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Polynomial term structure models
Polynomial preserving diffusions
» Existence

» Uniqueness
» Boundary attainment

Examples

Moment asymptotics



Polynomial term structure models
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State price density models
> Filtered probability space (9, %, .%;,P)
» State price density: positive process (;
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State price density models
> Filtered probability space (9, %, .%;,P)
» State price density: positive process (;

» Model price of claim Ct+ maturing at T:

1
price at t = C—]E[CTCT | i
t

Note:

> Arbitrage-free price system is guaranteed (NUPBR)

» & :e—f;r,ds X @
CO dP Fe

» Model is under P: Time series properties, risk management

1
> Risk-free zero-coupon bond: P(t, T) = C—E[CT | Z:]
t



State price density models
> Filtered probability space (9, %, .%;,P)
» State price density: positive process (;

» Model price of claim Ct+ maturing at T:

1
price at t = C—]E[CTCT | i
t

Previous literature:

v

Constantinides (92)
Flesaker & Hughston (96)
Rogers (97)

Carr, Gabaix & Wu (10)

> etc.
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State price density models
Factor model:
» X, multivariate factor process
> Postulate ¢; = f(t, X;) for some function f(t, x)

» Bond prices:

E[f(T,X7) | Z4]
P(t, T) =

f(t, Xe)



State price density models
Factor model:
» X, multivariate factor process
> Postulate ¢; = f(t, X;) for some function f(t, x)
» Bond prices:
E[f(T,X7) | 74

PET) = e %)

> Need f(t,x) and X so that E[f(T,Xt) | .%:] is easy to compute



Polynomial preserving processes
Polynomial-preserving factor process
» Time-homogeneous Markov semimartingale X, state space E C RY

> Transition semigroup T:f(x) = E,[f(X¢)]
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Polynomial preserving processes
Polynomial-preserving factor process
» Time-homogeneous Markov semimartingale X, state space E C RY
> Transition semigroup T¢f(x) = E,[f(X:)]
Polynomials:

Pol,(R9) = {polynomials on RY of degree < n}
Pol,(E)={ple : p€ Pol,,(Rd)}

Definition. X is called Polynomial Preserving (PP) if

T: Pol,(E) C Pol,(E) for all neN, t>0.



Polynomial preserving processes

Let ¢ be the extended generator of X: For all f € Dom(¥),

t
f(Xe) — F(Xo) —/ 4f(Xs)ds = local martingale
0
dT,
Formally: ¥ = d—tt . ie: Ty =et
t=|




Polynomial preserving processes

Let ¢ be the extended generator of X: For all f € Dom(¥),

t
f(Xe) — F(Xo) —/ 4f(Xs)ds = local martingale
0
Formally: ¥ = % . ie: Ty =et
t=|

Theorem (Mazet ('97), Zhou ('03), Cuchiero et al. ('10,'11), etc.)

X is (PP) = & Pol,(E) C Pol,(E), all n€ N.

Hence: & restricts to an operator ¢|p, () on the finite-dimensional
vector space Pol,(E)



Polynomial preserving processes

Functions/operators

In coordinates

g¢|Poln(E)
p
qi=Tep=e"p

G GRNXN
P eRVN
Q=et®P cRV



Polynomial preserving processes

Functions/operators In coordinates

g|Pol,,(E) G € RNxN

p P € RN

qg:=Tp=ep Q =ecP € RN
Consequence:

> Finding T;:p(x) = Ex[p(X¢)], for p € Pol,(E), only requires
computing a matrix exponential.

» This should be contrasted with solving a PDE



Polynomial preserving processes

Functions/operators In coordinates

g|Poln(E) G € RNxN

p P € RN

qg:=Tp=ep Q =ecP € RN
Consequence:

> Finding T;:p(x) = Ex[p(X¢)], for p € Pol,(E), only requires
computing a matrix exponential.

