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Copulas for risk capital models  

Large insurances are expected to have “internal models” which quantify  

risk dependence and risk capital, cf. McNeil, Frey, and Embrechts (2005).  
 

Variance covariance aggregation method is a well known and robust approach  

but delivers only point estimates of the distributions 
 

Copulas (multivariate probability distribution on [0,1]N with uniform margins) 

can link simulations of individual Monte Carlo models 

fix dependence between several random variables 

do not depend on univariate distributions 

separate dependence structure from marginal distributions   

Sklar theorem (stylized): 

 

 

 
 

diversification emerges naturally at all quantiles 

 

 

 

𝐹𝑋𝑌𝑍 𝑥, 𝑦, 𝑧 = C 𝐹𝑋
 𝑥 , 𝐹𝑌

 𝑦 , 𝐹𝑍
 𝑧  
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C 𝑝, 𝑞, 𝑟       = 𝐹𝑋𝑌𝑍 𝐹𝑋
← 𝑝 , 𝐹𝑌

← 𝑞 , 𝐹𝑍
← 𝑟  
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Bivariate dependence measures 

(Pearson) correlation  𝜌  depends on margins 

usual correlation of random variables representing losses 

attainable correlations can be strictly smaller than 1 

 

Rank (Spearman) correlation 𝜌𝑆  
correlation of random variables from copula before applying marginal distributions  

does not depend on margin 

 

Conditional quantile exceedance probability (upper tail) 

 

 

 

Tail dependence coefficient (upper tail) 

 

 

 

Note:  

above measures are symmetric in copula variables 

tail dependence definitions can be extended to multiple variables  

  

 

𝑐𝑞𝑒𝑝 𝑞 = 𝑃 𝑌 ≥ 𝐹𝑌
←(𝑞)| 𝑋 ≥ 𝐹𝑋

← 𝑞  

𝜆𝑢 = lim
𝑞→1−
𝑃 𝑌 ≥ 𝐹𝑌

←(𝑞)| 𝑋 ≥ 𝐹𝑋
← 𝑞  
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Fundamental copulas 

For all copulas below: 𝑐𝑞𝑒𝑝 𝑞  is a linear function of 𝑞 
 

Comonotonicity copula M (M stands for max) 
– variables are perfectly dependent 

– Spearman correlation    𝜌𝑆  = 1 

– tail dependency coefficient   𝜆𝑀 = 1  

– counter monotonicity dependence coefficient   𝜆𝑊 = 0  
 

Independence copula P  (P stands for product) 
– variables are perfectly independent 

– Spearman correlation    𝜌𝑆  = 0 

– tail dependency coefficients   𝜆𝑀 = 0  

– counter monotonicity dependence coefficient   𝜆𝑊 = 0  
 

Counter monotonicity copula W  (only in 2D case) 
– variables are perfectly counter-dependent 

– Spearman correlation    𝜌𝑆  = −1 

– tail dependence coefficient   𝜆𝑀 = 0  

– counter monotonicity dependence coefficient  𝜆𝑊 = 1  

(W stands for a copula opposite to M) 

 

X (0,0) 

(1,1) 

Y 

X (0,0) 

(1,1) 

Y 

X (0,0) 

(1,1) 

Y 

𝜌𝑆 

𝜆𝑀 

𝜆𝑀 

𝜌𝑆 

𝜆𝑊 

𝜆𝑊 
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Review of popular copula families 

Gauss copula with correlation parameter matrix P ≻ 0: 

fast decay of the conditional quantile exceedance probabilities as q  1 

no tail dependence 
 

t copula with correlation parameter matrix P and df degrees of freedom (scalar):  

large df value (50 - ): close to Gauss copula, practically no tail dependence 

medium df value (10 – 50): only minor tail dependence 

small df value (0 – 10): 

anti-dependence, underestimation of the capital 

significant tail dependence, reduced ability  

to reproduce dependence matrices 
 

Nested Archimedean and vine copulas 

offer extreme freedom in selection of the copula structure  

(combinatorial explosion, n!/2), creating potential artifacts 

can be potentially difficult to calibrate using available  

expert judgment data 
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Desired copula properties for  
capital models in insurances 

1. Tail dependence 

2. Simple structure, no artifacts 

3. No counter monotonicity 

4. Relationship to variance covariance method 

5. Possibility to calibrate using experts judgment like tail dependence 

6. Possibility to calibrate larger “product” structures 

 

 

 

        What is the appropriate copula family? 

