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• We aim to widen the bridge to cover cleanly the case when
there are multiple financial assets, any of which may
potentially lose all value relative to the others.

• To do this we shift away from having a pre-determined
numéraire to a more symmetrical point of view where all
assets have equal priority.
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Our own motivation

• Popular model in FX:

S1,2(t) = S1,2(0) +

∫ t

0

(
aS1,2(u)2 + bS1,2(u) + c

)
dW (u)

“Quadratic normal volatility” (stopped when hitting zero)

• Calibration usually yields strict local martingale dynamics.

• Let’s assume a complete market and zero interest rate.

• Superreplication cost of S1,2(T ) is strictly smaller than S1,2(0)
(if we price according to risk-neutral expectations)

• This yields issues with put-call parity, which is a market
convention.

• Possible ways out:
• Use a different model.
• Change the concept of pricing operator.
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New pricing operators

• Lewis: “add correction term” to risk-neutral expectation when
pricing calls.

• Madan & Yor: Exchange expectations and limits.

• Cox & Hobson: Restrict class of admissible strategies.

• Carr & Fisher & Ruf:
• Note that a change of numéraire via strict local martingale

S1,2 yields non-equivalent measure.
• Then consider the minimal superreplication cost under both

measures (the original one and the new one).
• Yields an explicit formula for the correction term.

Issues:

• Correction term seems non-symmetric in currencies.

• What to do in an incomplete market??

• What to do with more than two currencies??
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• Note that a change of numéraire via strict local martingale

S1,2 yields non-equivalent measure.
• Then consider the minimal superreplication cost under both

measures (the original one and the new one).
• Yields an explicit formula for the correction term.

Issues:

• Correction term seems non-symmetric in currencies.

• What to do in an incomplete market??

• What to do with more than two currencies??



Setup FTAPs Disaggregation Summary

New pricing operators

• Lewis: “add correction term” to risk-neutral expectation when
pricing calls.

• Madan & Yor: Exchange expectations and limits.

• Cox & Hobson: Restrict class of admissible strategies.

• Carr & Fisher & Ruf:
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• Herdegen & Schweizer (2015)
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• Tehranchi (2014): Non-existence of numéraire

• Kardaras (2014): Exchange options

• Carr & Fisher & Ruf (2014)

• Schönbucher’s survival measure (credit risk)

• Yan (1998): Basket numéraire

• Delbaen & Schachermayer (199x): FTAP, changes of
numéraires, ...

• . . .
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• Delbaen & Schachermayer (199x): FTAP, changes of
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Outline

1. Underlying objects: scenarios, price proceses, ...

2. Valuation operator: maps future random (scenario-dependent)
payoffs to present deterministic prices

3. Notions of arbitrage

4. Bringing everything together: Fundamental Theorems of
Asset Pricing

5. Aggregation and disaggregation in different currencies

Warning: Work in progress ...
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Relative prices are modelled by an exchange matrix

• d : number of currencies

• si ,j : units of currency i per unit of currency j

• values 0 and ∞ for si ,j are allowed!

• Exchange matrix: A d × d-dimensional matrix s = (si ,j)i ,j
taking values in [0,∞]d×d such that

1. si,i = 1
2. si,jsj,k = si,k , whenever the product is defined.

• Note: there exists always a strongest currency i∗ with∑
j si∗,j(t) ≤ d .
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Underlying objects

• Filtered space (Ω,F ,F): representing possible scenarios and a
flow of information.

• Si ,j(t) ∈ [0,∞] denotes the price of the j :th currency in terms
of the i :th currency.

• S(·) = (Si ,j(·))i ,j is an F–progressive, càdlàg process such that
S(t) is a d × d exchange matrix:

Si ,j(t)Sj ,k(t) = Si ,k(t) (whenever defined)

• Define: A(t) = {i :
∑

j Si ,j(t) <∞} 6= ∅.
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Value vector

• A value vector v = (vi )i (with respect to S(t)) encodes the
price of an asset in terms of the d currencies.

• The i :th component describes the price of an asset in terms of
the i :th currency.

• v satisfies consistency condition:

Si ,j(t)vj = vi (whenever defined)

•

U t =

{
C : F(t)–measurable value vector s.t.

∃K > 0 with Ci ≥ −K
∑
j

Si ,j for all i

}
.

Dt = U t ∩
(
−U t

)
.
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Valuation operator

• A valuation operator relates future random prices to present
deterministic prices.