» This should be contrasted with solving a PDE

Building G from ¥:

> C++ implementation (with Wahid Khosrawi-Sardroudi)



Polynomial preserving processes

Examples:
> Affine processes

> Pearson diffusions (Forman, Sgrensen ('08)), E C R:

AX; = (B + bX;)dt + \/a + aX; + AX2AW,



Polynomial preserving processes

Examples:

> Affine processes

> Pearson diffusions (Forman, Sgrensen ('08)), E C R:

AX; = (B + bX;)dt + \/a + aX; + AX2AW,

> Representation of ¢|p,, ) With respect to 1, x, X2,

B
b

0

0
) 323
) 3(f+23)
3(b+3%)
0

0
0
n(n—1)%
n(B+(n—1)3
n (b+ (n— 1)3)

)
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Polynomial term structure models

Polynomial Term Structure Model:

¢t = p(X:) for some positive p € Pol,(E) and X (PP)

Bond prices are explicit rational functions:

TT—tp(Xt)

P(.T) = ZBlcr | 7 = TR

Next: Option pricing, estimation, filtering, etc.
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(e=e " (1+9"X)

for some martingale M, k € R¥*9 § e R, a € R, v € RY
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Linear-rational term structure models (Filipovie-L.-Trolle, 2013)

» Factor process and state price density:
dX; = k(0 — X;)dt + dM;
Ce=e "1+ X)
for some martingale M, k € R4, § c RY, a € R, v € RY
» Conditional expectation of X;:
E[X: | Z] =0+ e "T-9(X, - 0)
» Linear-rational bond prices and short rate:

B B 1+ ’(/JTX + wTe—m(T—t)(Xt _ 9)
_ _ _ a(T—t) t
P(t, T)=F(T—-t,X;)=¢e L oTX

YT R0 — X;)

— —Olog P(t, T)|7—e = a —
re 8Og (t7 )‘T—t « 1+1/1TXt



Linear-rational term structure models (Filipovie-L.-Trolle, 2013)
Highlights:

(i) Nonnegative short rate: choose « suitably



Linear-rational term structure models (Filipovie-L.-Trolle, 2013)
Highlights:
(i) Nonnegative short rate: choose « suitably
(i) Unspanned stochastic volatility (USV):

» Empirical fact: volatility risk cannot be hedged using bonds
(Collin-Dufresne & Goldstein (02), Heidari & Wu (03), etc.)



Linear-rational term structure models (Filipovie-L.-Trolle, 2013)
Highlights:
(i) Nonnegative short rate: choose « suitably
(i) Unspanned stochastic volatility (USV):

» Empirical fact: volatility risk cannot be hedged using bonds
(Collin-Dufresne & Goldstein (02), Heidari & Wu (03), etc.)

» Operationalize by enforcing

A = F(7,x 4 Au) constant for certain u € R



Linear-rational term structure models (Filipovie-L.-Trolle, 2013)
Highlights:
(i) Nonnegative short rate: choose « suitably
(i) Unspanned stochastic volatility (USV):

» Empirical fact: volatility risk cannot be hedged using bonds
(Collin-Dufresne & Goldstein (02), Heidari & Wu (03), etc.)

» Operationalize by enforcing
A = F(7,x 4 Au) constant for certain u € R

... with bond volatilities not constant



Linear-rational term structure models (Filipovie-L.-Trolle, 2013)
Highlights:
(i) Nonnegative short rate: choose « suitably
(i) Unspanned stochastic volatility (USV):

» Empirical fact: volatility risk cannot be hedged using bonds
(Collin-Dufresne & Goldstein (02), Heidari & Wu (03), etc.)

» Operationalize by enforcing
A = F(7,x 4 Au) constant for certain u € R
... with bond volatilities not constant

(iii) Tractable swaption pricing:

1z {CT (S0, GP(T. T)" ‘y}} _1

8 = CtE [ polynomial(X7)" | 7]



Linear-rational term structure models (Filipovie-L.-Trolle, 2013)
Highlights:
(i) Nonnegative short rate: choose « suitably
(i) Unspanned stochastic volatility (USV):

» Empirical fact: volatility risk cannot be hedged using bonds
(Collin-Dufresne & Goldstein (02), Heidari & Wu (03), etc.)

» Operationalize by enforcing
A = F(7,x 4 Au) constant for certain u € R
... with bond volatilities not constant

(iii) Tractable swaption pricing:

éE {CT (CraP(T,T)" “%} - é

(iv) Extensive empirical analysis, estimation using 15 years of weekly
swaps and swaptions data

E [ polynomial(X7)* | 7]
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Polynomial preserving diffusions

Suppose X is a diffusion: for some b: E - RY, ¢ : E — RI¥9,

With a=c0c ", we have

1
Gf =S Tr(aV?f) + b'Vf

Theorem (Cuchiero et al. ('12))

aj €Pol(E) ij=1,....d

X is (PP
s(PP) = {b,-ePoll(E) Pl

Question: For given E, a, b, what are the conditions under which the
above SDE has a unique (in law) weak solution starting from any x € E?