 

 

 
7 



© Zurich Insurance Company Ltd          All rights reserved               Janusz Milek                Talk at ETH Zurich, March 6, 2014 

Fréchet and related 2D copula families 

Suggestion of Adrian Zweig, Head of Risk Analytics regarding  

appropriate copula (2011): use mix of independence with comonotonicity 
 

Fréchet copula      Nelsen (1999) 

convex combination of M, P, and W 

 

 

– Spearman correlation     𝜌𝑆  = 𝑚 − 𝑤 

– tail dependence coefficients    𝜆𝑀 = 𝑚 

– counter monotonicity coefficients   𝜆𝑊 = 𝑤 
 

Linear Spearman copula  Hürlimann (2002) 

(P, and either M or W)  

 

 

B11 copula  Joe (1997) 

(M and P) 

 

(0,0) 

(1,1) 

Y 

𝐶𝑚,𝑤     = 𝑚𝑀 +𝑤𝑊 + 1 −𝑚 −𝑤 Π 
1 ≥ 𝑚 ≥ 0,     1 ≥ 𝑤 ≥ 0,   1 ≥ 𝑚 + 𝑤 

𝐶𝜃     =  
𝜃𝑀 + 1 − 𝜃 Π        if  𝜃 ≥ 0
𝜃 𝑊 + 1 − 𝜃 Π   if  𝜃 < 0

 

 𝐶𝜃     = 𝜃𝑀 + 1 − 𝜃 Π         for  𝜃 ≥ 0 

X 
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Bivariate B11 Copula 

Property 1: conditional quantile exceedance  
probability functions are linear:  

 
𝑃 X2 ≤ 𝑞|X1 ≤ 𝑞 = 𝜃 + 1 − 𝜃 𝑞 

 

𝑃 X2 ≥ 𝑞|X1 ≥ 𝑞 = 𝜃 + 1 − 𝜃 1 − 𝑞 . 

 
Property 2: Tail dependence and Spearman’s 𝜌𝑆  
coefficients are equal to 𝜃: 𝜆𝑙 = 𝜆𝑢 = 𝜌𝑆 = 𝜃. 
 
 
 
Property 3: With probability  𝜃   𝑋1 =  𝑋2 (use of 𝐌 copula), otherwise 𝑋1 and 𝑋2 are 
independent  (use of 𝚷 copula), hence  𝑃 𝑋1 = 𝑋2  = 𝜃. 
 
 

The bivariate B11 copula family is a convex combination 
(with mixing parameter 𝜃 ∈ [0 − 1]) of bivariate fundamental copulas 𝐌 and 𝚷 
 
𝐶𝜃 𝑥1, 𝑥2 = 𝜃𝐌 𝑥1, 𝑥2 + 1 − 𝜃 Π 𝑥1, 𝑥2 = 𝜃min 𝑥1, 𝑥2 + 1 − 𝜃 𝑥1𝑥2  
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1 1 1 M 
1 1 2 MP 
1 2 1 MP 
1 2 2 MP 
1 2 3 P 

3D example: 

1 1 1 1 
1 1 1 2 
1 1 2 1 
1 1 2 2 
1 1 2 3 
1 2 1 1 
1 2 1 2 
1 2 1 3 
1 2 2 1 
1 2 2 2 
1 2 2 3 
1 2 3 1 
1 2 3 2 
1 2 3 3 
1 2 3 4 

The multivariate B11 copula is defined as convex combination 
of canonical copulas  
(extension of fundamental copulas 𝐌 and 𝚷 to multiple dimensions) 

B11 Canonical Factor Decomposition 
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4D example: 
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B11 Canonical Copulas in 3D 

Factors and densities 

 

 

 

 

 

 

 

Distribution plots 

 

 

 

 

 

Tail dependence (= Spearman correlation) 

partitioning x
1
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Λ111 =
1 1 1
1 1 1
1 1 1

,  Λ112=
1 1 0
1 1 0
0 0 1

,  Λ121 =
1 0 1
0 1 0
1 0 1

,   Λ122 =
1 0 0
0 1 1
0 1 1

,  Λ123 =
1 0 0
0 1 0
0 0 1

.   
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Multivariate B11 Copula (1) 

Related family (MLS) first proposed by Hürlimann (2002) 
 

