{t}\right)^{\otimes 2}=a\left(X_{t}\right)$

Moments of (PP) diffusions

Lemma (formal Itô product rule) For $n \geq 2$,

$$
\mathrm{d}\left(X_{t}^{\otimes n}\right)=X_{t}^{\otimes(n-1)} ш \mathrm{~d} X_{t}+X_{t}^{\otimes(n-2)} ш\left(\mathrm{~d} X_{t}\right)^{\otimes 2}
$$

In our case:

- $\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}, \quad\left(\mathrm{~d} X_{t}\right)^{\otimes 2}=a\left(X_{t}\right)$
- Drift $b(x)=\beta+B x$, where

$$
\beta \in \mathbb{R}^{d}, \quad B: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \quad \text { (linear) }
$$

- Diffusion $a(x)=\alpha+A(x)+\aleph(x, x)$, where

$$
\alpha \in\left(\mathbb{R}^{d}\right)^{\otimes 2}, \quad A: \mathbb{R}^{d} \rightarrow\left(\mathbb{R}^{d}\right)^{\otimes 2}, \quad \aleph:\left(\mathbb{R}^{d}\right)^{\otimes 2} \rightarrow\left(\mathbb{R}^{d}\right)^{\otimes 2}
$$

(A and \aleph linear)

This gives:
$\mathrm{d}\left(\begin{array}{l}1 \\ X_{t} \\ X_{t}^{\otimes 2} \\ \vdots \\ X_{t}^{\otimes m}\end{array}\right)=\left(\begin{array}{cccccc}0 & 0 & & & \cdots & 0 \\ \psi_{1} & \pi_{1} & 0 & & & \\ \phi_{2} & \psi_{2} & \pi_{2} & 0 & & \\ 0 & \phi_{3} & \psi_{3} & \pi_{3} & & \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \phi_{m} & \psi_{m} & \pi_{m}\end{array}\right)\left(\begin{array}{l}1 \\ X_{t} \\ X_{t}^{\otimes 2} \\ \vdots \\ X_{t}^{\otimes m}\end{array}\right) \mathrm{d} t+($ martingale $)$

$$
\text { where } \begin{array}{lllll}
\phi_{n} & :\left(\mathbb{R}^{d}\right)^{\otimes(n-2)} & \longrightarrow & \left(\mathbb{R}^{d}\right)^{\otimes n} \\
\psi_{n} & :\left(\mathbb{R}^{d}\right)^{\otimes(n-1)} & & \left(\mathbb{R}^{d}\right)^{\otimes n} \\
\pi_{n} & :\left(\mathbb{R}^{d}\right)^{\otimes n} & \longrightarrow & \left(\mathbb{R}^{d}\right)^{\otimes n}
\end{array}
$$

are linear maps given by

$$
\begin{aligned}
\phi_{n}\left(x_{1} \otimes \cdots \otimes x_{n-2}\right) & =\left(x_{1} \otimes \cdots \otimes x_{n-2}\right) \text { ш } \alpha \\
\psi_{n}\left(x_{1} \otimes \cdots \otimes x_{n-1}\right) & =\left(x_{1} \otimes \cdots \otimes x_{n-2}\right) \text { ш } A\left(x_{n-1}\right)+\left(x_{1} \otimes \cdots \otimes x_{n-1}\right) \text { ш } \beta \\
\pi_{n}\left(x_{1} \otimes \cdots \otimes x_{n}\right) & =\left(x_{1} \otimes \cdots \otimes x_{n-2}\right) \text { ш }\left(x_{n-1}, x_{n}\right)+\left(x_{1} \otimes \cdots \otimes x_{n-1}\right) \text { ш } B x_{n}
\end{aligned}
$$

This gives:
$\mathrm{d}\left(\begin{array}{l}1 \\ X_{t} \\ X_{t}^{\otimes 2} \\ \vdots \\ X_{t}^{\otimes m}\end{array}\right)=\left(\begin{array}{cccccc}0 & 0 & & & \cdots & 0 \\ \psi_{1} & \pi_{1} & 0 & & & \\ \phi_{2} & \psi_{2} & \pi_{2} & 0 & & \\ 0 & \phi_{3} & \psi_{3} & \pi_{3} & & \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \phi_{m} & \psi_{m} & \pi_{m}\end{array}\right)\left(\begin{array}{l}1 \\ X_{t} \\ x_{t}^{\otimes 2} \\ \vdots \\ x_{t}^{\otimes m}\end{array}\right) \mathrm{d} t+$ (martingale)

- Taking expectations yields linear ODE for $\left(1, \mathbb{E}\left[X_{t}\right], \ldots, \mathbb{E}\left[X_{t}^{\otimes n}\right]\right)$
- Convergence of moments as $t \rightarrow \infty$ depends on eigenvalues of π_{n} :

$$
\begin{aligned}
& \pi_{n}\left(x_{1} \otimes \cdots \otimes x_{n}\right)=x_{1} \otimes \cdots \otimes x_{n-1} \text { ш } B x_{n} \\
& +x_{1} \otimes \cdots \otimes x_{n-2} ш \aleph\left(x_{n-1}, x_{n}\right),
\end{aligned}
$$

which depend only on B and \aleph.

- Affine case: all moments converge $\Longleftrightarrow \operatorname{Re}(\sigma(B)) \subset(-\infty, 0)$

Conclusion

Summary:

- Polynomial term structure models provide a flexible, yet tractable framework for term structure modeling
- Existence and uniqueness of (PP) diffusions on a large class of state spaces
- Boundary attainment
- Moment asymptotics
- The semialgebraic structure of the state spaces connects the study of (PP) processes to real algebraic geometry
- Connections to the classical moment problem

Conclusion

Summary:

- Polynomial term structure models provide a flexible, yet tractable framework for term structure modeling
- Existence and uniqueness of (PP) diffusions on a large class of state spaces
- Boundary attainment
- Moment asymptotics
- The semialgebraic structure of the state spaces connects the study of (PP) processes to real algebraic geometry
- Connections to the classical moment problem

Going forward:

- Uniqueness in full generality
- Transition densities? Further large time properties? Jumps?
- Further applications: Equities, commodities, ...

Thank You!