> Want (PP), so always assume (x) holds



Existence of (PP) diffusions

Challenges:
» Non-Lipschitz volatility, e.g. o(x) = a(x)*/2
> < not uniformly elliptic

> State space may have complicated geometry



Existence of (PP) diffusions

Challenges:
» Non-Lipschitz volatility, e.g. o(x) = a(x)*/2
> < not uniformly elliptic

> State space may have complicated geometry

Why care about more general state spaces?
» Boundary geometry affects factor covariation structure

> Boundary attainment (important for implementation) can be
analyzed in a general setting



Existence of (PP) diffusions

Class of state spaces: Let E be a basic closed semialgebraic set:
E={xeR:p(x) >0 forall pc 2},

for a finite collection &2 C Pol(R?) of irreducible polynomials with
non-constant sign.
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Existence of (PP) diffusions

Class of state spaces: Let E be a basic closed semialgebraic set:
E={xeR:p(x) >0 forall pc 2},

for a finite collection &2 C Pol(R?) of irreducible polynomials with
non-constant sign.

Lemma from real algebraic geometry on real principal ideals:

Assume p € Pol(RY) is irreducible. The following are equivalent:
(i) p changes sign on R

(i) Every g € Pol(R?) with g = 0 on {p = 0} satisfies
q = pr for some r € Pol(R9).



Existence of (PP) diffusions

Class of state spaces: Let E be a basic closed semialgebraic set:
E={xeR:p(x) >0 forall pc 2},

for a finite collection &2 C Pol(R?) of irreducible polynomials with
non-constant sign.

Lemma (Real Nullstellensatz). Let / be the ideal generated by a
family {r1, ..., rm} of polynomials. The following are equivalent:

» The ideal / is real: for any f,..., i € Pol(RY),
2+ +f2el = f,....fel.
» Any f € Pol(R?) vanishing on N7, {r; = 0} lies in /:

f=fn+---+furm forsome f,...,fn¢€ Pol(Rd).



Existence of (PP) diffusions

Class of state spaces: Let E be a basic closed semialgebraic set:
E={xeR:p(x) >0 forall pc 2},

for a finite collection &2 C Pol(R?) of irreducible polynomials with
non-constant sign.

Examples:
RY : P ={pi(x) =x,i=1,...,d}
[0,1]¢ : P ={pi(x) =xi, pa+i(x)=1—x;, i=1,...,d}
unit ball : P ={p(x)=1—|x|*}
ST P ={p)(x) =detxy, I C{1,...,m}},

(In the last example, ST C S™ 2 R9, d = m(m +1)/2.)



Existence of (PP) diffusions

Class of state spaces: Let E be a basic closed semialgebraic set:
E={xeR:p(x) >0 forall pc 2},

for a finite collection &2 C Pol(R?) of irreducible polynomials with
non-constant sign.

Candidate coefficients: Let a, b satisfy

acS%onE, aje€Polp(RY), b€ Poli(RY).



Existence of (PP) diffusions

Class of state spaces: Let E be a basic closed semialgebraic set:
E={xeR:p(x) >0 forall pc 2},

for a finite collection &2 C Pol(R?) of irreducible polynomials with
non-constant sign.

Candidate coefficients: Let a, b satisfy
acS%onE, aje€Polp(RY), b€ Poli(RY).
Question: Set o = a'/2 on E. For which a, b, & does
dX, = b(X,)dt + o(X)dW,,  Xo = x.

have a unique (in law) E-valued weak solution for all x € E?



Existence (necessity)

Theorem. Assume for each x € E there exists an E-valued weak
solution to
dXt = b(Xt)dt + O'(Xt)th, XO = X.

Then the condition
Vpe P, Yp>0, aVp=0 on ENn{p=0}

necessarily holds.



Existence (necessity)

Theorem. Assume for each x € E there exists an E-valued weak
solution to
dXt = b(Xt)dt + O'(Xt)th, XO = X.