Multivariate B11 copula is a convex combination 

𝐶 𝑥1, … , 𝑥𝑛 =   𝜇𝑐𝑐𝐶𝑐𝑐 𝑥1, … , 𝑥𝑛𝑐𝑐∈𝐶𝐶 , where  𝜇𝑐𝑐≥ 0 and   𝜇𝑐𝑐𝑐𝑐∈𝐶𝐶 = 1 
 

The family is closed under convex combination 
 

Conditional quantile exceedance probabilities, bivariate and multivariate tail 

dependence coefficients, and Spearman correlation 𝜌𝑆  of a convex combination 

𝐶𝜇 = 𝜇1𝐶1 + …+ 𝜇𝑠𝐶𝑠 of copulas 𝐶1…  𝐶𝑠, denoted 𝑓(𝐶𝜇), can be also calculated as  

  𝑓 𝐶𝜇 = 𝜇1𝑓(𝐶1) + …+ 𝜇𝑠𝑓(𝐶𝑠 ) 
 

Consequently , tail dependence matrix of a copula is a convex combination of 

matrices of canonical copulas:   

  Λ2,3 = 𝜇111Λ111+𝜇112Λ112 + 𝜇121Λ121 + 𝜇122Λ122 + 𝜇123Λ123    = 

 
1 𝜇111 + 𝜇112 𝜇111 + 𝜇121

𝜇111 + 𝜇112 1 𝜇111 + 𝜇122
𝜇111 + 𝜇121 𝜇111 + 𝜇122 1
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Example of Canonical Parameterization 

Rewritten as     

There exists a convex set of realizations of the above matrix, including 

 

 

 

 
 

 

 

 

 

 

Any realization of the above matrix must have 휀 coefficient (full dependency of all 3 variables) 
in the range [0.1 – 0.4] 

Let us find a realization for 

13 

In 3 dimensions the bivariate tail dependence matrix is 

α 
1 0 0
0 1 0
0 0 1

+ 𝛽 
1 1 0
1 1 0
0 0 1

+  γ 
1 0 1
0 1 0
1 0 1

+ 𝛿
1 0 0
0 1 1
0 1 1

+ 휀
1 1 1
1 1 1
1 1 1

   

Λ = 𝜌𝑆 =

1 𝛽 + 휀 𝛾 + 휀
𝛽 + 휀 1 𝛿 + 휀
𝛾 + 휀 𝛿 + 휀 1

 Λ = 𝜌𝑆 =
1 0.4 0.4
0.4 1 0.4
0.4 0.4 1

 

α = 0.6, 𝛽 = 𝛾 = 𝛿 = 0, 휀 = 0.4      α = 𝛽 = 𝛾 = 𝛿 = 휀 = 0.2        α = 0, 𝛽 = 𝛾 = 𝛿 = 0.3, 휀 = 0.1 
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Multivariate B11 Copula (2) 

Note: 

canonical parameterization is unique  

decomposition of tail dependence matrix is  

usually not unique or may not even exist 

 

 

 

Number of canonical copulas (set partitioning ways)  

grows as (Bell, 1934) Bell number 𝐵𝑛: 

 

 

 

Note that Bell polynomials appear in Hofert (2012) 
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𝑛 𝐵𝑛  

1 1 
2 2 
3 5 
4 15 
5 52 
6 203 
7 877 
8 4’140 
9 21’147 

10 115’975 
11 678’570 
12 4’213’597 
13 27’644’437 
14 190’899’322 
15 1’382’958’545 
… … 

100 4.76 x 10^115 
1000 2.99 x 10^1927 
4000 4.84 x 10 ^9706 

𝐵𝑛 =
1

𝑒
 
𝑘𝑛

𝑘!

∞

𝑘=0

 



© Zurich Insurance Company Ltd          All rights reserved               Janusz Milek                Talk at ETH Zurich, March 6, 2014 15 

all identical if  

Equivalence of Variance Covariance (VC) and copula aggregations  

is of interest for risk capital modeling (also beyond normal distributions)  
 

Consider tri-variate B11 copula with weights 𝜇1𝑗𝑘and tail dependence matrix P 

 
 

Aggregate of normal marginal distributions via multivariate B11 copula is mixture 

of normal distributions with density function as follows; cf. Hürlimann (2002) 