• Concept goes back to Harrison & Pliska (1981); see also
Biagini & Cont (2006) and literature on risk measures.

We say that a family of operators V = (Vr ,t)0≤r≤t≤T , with

Vr ,t : Dt → Dr ,

is a valuation operator with respect to S if it satisfies:

1. Positivity

2. Linearity

3. Continuity from below

4. Time consistency

5. Martingale property

6. Redundancy
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Valuation operator — the conditions

1. (Positivity) If C ∈ DT and C ≥ 0 then V0,T (C ) ≥ 0.

2. (Linearity) If H ∈ L∞,r , and C ,C ′ ∈ Dt then

Vr ,t(H1{H 6=0}C + C ′) = H1{H 6=0}Vr ,t(C ) + Vr ,t(C ′).

3. (Continuity from below) If (Cn)n∈N ⊂ DT is a nondecreasing
sequence of nonnegative value vectors converging to C ∈ DT ,
then V0,t(Cn) converges to V0,t(C ).

4. (Time consistency) For C ∈ DT ,

Vr ,t(Vt,T (C )) = Vr ,T (C ).

5. (Martingale property) Vt,T (S·,i (T )) = S·,i (t)1{i∈A(t)}.

6. (Redundancy) For C ∈ Dt with Ci = 0 for some i ,
Vr ,t(C ) = 0.
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Introduction of a probability measure

• Let P be a probability measure on (Ω,F).

• We say P satisfies (PSmg) if there exists (Ai )i with
⋃

i Ai = Ω
such that for each i , P(Ai ) > 0 and Si is a Pi–semimartingale,
where Pi (·) = P(·|Ai ) for each i .
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Trading strategies and wealth processes

• Let P satisfy (PSmg).

• Let h denote a predictable process. Then V h is a value vector
process with V h

i (t) =
∑

j hjSi ,j(t).

• h is called a P–trading strategy if h ∈ L(Si ,Pi ) and the
self-financing condition holds:

V h
i − V h

i (0) = h ·Pi
Si .

• h is P–allowable if there exists ε > 0 such that
Vi (t) ≥ −ε

∑
j Si ,j(t).
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Si .

• h is P–allowable if there exists ε > 0 such that
Vi (t) ≥ −ε

∑
j Si ,j(t).
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No-arbitrage condition

Assume that P satisfies (PSmg).
We say that S satisfies NFLVR for P–allowable strategies if for any
sequence of P–allowable strategies (hn) with V hn(0) ≤ 0 and such
that there exist (ξn) ∈ L∞(R,P) satisfying

V hn
i (T ) ≥ ξn

∑
j

Si ,j(T ),

the following conclusion holds:

ξ = lim
n↑∞

ξn exists and P(ξ ≥ 0) = 1 =⇒ P(ξ = 0) = 1.

Here, the limit is taken in L∞(R,P).
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First fundamental theorem

Write P ∼ V if for a nonnegative C = (Ci )i ∈ DT , we have
V0,T (C ) = 0 if and only if

∑
i 1{Ci=0} > 0 P–almost surely.

1. If P satisfies (PSmg) and S satisfies NFLVR for P–allowable
strategies then there exists a valuation operator V ∼ P.

2. If there exists a valuation operator V then there exists a
probability measure P ∼ V that satisfies (PSmg) and such
that S satisfies NFLVR for P–allowable strategies.
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Second fundamental theorem

Suppose that there exists a valuation operator V with respect to S .
Then, the market is complete if and only if V is the unique
valuation operator equivalent to V.

Moreover, if a valuation operator exists, then

inf{V h(0) :h super-replicates C}

= sup{Ṽ0,T (C ) : Ṽ ∼ V is a valuation operator},

Furthermore, the infimum is obtained if the above expression is
finite.
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Disaggegration and aggregation
A family (Qi )i of probability measures such that Si a
Qi–supermartingale is called consistent if the following
change-of-numéraire formula holds

Sj ,i (r)EQi
r [Si ,j(t)X ] = EQj

r [X1{Sj,i (t)>0}],

where X is a bounded, nonnegative random variable.