Then the condition
Vpe P, Yp>0, aVp=0 on ENn{p=0}

necessarily holds.

Reason: If X is E-valued, then p(X;) >0, all p € 2. And,

pO) = o)+ [ 0x)ds + [ VX)X )aw,



Existence (sufficiency)

Theorem. Assume
Vpe P, Yp>0, aVp=0 on {p=0}.
Then for each x € E there exists an E-valued weak solution to
dX; = b(X;)dt + o(X;)dW, Xo = x,

Furthermore, for each p € & the set {t : p(X;) = 0} is almost surely
Lebesgue-null.



Existence (sufficiency)

Theorem. Assume
Vpe P, Yp>0, aVp=0 on {p=0}.
Then for each x € E there exists an E-valued weak solution to
dX; = b(X;)dt + o(X;)dW, Xo = x,

Furthermore, for each p € & the set {t : p(X;) = 0} is almost surely
Lebesgue-null.

Note:
» X spends zero time at JF ...
> ... but it can nonetheless hit E in general, e.g. BESQ(S):

dXt:/Bdt+2\/Xtth, 0<6<2
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X. Must prove p(X) >0 for all p € 2.

> aVp=0on {p =0} implies

aVp = hp for some polynomial h = (hy,..., hy)

» Occupation density formula with LY := LY (p(X)):
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/0 {p(Xs)>0} p(X,)
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Existence (sufficiency)

Key step of proof: Suppose we have a not necessarily E-valued solution
X. Must prove p(X) >0 for all p € 2.

> aVp=0on {p =0} implies

aVp = hp for some polynomial h = (hy,..., hy)

» Occupation density formula with LY := LY (p(X)):

> q t d(p(X), p(X))s
[ Lttty = [y M2
0 0

y p(Xs)
‘ VPTa Vp(X;)
= 1 ——— 2 ds
/0 {p(Xs)>0} p(X.)

t
N / 1(p(x)>0) VP h(Xs)ds < o0
0

» Hence L°=0



Existence (sufficiency)

Now apply the following lemma with Y = p(X):
Lemma. Let Y be a continuous semimartingale with decomposition
t
Vo= Yot [ pdst M Yoo
0

where p is continuous. If
pue >0 on {Y,=0}, L°(y)=o,

then Y >0 and {t: Y; = 0} is Lebesgue-null.

Note: For Y = p(X) we have u; = ¥p(X;) > 0 on {p(X;) =0}



Existence: (a fairly) general case

Goal: Relax ¥p > 0 on {p = 0}: Allow boundary absorption
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Assumption (x):

> For each p € &2, either ¥p > 0 everywhere on E N {p =0}, or
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Existence: (a fairly) general case

Goal: Relax ¥p > 0 on {p = 0}: Allow boundary absorption
Assumption (x):

> For each p € &2, either ¥p > 0 everywhere on E N {p =0}, or
%p =0 everywhere on EN{p =0}. Thus & = Prea U Paps,
where
P ={peEP : Y4p>00n EN{p=0}}
Poars={pe P : Y9p=00n ENn{p=0}}

> For each p € &2 we have aVp=0on EN{p =0}.

> For any subset #Z C P15, the gradients Vr, r € #Z, are linearly
independent on the set £ N (), c,{r = 0}.

» Each p € & is irreducible and changes sign, and the set
EN{p =0} is Zariski dense in {p = 0}.



Existence: (a fairly) general case

Theorem. Suppose Assumption (x) holds. Then for each x € E there
exists an E-valued weak solution to

dXt = b(Xt)dt -+ G'(Xt)th, XO = X.
This solution satisfies the following properties:

> for any p € Preq, the set {t: p(X:) = 0} is Lebesgue-null,

> for any p € P,ps, the process p(X;) is absorbed at zero,

p(Xt) =0 for all t > inf{s > 0: p(X;) = 0}.
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» Non-trivial without Lipschitz coefficients or uniformly elliptic ¢
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Uniqueness in law

» Non-trivial without Lipschitz coefficients or uniformly elliptic ¢

> Consequence of (PP) property: all expectations of the form

E[p1(Xe,) - pm(Xe,)l, - pi € Pola(E)

are uniquely determined by a and b.
» Do we have determinacy of the moment problem?

> First answer: Not always! The log-normal distribution is
indeterminate in the sense of the moment problem.