 
 

matrices contain only 0 or 1  

𝑓𝐵11 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑥 =  
𝜇123𝑓1 ∗ 𝑓2 ∗ 𝑓3 𝑥 +  
𝜇112 𝑓1⨁𝑓2 ∗ 𝑓3 𝑥 + 
𝜇121(𝑓1⨁𝑓3) ∗ 𝑓2 𝑥 + 
𝜇122(𝑓2⨁𝑓3) ∗ 𝑓1 𝑥 + 
𝜇111𝑓1⨁𝑓2⨁𝑓3 𝑥 = 

𝜇123𝐺𝑎𝑢𝑠𝑠𝑃𝐷𝐹(0, 𝜎1, 𝜎2, 𝜎3 Λ123 𝜎1, 𝜎2, 𝜎3
𝑇 1 2 , 𝑥) + 

𝜇112𝐺𝑎𝑢𝑠𝑠𝑃𝐷𝐹(0, 𝜎1, 𝜎2, 𝜎3 Λ112 𝜎1, 𝜎2, 𝜎3
𝑇 1 2 , 𝑥) +  

𝜇121𝐺𝑎𝑢𝑠𝑠𝑃𝐷𝐹(0, 𝜎1, 𝜎2, 𝜎3 Λ121 𝜎1, 𝜎2, 𝜎3
𝑇 1 2 , 𝑥) +  

𝜇122𝐺𝑎𝑢𝑠𝑠𝑃𝐷𝐹(0, 𝜎1, 𝜎2, 𝜎3 Λ122 𝜎1, 𝜎2, 𝜎3
𝑇 1 2 , 𝑥) +  

𝜇111𝐺𝑎𝑢𝑠𝑠𝑃𝐷𝐹(0, 𝜎1, 𝜎2, 𝜎3 Λ111 𝜎1, 𝜎2, 𝜎3
𝑇 1 2 , 𝑥)  

𝑃 = 𝜇123Λ123 + 𝜇112Λ112 + 𝜇121Λ121 + 𝜇122Λ122 + 𝜇111Λ111 

𝜎𝑇𝑃𝜎 = 𝜇123𝜎
𝑇Λ123𝜎 + 𝜇112𝜎

𝑇Λ112𝜎 + 𝜇121𝜎
𝑇Λ121𝜎 + 𝜇122𝜎

𝑇Λ122𝜎 + 𝜇111𝜎
𝑇Λ111𝜎 

𝜎𝑇𝑃𝜎 ≡ 𝜎𝑇Λ1𝑗𝑘𝜎 

Λ1𝑗𝑘 

⨁ quantile addition 
pdf convolution ∗ 

Variance Covariance Equivalence (1) 
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Variance Covariance Equivalence (2) 
For example, VC and B11 aggregations, with P expressed as a convex combination  
of canonical copulas in B11, are equivalent for normal marginal distributions if  

the canonical copulas having non-zero weights are identical up to one or more 

permutations of variables 

random variables involved in this permutation(s) have the same standard deviations 

 
 
 
 
 
 
 
 
 
 
In general, the set of equivalence forms algebraic variety 
 
Example provided by Markus Engeli, Zurich Insurance Company:  

 

𝑃 =
1 𝑎 1 − 𝑎
𝑎 1 0
1 − 𝑎 0 1

 𝜎2 = 𝜎3, 𝜎1 arbitrary 

𝑃 =

1 1/2
1/2 1

1/2 1/2
1/2 1/2

1/2 1/2
1/2 1/2

1 1/2
1/2 1

 
𝜎1 =  𝜎2 = 𝜎3 = 𝜎4 

𝑃 =

1 1
1 1

𝑎 0
𝑎 0

𝑎 𝑎
0 0

1 1 − 𝑎
1 − 𝑎 1

 𝜎1, 𝜎2, 𝜎3 arbitrary, 𝜎4= 𝜎1+ 𝜎2 
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Also Capital Relevant: 
Multi-variate Tail Dependence 

Following De Luca and Rivieccio (2012), up to a permutation of variables, 
multivariate lower tail dependence of k-1 copula variables with respect to k-th 
variable can be defined as 

Note that this coefficient can be estimated from empirical samples and is 
symmetric with respect to all k variables. Therefore it is possible to refer to this 
coefficient as to joint multivariate tail dependence and denote it 
 
Properties: 

