Asymmetric Information and Inventory Concerns in Over-the-Counter Markets

Julien Cujean U of Maryland (Smith) jcujean@rhsmith.umd.edu Rémy Praz Copenhagen Business School rpr.fi@cbs.dk

ETH Zurich 6 November 2014

Over-the-counter (OTC) markets

- Decentralized trading
- Trade details negotiated in bilateral meetings
- Trading risks: timing, quantity, price

How does information about the trading needs of your counterparties affect an OTC market?

- Costs of trading
- Market participation
- Allocative efficiency and welfare

Regulators introduce post-trade transparency

TRACE, Dodd-Frank Act, MiFID II

Benefits: Better valuation of asset

Bessembinder, Maxwell, and Venkataraman (2006) Goldstein, Hotchkiss, and Sirri (2007) Edwards, Harris, and Piwowar (2007)

Costs: Reduced liquidity provision

LOBBYING MATERIAL BY SIFMA, surveys DUFFIE (2012) ASQUITH, COVERT, AND PATHAK (2013)

Reduced liquidity provision?

Transparency affects

- ► allocative efficiency (↗)
- ► inventory costs (>)
- ► dispersion of transaction prices (>)
- market participation (ambiguous and fragile)
- welfare (ambiguous and fragile)

OTC markets

DUFFIE, GÂRLEANU, AND PEDERSEN (2005, 2007) LAGOS AND ROCHETEAU (2007, 2009)

OTC markets and asymmetric information

BLOUIN AND SERRANO (2001) DUFFIE AND MANSO (2007), DUFFIE, MALAMUD, AND MANSO (2009, 2010, 2014)

Inventories

Ho and Stoll (1980, 1981) Grossman and Miller (1988) Naik, Neuberger, and Viswanathan (1999)

Formalism

DIAMOND (1982) Huang, Malhamé, and Caines (2006), Lasry and Lions (2007) Model

Market equilibrium

Market participation

- 1. Risk-free rate r > 0
- 2. Risky asset paying dividends at the rate

 $\mathrm{d} D_d = m_d \, \mathrm{d} t + \sigma_d \, \mathrm{d} B_t$

- Continuum of CARA agents
- Endowment at the rate

$$\mathrm{d}\eta_t^a = Z_t^a \,\mathrm{d}D_t$$

Time-varying exposures

$$\mathrm{d}Z_t^a = \sigma_a \,\mathrm{d}B_t^a$$

see LO, MAMAYSKY, AND WANG (2004)

Risky asset traded on an illiquid over-the-counter (OTC) market

- Entry costs κ
- Expected search time is $\frac{1}{\Lambda \cdot (\# \text{ market participants})}$
- Bargaining over the transaction details

see Duffie, Gârleanu, and Pedersen (2005, 2007)

(i) a asks b for a quote.(ii) If b finds it optimal

b receives a signal

$$s_a = X z_a + (1 - X)\zeta,$$

with $X \sim B(1, \tau)$, $\zeta \sim \mu$

- b quotes a price p
- ► a chooses a quantity q

au is the transparency of the market

(i) a asks b for a quote.(ii) If b finds it optimal

b receives a signal

$$s_a = X z_a + (1 - X)\zeta,$$

with $X \sim B(1, \tau)$, $\zeta \sim \mu$

- b quotes a price p
- ► a chooses a quantity q

 τ is the transparency of the market

Preferences

Investors maximize expected CARA utility from consumption

$$V_{t} \stackrel{\Delta}{=} \sup_{(c_{s})_{s>t}} \mathsf{E}_{t} \left[-\int_{t}^{\infty} e^{-\rho (s-t)} e^{-\gamma c_{s}} \, \mathrm{d}s \right]$$

Budget constraint

$$\mathrm{d}\boldsymbol{w}_t = \boldsymbol{r} \; \boldsymbol{w}_t \; \mathrm{d}\boldsymbol{t} - \boldsymbol{c}_t \; \mathrm{d}\boldsymbol{t} + \mathrm{d}\boldsymbol{\eta}_t^{\boldsymbol{a}} + \boldsymbol{\theta}_t \; \mathrm{d}\boldsymbol{D}_t - \boldsymbol{P}_d \; \mathrm{d}\boldsymbol{\theta}_t$$