Uniqueness in law

Lemma. Assume exponential moments exist:
For each t > 0, there is € > 0 with E[eg”x'” < 0.

Then all finite-dimensional distributions (Xt,, ..., Xt,,), and hence the
law of X, are uniquely determined by a and b.
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exponential moments exist.



Uniqueness in law

Lemma. Assume exponential moments exist:
For each t > 0, there is € > 0 with E[eg”x'” < 0.

Then all finite-dimensional distributions (Xt,, ..., Xt,,), and hence the
law of X, are uniquely determined by a and b.

Theorem. Assume the quadratic part of a is bounded on E. Then
exponential moments exist.

Note: In particular, this covers
> (PP) diffusions on compact state spaces
> All affine diffusions

» Many interesting intermediate examples
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Univariate determinacy = multivariate determinacy

to deduce all finite-dimensional distributions are determinate.
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An open question

> The proof of the lemma uses the following result by Petersen ('82):
Univariate determinacy = multivariate determinacy

to deduce all finite-dimensional distributions are determinate.

» For geometric Brownian motion, the proof breaks because univariate
determinacy fails. But does multivariate determinacy fail?

» Open problem: Find a process X, not geometric Brownian motion,
such that forall 0 < t; < ... < tm, (o1,...,am) € N,
B Xer] =B v v,

where Y is geometric Brownian motion.

» Can X be taken continuous?
» Can X be taken Markovian?
> ..
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Suppose Assumption (x) holds, fix any p € &, and write

aVp = hp for some polynomial h = (hy,..., hy).

Theorem. Suppose p € Pren, p(Xo) > 0, or both. Assume one of the
following two conditions holds:

» 29p—h'Vp>0on EN{p=0}
» 29p—h'Vp=0on EN{p=0}
Then p(X:) > 0 for all t > 0.



Boundary attainment

Suppose Assumption (x) holds, fix any p € &, and write

aVp = hp for some polynomial h = (hy,..., hy).

Theorem. Suppose p € Pren, p(Xo) > 0, or both. Assume one of the
following two conditions holds:

» 29p—h'Vp>0on EN{p=0}
» 29p—h'Vp=0on EN{p=0}
Then p(X:) > 0 for all t > 0.

Example. BESQ(3):  dX; = Bdt + 2/ XedW;, 2 = {p(x) = x}
> a(x)p’(x) =4x-1=4p(x). Hence h=4
> 29p—hp' =28 —4

» Theorem: 8 > 2 implies non-attainment (this is tight)



Boundary attainment

Suppose Assumption (x) holds, fix any p € &, and write
aVp = hp for some polynomial h = (hy,..., hy).

Theorem. Suppose p € Pren, p(Xo) > 0, or both. Assume one of the
following two conditions holds:

» 29p—h'Vp>0on EN{p=0}
» 29p—h'Vp=0on EN{p=0}
Then p(X:) > 0 for all t > 0.

Theorem. Suppose x* € E N {p = 0} satisfies
29p(x*) — h(x*)TVp(x*) < 0.

Then p(X;) hits zero with positive probability, if Xg is sufficiently near x*.
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dUt - dW]_t UO c R
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Example 1

%p > 0 does not mean inward-pointing drift

> Consider the bivariate process (U, V) on R x R, with dynamics

dUt:dW]_t UOGR
AV, = adt + 21/ VedWa, Vo € R,

» Set (X,Y)=(U,V—U?)on E={(x,y) €eR%:x%2+y >0}
dXt :dW]_t
dYe = (a — 1)dt — 2X,d Wiy + 24/ X2 + Y AWy



Example 1

%p > 0 does not mean inward-pointing drift

> Consider the bivariate process (U, V) on R x R, with dynamics

dUt:dW]_t UOGR
AV, = adt + 21/ VedWa, Vo € R,

» Set (X,Y)=(U,V—U?)on E={(x,y) €eR%:x%2+y >0}
dXt :dW]_t
dYe = (a — 1)dt — 2X,d Wiy + 24/ X2 + Y AWy

> For 0 < a < 1, the drift of (X, Y) points out of E:

b(x,y) = ( 021)



Example 1

%p > 0 does not mean inward-pointing drift

This happens for non-convex state spaces
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Example 2