1. Direct extension of 2D case 

2. Linearity 

3. Measure for canonical copulas  

– 0 for 𝜫 and 𝑾 

– 1 for 𝑴 

4. From 1 & 2 follows for B11 and Frechet families: the measure is the sum of 

coefficients of involved M copulas in the canonical decomposition 

5.  l can be evaluated directly from (i) sample and (ii) copula function 

𝜆𝑙1..𝑘−1|𝑘 = lim𝑞→0+
𝑃(max (𝐹1(𝑋1), … , 𝐹𝑘−1(𝑋𝑘−1)) ≤ 𝑞 |𝐹𝑘(𝑋𝑘) ≤ 𝑞) =  lim

𝑞→0+

𝐶 (𝑞, … , 𝑞)

𝑞
 

𝝀𝒍𝟏..𝒌 

𝜆 𝛼𝐶1 + 1 − 𝛼 𝐶2 = 𝛼𝜆 𝐶1) + 1 − 𝛼 𝜆(𝐶2  

17 
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Attainability of Bivariate and Multivariate Tail 
Dependence for Canonical Parameterization 

Theorem 

(Attainability of tail dependence) 

All attainable k-variate tail dependence arrays of an n-variate B11 copula form a 

convex set  (generated by the k-variate tail dependence arrays                   of B11 

canonical copulas) 
 

Example for k=n=3, orange colour represents 1: 

 

 

 
 

 

Example constrained ( 𝜇 ≥ 0,    𝜇 = 1) linear / quadratic optimization problems 

 

 
 

minimum can always be found 

exact match is not always possible 

find min
𝜇
Λ2,𝑛 𝜇 − Λ2 ∞ 

Λ𝐵11
𝑘,𝑛
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find min
𝜇
Λ2,𝑛 𝜇 − Λ2 𝐹

2
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Multivariate Tail Dependence  
Conditions for B11 Copula (1) 

CC l12 l13 l23 l123 all 

m111 1 1 1 1 1 

m112 1 0 0 0 1 

m121 0 1 0 0 1 

m122 0 0 1 0 1 

m123 0 0 0 0 1 

CC l12 l13 l23 l123 all 

m111 0 0 0 1 0 

m112 1 0 0 -1 0 

m121 0 1 0 -1 0 

m122 0 0 1 -1 0 

m123 -1 -1 -1 2 1 

𝜇𝑇𝐴 = 𝜆𝑇 
𝜆𝑇 = 𝜆12,  𝜆13 ,  𝜆23 ,  𝜆123 , 1  
 𝜇𝑖𝑗𝑘 = 1  

𝐴−𝑇𝜆 = 𝜇 
𝜇 = 𝜇111,  𝜇112 , … , 𝜇123

𝑇 
𝜇𝑖𝑗𝑘 ≥ 0  
 
𝐴−𝑇𝜆 ≥ 0 

𝐴 𝐴−𝑇 

Each canonical copula except P influences one or more  

tail dependence coefficients, as reflected in matrix A 

19 
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Theorem  

(necessary and sufficient conditions for realization of multivariate tail dependence) 

 

With the contribution matrix 𝑨 (as defined previously) the complete vector of 

multivariate tail dependence coefficients, l, can be realized if all entries of the vector 

𝑨−𝑻𝝀 are non-negative. 

 
 
Remarks  

Number of conditions is equal to the corresponding Bell number 

Conditions can be treated as sufficient conditions for any copula 

(general sufficient and necessary conditions are not known) 

Multivariate Tail Dependence  
Conditions for B11 Copula (2) 

20 
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Example: Tail Dependence of B11 
Copula in 3D and 4D 

𝜆123 ≥ 0       
𝜆12 ≥ 𝜆123 
𝜆13 ≥ 𝜆123 
𝜆23 ≥ 𝜆123 

1 + 2 𝜆123 ≥ 𝜆12+ 𝜆13+ 𝜆23 

𝜆1234 ≥ 0           
𝜆123 ≥ 𝜆1234 
𝜆124 ≥ 𝜆1234 
𝜆134 ≥ 𝜆1234 
𝜆234 ≥ 𝜆1234 
𝜆12−34 ≥ 0 
𝜆13−24 ≥ 0 
𝜆14−23 ≥ 0 