Transversality condition

$$\lim_{T\to\infty}\mathsf{E}\left[e^{-r\gamma\tilde{w}_{T}}\right]=0$$

Risk-aversion focused on dividend risk

 BIAIS (1993), DUFFIE, GÂRLEANU, AND PEDERSEN (2007), VAYANOS AND WEILL (2008), GÂRLEANU (2009)

$$\blacktriangleright \ \gamma \to \mathbf{0}, \, \sigma_a = \frac{1}{\sqrt{\gamma}} \bar{\sigma}_a$$

Skiadas (2008, 2013a, 2013b)
 Hugonnier, Pelgrin, and St-Amour (2012)

- Risk-aversion focused on dividend risk
- BIAIS (1993), DUFFIE, GÂRLEANU, AND PEDERSEN (2007), VAYANOS AND WEILL (2008), GÂRLEANU (2009)

$$\blacktriangleright \ \gamma \to \mathbf{0}, \, \sigma_a = \frac{1}{\sqrt{\gamma}} \bar{\sigma}_a$$

SKIADAS (2008, 2013A, 2013B)
 HUGONNIER, PELGRIN, AND ST-AMOUR (2012)

Timeline

Entry Decision

- ▶ initial exposures
- ► entry costs κ

- Trading
- Endowment shocks

Model

Market equilibrium

Market participation

Take as given the investors in the market

$$\begin{split} \rho V(w,z) &= \sup_{\tilde{c}} \left\{ U(\tilde{c}_{s}) - V_{w}(w,z)\tilde{c} \right\} \\ &+ V_{w}(w,z) \left(rw + zm_{d} \right) \\ &+ \frac{1}{2} \left(V_{ww}(w,z) z^{2} \sigma^{2} + V_{zz}(w,z) \sigma_{z}^{2} \right) \\ &+ \lambda \, \mathbb{E}^{\mathcal{L}(\boldsymbol{z}_{q},\boldsymbol{s}_{z})} \left[\mathbf{1}_{\left\{ \boldsymbol{z}_{q} \in \boldsymbol{A} \right\}} \left(\begin{array}{c} \sup_{\tilde{q}} V\left(w - \tilde{q}\boldsymbol{P}\left(\boldsymbol{z}_{q},\boldsymbol{s}_{z}\right), \boldsymbol{z} + \tilde{q} \right) \\ &- V\left(w, z\right) \end{array} \right) \right] \\ &+ \lambda \left[\begin{array}{c} \mathbb{E}^{\mathcal{L}(\boldsymbol{z}_{a},\boldsymbol{s}_{a})} \left[\sup_{\tilde{p}} \mathbb{E}^{\mathcal{L}(\boldsymbol{z}_{a},\boldsymbol{s}_{a})} \left[V\left(w + \boldsymbol{Q}\left(\boldsymbol{z}_{a}, \tilde{p}\right) \tilde{p}, \boldsymbol{z} - \boldsymbol{Q}\left(\boldsymbol{z}_{a}, \tilde{p}\right) \right) \right] \right] \\ &- V\left(w, z\right) \end{split} \right]$$

$$\begin{aligned} \mathrm{d}z_t &= \sigma_z \; \mathrm{d}B_t \\ &+ \begin{pmatrix} X_{r,t} & \boldsymbol{Q}(z_{t-},\boldsymbol{P}(z_q,z_{t-})) \\ + (1-X_{r,t}) & \boldsymbol{Q}(z_{t-},\boldsymbol{P}(z_q,\zeta)) \end{pmatrix} \; \mathrm{d}N_t^r \\ &+ \begin{pmatrix} X_{q,t} & -\boldsymbol{Q}(z_{t-},\boldsymbol{P}(z_{t-},z_r)) \\ + (1-X_{q,t}) & -\boldsymbol{Q}(z_{t-},\boldsymbol{P}(z_{t-},\zeta)) \end{pmatrix} \; \mathrm{d}N_t^q, \end{aligned}$$