The closed unit ball £ = {x:1— ||x||*> > 0}
> Let 3eRY, Be R, o e S?. The SDE

dX; = (B + BXy)dt + /1 — [ X2 a2 dW,

has unique solution if max{3"x + x"Bx: ||x|? =1} <0



Example 2

The closed unit ball £ = {x:1— ||x||*> > 0}
> Let 3eRY, Be R, o e S?. The SDE

dX; = (B + BXy)dt + /1 — [ X2 a2 dW,

has unique solution if max{3"x + x"Bx: ||x|? =1} <0

» But richer diffusion dynamics is possible:

4
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The closed unit ball £ = {x:1— ||x||*> > 0}
> Let 3eRY, Be R, o e S?. The SDE

dX; = (B + BXy)dt + /1 — [ X2 a2 dW,

has unique solution if max{3"x + x"Bx: ||x|? =1} <0

» Define

_ od 4 . Gjj is hom. poly. of degree 2 for all i,
v = {C'R =8 c(0) =0, c(x)x =0 for all x € RY



Example 2
The closed unit ball £ = {x:1— ||x||*> > 0}
> Let 3eRY, Be R, o e S?. The SDE

dX; = (B + BXy)dt + /1 — [ X2 a2 dW,
has unique solution if max{3"x + x"Bx: ||x|? =1} <0

» Define

cij is hom. poly. of degree 2 for all i, }

. . Tod d.
cg{c.R — 8t c(0) =0, c(x)x = 0 for all x € R

» Then, with c € €,
a(x)=(1— x| a+c(x)  b(x)=p+Bx

works, if max{87x 4+ x"Bx + 3 Tr(c(x)) : [x|> =1} <0



Example 2

The closed unit ball £ = {x:1— ||x||*> > 0}
> Let 3eRY, Be R, o e S?. The SDE

dX; = (B + BXy)dt + /1 — [ X2 a2 dW,
has unique solution if max{3"x + x"Bx: ||x|? =1} <0

» Define

_ od 4 . Gjj is hom. poly. of degree 2 for all i,
v = {C'R =8 c(0) =0, c(x)x =0 for all x € RY
» Then, with c € €,
a(x) = (1 —|Ix|))a+c(x)  b(x)=p+Bx

works, if max{87x 4+ x"Bx + 3 Tr(c(x)) : [x|> =1} <0
> This is exhaustive among (PP) diffusions on E reflected at OF



Example 2

Examples of maps c € @
> Let Si,...,Sm be a basis for Skew(d), the space of d x d
- - _ d(d—1)
skew-symmetric matrices (m = =5—).
> Then, for any vy € R,
c(x) = Zﬁ/k/ (S +S1) XXT(Sk + S/)T

k<l

defines an element of ¥.



Example 2

Examples of maps c € @
> Let Si,...,Sm be a basis for Skew(d), the space of d x d
- - _ d(d—1)
skew-symmetric matrices (m = =5—).
> Then, for any vy € R,
c(x) = v (Sk+S)xx" (S +S)T
K<l
defines an element of %.

> This gives a large class of factor processes with nontrivial correlation
and compact state space



Example 2’
Variations:

> The exterior of the unit ball: £ = {x:1— |x|*><0}

» Other quadratic (non-parabolic) sets: £ = {x: 1 — x' Hx

where
H = Diag(+£1,...,£1)

IN IV

0},



Moment asymptotics



Moments of (PP) diffusions

Recall the scalar case:

Drift of (1, X¢, X2,..., X"):

0o B 22 0 0
0 b 2(8+3) 3-2% 0

0 0 2(b+4) 3(h+23) 0

0 0 0 3(b+33) n(n—1)2

; 0 Coon(B+(n—-1)2)
0 0 n(b+(n-1)%)

Note: Moment asymptotics as t — oo depends on diagonal entries

Goal: Look for something similar in the general case

1

Xt
Xz
X3

Xy

dt



Moments of (PP) diffusions
» Derive dynamics of (1, X, X ® Xe, X232, -+, X2™) in

@(Rd)®n
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Moments of (PP) diffusions
» Derive dynamics of (1, X, X ® Xe, X232, -+, X2™) in

@(Rd)®"

n>0

» Think of X; ® X; as

XZ XueXor o0 XueXar

XoeX1e X3
Xe X, =

thxlt th

» Think of X,_L®3 as a 3-dimensional array with entries X Xje Xt

» Etc.