𝜆12 -𝜆123 −𝜆124 +𝜆1234 − 𝜆12−34 ≥ 0 
𝜆13 -𝜆123 −𝜆134 +𝜆1234 − 𝜆13−24 ≥ 0 
𝜆23 -𝜆123 −𝜆234 +𝜆1234 − 𝜆14−23 ≥ 0 
𝜆14 -𝜆124 −𝜆134 +𝜆1234 − 𝜆14−23 ≥ 0 
𝜆24 -𝜆124 −𝜆234 +𝜆1234 − 𝜆13−24 ≥ 0 
𝜆34 -𝜆124 −𝜆234 +𝜆1234 − 𝜆12−34 ≥ 0 
𝜆34 -𝜆124 −𝜆234 +𝜆1234 − 𝜆12−34 ≥ 0 
2 𝜆ijk +  𝜆ij−kl ≥  𝜆ij+3𝜆1234 

Coefficients like 𝜆124 and 𝜆1234 denote multivariate tail dependence 
 

Coefficients like 𝜆12−34 denote multi-factor tail dependence 

coefficients, specific to canonical copulas like cc1122  

(common factor for variables 1 & 2 and other one for 3 & 4)  

and can be treated as free variables restricted to [0-1] range 
 

Conditions of this type can be generated automatically for  

arbitrary copula order using a Computer Algebra System 

 

 

 

 

 

 

Selection of  

in 3D case leads to Joe’s condition  Joe (1997) 

𝜆123 = min (𝜆12, 𝜆12, 𝜆23) 
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Bivariate Tail Dependence Benchmark 

nxn

n





















1

10

01

,

















B11 copula realizes ,n  

for any n>2  and   1/(n-1) 
 

Examples: 

n = 3 and  =1/2 

– Joe’s condition becomes sharp 

– PSD condition becomes sharp 

– also t-copula can realize it  

Nikoloulopoulos et al. (2008) 
 

n = 4 and  =1/3 

– t-copula can no longer realize it 

– Archimedean copulas can no longer realize it, Hofert (2012,2013) 

– B11 realizes it! 
 

n = 4 and  = 1/2 

– PSD and Joe’s conditions satisfied 

– no decomposition as a convex sum of Bell factors 

– conjecture: this dependency cannot be realized by any copula 

 

Λ 1
𝑛−1,  𝑛

 

Λ1
2
,  3

 

Λ1
3,  4

 

Λ1
2,  4
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Sparse Parameterization 

23 

Idea: limiting the number of parameters by imposing  
particular structures, while retaining flexibility  
(parsimonious modeling principle), Hürlimann (2012) 
 

The sparse parameterization is defined as follows: 
 

1. there are m independent random factors 𝑓1, … , 𝑓𝑚, 
uniformly distributed on [0-1] 
 

2. the copula is a convex combination of S sparse sub-
copulas, each with probability 𝑝𝑠, 𝑠 = 1…𝑆 
 

3. each 𝑥𝑗 variable, 𝑗 = 1…𝑁, within a single sparse sub-
copula copula 𝑠 is generated from 𝑖-th factor with 
probability 𝑝𝑖𝑗

𝑠  (Bernoulli mixtures) 

 

Parameters: 𝑝 = {𝑝𝑠 , 𝑝𝑖𝑗
𝑠 }  

(sub copula mixture weights and factor usage probabilities) 

Bivariate tail dependence matrix: 

 

Λ2,𝑛 𝑝 =  𝑝𝑠  𝑝𝑖𝑘
𝑠 𝑝𝑖𝑙
𝑠

𝑚

𝑖=1

1 − 𝛿𝑘𝑙
𝐾𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑟 + 𝛿𝑘𝑙

𝐾𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑟

𝑆

𝑠=1
𝑘𝑙

 𝑝𝑖𝑗
𝑆  

𝑝𝑖𝑗
1  

𝑝1 

𝑝𝑆 
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Nonlinear Optimization Tasks 

Optimization tasks with respect to parameters 𝑝 = {𝑝𝑠, 𝑝𝑖𝑗
𝑠 }  

 

Matching bivariate tail dependence: 

min
𝑝
Λ2,𝑛 𝑝 − Λ2 𝐹

2
  

 

Matching bivariate and fixing trivariate average tail dependence:  

min
𝑝
   Λ2,𝑛 𝑝 − Λ2 𝐹

2
    and    𝜆𝑚𝑖𝑛 3𝐷 ≤ 𝜆𝑎𝑣𝑔 3𝐷≤    𝜆𝑚𝑎𝑥 3𝐷  

where 𝜆𝑎𝑣𝑔 3𝐷 =   
1

𝑛(𝑛 − 1)(𝑛 − 2)
   1− 𝛿𝑗𝑘𝑙

𝐾𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑟  𝑝𝑠 𝑝𝑖𝑗
𝑠 𝑝𝑖𝑘
𝑠 𝑝𝑖𝑙
𝑠

𝑚

𝑖=1

𝑆

𝑠=1

𝑛

𝑙=1

𝑛

𝑘=1

𝑛

𝑗=1

 