Market Equilibrium

Proposition

There exists an equilibrium for which the value functions has the form

$$V(t, w, z) = -\exp\left(-r\gamma\left(v_0(t) + v_1z + v_2z^2\right)\right).$$

The distribution of types is characterized by

$$\hat{\mu}_{t}(\boldsymbol{w}) + \left(1 + \frac{\frac{1}{2}\sigma_{z}^{2}}{2\lambda}\boldsymbol{w}^{2}\right)\hat{\mu}(\boldsymbol{w}) = \begin{pmatrix} \frac{\tau}{2} & e^{i\frac{2}{3}(1-\tau)\mathcal{M}\boldsymbol{w}_{\hat{\pi}}}\left(\frac{1}{3}\boldsymbol{w}\right)\hat{\pi}\left(\frac{2}{3}\boldsymbol{w}\right) \\ + \frac{1-\tau}{2} & e^{i\frac{2}{3}(1-\tau)\mathcal{M}\boldsymbol{w}_{\hat{\pi}}}\left(\frac{1}{3}\boldsymbol{w}\right)\hat{\pi}\left(\frac{2}{3}\boldsymbol{w}\right) \\ \frac{\tau}{2} & e^{-i\frac{2}{3}(1-\tau)\mathcal{M}\boldsymbol{w}_{\hat{\pi}}}\left(\frac{2}{3}\boldsymbol{w}\right)\hat{\pi}\left(\left(1-\frac{2}{3}\boldsymbol{t}\right)\boldsymbol{w}\right) \\ + \frac{1-\tau}{2} & e^{-i\frac{2}{3}(1-\tau)\mathcal{M}\boldsymbol{w}_{\hat{\pi}}}\left(\frac{2}{3}\boldsymbol{w}\right)\hat{\pi}\left(\boldsymbol{w}\right)\hat{\pi}\left(-\frac{2}{3}\boldsymbol{w}\right) \end{pmatrix} \end{pmatrix}$$

- Exponential convergence at rate $\frac{4}{9}\lambda(1+\tau^2)$
- Steady-state variance of exposures

$$\operatorname{Var}\left[\tilde{z}_{\infty}\right] = \frac{\sigma_a^2}{\frac{4}{9}\lambda(1+\tau^2)}$$

Market equilibrium

Transparency Makes Inventories Costly

Corollary

When the transparency increases,

- Trades become smaller
- Cross-sectional dispersion of prices increases

Model

Market equilibrium

Market participation

Endogenous market participation

Net benefits to joining the OTC market

$$\beta(z) = a(z - E[\tilde{z}_0])^2 + b \operatorname{Var}[\tilde{z}_0] + c \sigma_a^2 - \kappa$$

$$\sup_{\substack{\text{sec} \\ \text{sec} \\ \text{sec}$$

	(,		
nticipated risk-sharing	c is \nearrow in λ	\nearrow in $ au$	entrants are complements

A

Liquidation Intermediati

Rational market participation

 $\mathcal{E} = \{$ investors who enter the OTC market $\}$

Solution Methods

- 1. Homogeneous initial exposure
- 2. Cases for which most investors enter the market
- 3. Numerics

Rational market participation

 $\mathcal{E} = \{$ investors who enter the OTC market $\}$

Solution Methods

- 1. Homogeneous initial exposure
- 2. Cases for which most investors enter the market
- 3. Numerics

Market Participation: Method 1

Homogeneous initial exposure

Proposition

If $Var[\tilde{z}_0] = 0$

- No participation is an equilibrium
- Full participation is an equilibrium if $\beta(1) \geq \kappa$
- ▶ Partial participation is an equilibrium if $\beta(p) = \kappa$, $p \in (0, 1)$

Participation weakly decreasing in transparency. Ambiguous effect on welfare. Solution available when there is full participation

Most investors enter the market

Proposition

Around the full participation case, when σ_a is large enough,

- two equilibrium paths for $\tau > \tau_{\rm full}$
- $\blacktriangleright\,$ market participation and welfare can $\searrow\,$ in τ
- discontinuous participation drop when $\tau < \tau_{\text{full}}$
- Ambiguous effect of transparency on market participation, trading delays, welfare
- Economy is fragile in the transparency τ

Numerical solution: Assume strong enough complementarity

Equilibrium is Fragile

Empirical Evidence

ASQUITH, COVERT, AND PATHAK (2013) document bond trading volumes being reduced by up to 40% after post-trade transparency was introduced.

According to our model, this drop in trading volume was accompanied by a drop in welfare.

Policy Recommendation

Subsidizing liquidity provision eliminates the low participation equilibria.

- Trading is more costly in a transparent market but less trading in equilibrium
- Market participation ambiguous and fragile in transparency
- Welfare ambiguous and fragile in transparency

Thank you!

Notation	Parameter	Value
r	interest rate	0.01
σ	volatility of dividends	1
σ_a	volatility of exposure	0.52
Λ	scaling of matching function	1
γ	risk-aversion	1