Moments of (PP) diffusions
» Derive dynamics of (1, X, X ® Xe, X232, -+, X2™) in

@(Rd)®"

n>0

» Consider the shuffle product w:

(6@ ®X,) W (GO - 8X)= D Xg®: @ Xk,

ki,.oskmin

€ (rd)om € (rd)®n

where the sum runs over all shuffles of (i1,...,in) and (ji,...,Jn)



Moments of (PP) diffusions
» Derive dynamics of (1, X, X ® Xe, X232, -+, X2™) in

@(Rd)®"

n>0

» Consider the shuffle product w:

(6@ ®X,) W (GO - 8X)= D Xg®: @ Xk,

ki,--skmtn
c (Rd)@m c (Rd)@n
where the sum runs over all shuffles of (iy,...,in) and (ji, ...
» Example:

xRy)w (URV)=xQQyQ@uUAV+XQURY®V
T XQURAVRY+URXRY RV
+URXRQVROYF+URVRIXRY

Jn)



Moments of (PP) diffusions

Lemma (formal It6 product rule) For n > 2,

dxg") = XD wax, + X2 w (dX,)®?



Moments of (PP) diffusions

Lemma (formal It6 product rule) For n > 2,

dxg") = XD wax, + X2 w (dX,)®?

In our case:

> dXt = b(Xt)dt + U(Xt)th, (dXt)®2 = a(Xt)



Moments of (PP) diffusions

Lemma (formal It6 product rule) For n > 2,

dxg") = XD wax, + X2 w (dX,)®?

In our case:
> dXe = b(X)dt + o(X)dWe,  (dX)®2 = a(X,)
» Drift b(x) = 3 + Bx, where

BeRY, B:R? =R (linear)
» Diffusion a(x) = a + A(x) 4+ X(x, x), where
ac (RH)®?2 A:RY - (R)®2  R: (R - (RY)®?

(A and X linear)



This gives:

1 0 0 0 1
X 1/)1 1 0 X¢
®2 ¢2 2 w2 O ®2
al X = Xt dt + (martingale)
0 ¢3 3 73
0
®@m Q@m
Xe 0 0 ém Um Tm Xe
where bn (Rd)®("_2) — (Rd)®"
Yo ¢ (RECD — @)
T o (RT)E" — (R)®n

are linear maps given by

Gn(x1® - Oxp2)=(x1® - ®Xp_2) W
Ya(x1 Q@ @xp—1) =(x1 @ @ xp—2) W A(Xp—1) + (X1 ® - @ xp—1) W B
Tn(x1 ® - @xn) = (X1 ® - @ xp—2) W R(Xp—1,Xn) + (X1 ® - - @ xp—1) W Bxy



This gives:

1 0 0 0 1
X: Y1 om0 X
d X2 = 2 v2om2 0 X2 dt + (martingale)
0 ¢3 3 w3
. . . 0
xg&m 0 -+ 0 ¢m Um Tm xg&m

» Taking expectations yields linear ODE for (1, E[X], ..., E[X>"])

» Convergence of moments as t — oo depends on eigenvalues of 7,:

Ta(X1 ® - ®Xp) =x1 ® +++ ® Xp—1 W Bx,
+ X1 Q- @ Xp—2 W N(Xp_1, Xn),

which depend only on B and X.

> Affine case: all moments converge <= Re(c(B)) C (-0, 0)



Conclusion

Summary:

>

Polynomial term structure models provide a flexible, yet tractable
framework for term structure modeling

Existence and uniqueness of (PP) diffusions on a large class of state
spaces

Boundary attainment
Moment asymptotics

The semialgebraic structure of the state spaces connects the study
of (PP) processes to real algebraic geometry

Connections to the classical moment problem



Conclusion

Summary:

» Polynomial term structure models provide a flexible, yet tractable
framework for term structure modeling

> Existence and uniqueness of (PP) diffusions on a large class of state
spaces

» Boundary attainment
» Moment asymptotics

> The semialgebraic structure of the state spaces connects the study
of (PP) processes to real algebraic geometry

» Connections to the classical moment problem

Going forward:
» Uniqueness in full generality
> Transition densities? Further large time properties? Jumps?

» Further applications: Equities, commodities, ...



Thank Youl