Matching bivariate and tri-variate tail dependence: 

min
𝑝
𝛼 Λ2,𝑛 𝑝 − Λ2 𝐹

2
+ (1 − 𝛼) Λ3,𝑛 𝑝 − Λ3 𝐹

2
 

 

In addition: ability to fix particular coefficient(s) 

 

Non-convex optimization, local minima, slow convergence possible 

Implementation in S+/R using NuOpt/RNuOpt, Mathematical Systems Inc. (2008)  
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Kronecker Structure:  
Circular Convolution 

Practical need – risk model for several units and lines of business  
 
Parameterization of tail dependence as a “product” of dependencies  
for unit location (geography) and line of business 
 
 

𝑥𝑖 and 𝑦𝑗 are generated from Fréchet copulas 

circular convolution ∶  𝑥𝑖 ∗ 𝑦𝑗  denotes           𝑥𝑖 + 𝑦𝑗             if 𝑥𝑖 + 𝑦𝑗 < 1 and  

                                                𝑥𝑖 + 𝑦𝑗 − 1    otherwise 

 

 

 
 

 
Note:  

for 𝑥𝑖 and 𝑦𝑗  generated from multivariate Gauss distribution and circular 

time series convolution the scheme delivers product of correlations 

 

 
 

 

x+y 

x+y-1 1 

pdf(xy) 
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Kronecker Structure: 
Tail Dependence Product Scheme (1) 

l   

l  b 

l  b 

l   

l  b 

Note that 𝑥 ∗ 𝑦𝑘 and  𝑥 ∗ 𝑦𝑙 are independent if 𝑦𝑘 and 𝑦𝑙 are independent 

and identical if 𝑦𝑘 are 𝑦𝑙 comonotone 

l can mean dependence or anti-dependence coefficient 

 

l  b 

l   

l  b 

x
1 

x
2 

y
1 

y
2 
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Kronecker Structure: 
Tail Dependence Product Scheme (2) 
Theorem 
(Kronecker convolution of two independent multivariate B11 copulas) 
 
Let from 𝑥 = 𝑥1, … , 𝑥𝑞 and 𝑦 = 𝑦1, … , 𝑦𝑟 be random variates from two independent 
multivariate B11 copulas.  
 
Then  
 
1. the Kronecker convolution of these copulas, 𝑥 ∗ 𝑦 , forms a multivariate 𝑞 ×  𝑟 B11 

copula 
 

2. the k-variate tail dependence array of 𝑥 ∗ 𝑦  is a Kronecker product of tail 
dependence arrays of x and y: 

 
 
 

 

The proof utilizes canonical decomposition and realizations from individual canonical 
copulas meeting each other in 𝑥𝑖 ∗ 𝑦𝑗. 

Λ𝑥∗𝑦𝑘, 𝑞 × 𝑟 = Λ
𝑥
𝑘, 𝑞  ⨂    Λ𝑦𝑘,𝑟 
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Conclusions 

Strengths of multivariate B11 copula 

Simple bivariate dependence structure, governed by a single parameter 

Tail dependence coefficient = Spearman correlation coefficient 

Linearity of the conditional quantile exceedance probability 

Parsimony (no artifacts) 

Observed ability to reproduce results of the variance-covariance  

method at multiple quantiles 

Insight into the higher order tail dependence structures  

Richness of realized bivariate tail dependence structures 

  Ability to fit bivariate and multivariate tail dependence structures 
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Necessary condition for bivariate dependence coefficients from Joe (1997) 
that must be satisfied by bivariate tail dependence coefficient matrix 
Λ =   𝜆𝑖𝑗  (must hold for all triples): 
 
 
 
 
 
 

 
The condition is 

more restrictive than positive semi-definiteness 
for more than 3 dimensions: necessary but not sufficient 

 

Joe Necessary Condition for Bivariate 
Tail Dependence Coefficients 

        max 0, 𝜆𝑖𝑗 + 𝜆𝑗𝑘−1       ≤       𝜆𝑖𝑘      ≤    1 −  𝜆𝑖𝑗+𝜆𝑗𝑘   , 𝑖 < 𝑗 < 𝑘 
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