Given a valuation operator V there exist a consistent family of
supermartingale measures (Qi )i such that

Vr ,t
j (C ) =

∑
i

Sj ,i (r)EQi
r

[
Ci

|A(t)|

]
(1)

for all r ≤ t, j ∈ A(r), C ∈ Dt .
Conversely, given a consistent family of supermartingale measures
(Qi )i , (1) defines a valuation operator V ∼

∑
i Qi .
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The appearance of strict local martingales

Consistent family (Qi )i ;

Sj ,i (r)EQi
r [Si ,j(t)X ] = EQj

r [X1{Sj,i (t)>0}],

• Si ,j is a Qi–martingale if and only if Qj(Sj ,i (T ) = 0) = 0.

• Si ,j is a Qi–local martingale if and only if Sj ,i (T ) does not
jump to zero under Qj .
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The case of two assets

d = 2, with C = (C1,C2)T

E.g., C = ((S1,2(T )− K )+, (1− KS2,1(T ))+)T

Vr ,t
j (C ) = Sj ,1(r)EQ1

r

[
C1

|A(t)|

]
+ Sj ,2(r)EQ2

r

[
C2

|A(t)|

]
= Sj ,1(r)EQ1

r [C1] + Sj ,2(r)EQ2
r [C21{S1,2(t)=∞}]
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The concept of “no obvious devaluations”

We say that a probability measure P on (Ω,F(T )) satisfies “No
Obvious Devaluations” (NOD) if

P(i ∈ A(T )|F(τ)) > 0 on {τ <∞} ∩ {i ∈ A(τ)}

for all i and stopping times τ .
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Aggregation without consistency
Let (Qi )i be so that Si is a Qi–local martingale. Then there exists
a martingale valuation operator V ∼ (

∑
i Qi ) if one of the

following two conditions is satisfied:

1. Si is a Qi–martingale.

2. The following three conditions hold:

2.1
∑

i Qi satisfies (NOD).

2.2

Qk |F∩{
∑

j Sk,j (T )<∞} ∼

(∑
i

Qi

)∣∣∣∣∣
F∩{

∑
j Sk,j (T )<∞}

.

2.3 There exist ε > 0, N ∈ N and predictable times
T1 ≤ T2 ≤ · · · ≤ TN such that(t, ω) :

∑
j

Sk,j jumps to ∞

 ∩
(t, ω) :

∑
j

Sk,j ≤ d + ε

 ⊂
N⋃

n=1

[[Tn]].
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An example for lack of aggregation

• d = 2; probability measure P
• R: a three-dimensional Bessel process:

R(t) = 1 +

∫ t

0

1

R(s)
ds + W (t)

• Stopping time τ with P(τ =∞) > 0

• S1,2(t) = 1 for all t < τ and S1,2(t) = 1 + R(t)− R(τ) for all
t ≥ τ .

• Q1(·) = P(·|τ =∞) and Q2 = P.

• Then Q1(S1,2 ≡ 1) = 1, S2,1 is a Q2–local martingale, and
(Q1 + Q2) ∼ P.
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An example for lack of aggregation (cont’d)

• Obviously, no complete evaluations occur, thus (2.1) and
(2.3) hold.

• We do not have

Qk |F∩{∑j Sk,j (T )<∞} ∼

(∑
i

Qi

)∣∣∣∣∣
F∩{

∑
j Sk,j (T )<∞}

.

• Indeed, no martingale valuation operator V ∼ (Q1 + Q2)
exists.
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Conclusion

• We consider an exchange economy with d currencies, where
each currency has the possibility to complete devaluate
against any other currency.

• In such an economy, we introduce the concept of a valuation
operator and link it to a no-arbitrage condition.

• We interpret the lack of martingale property of an asset price
as a reflection of the possibility that the numéraire currency
may devalue completely.

• We study conditions under which not necessarily equivalent
measures, corresponding to different numéraires, may be
aggregated to obtain a numéraire-independent valuation
operator.
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Many thanks for your
attention!
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Digression: Hyperinflation

• Hyperinflation: complete devaluation of the corresponding
domestic numéraire and an explosion of the exchange rate
with respect to any other currency.

• Examples:
• The price of one Dollar, measured in units of the respective

domestic currency, went up by a factor of over 4500 in Austria
from January 1919 to August 1922 and by a factor of over
1010 from January 1922 to December 1923 in Germany.

• Hungary, August 1945 to July 1946. Prices soared by a factor
of over 1027 in that 12-month period to which the month of
July contributed a staggering raise of 4 ∗ 1016 percent of prices.

• Bolivia, August 1984 to August 1985: Price levels increased by
20, 000 percent.

• Zimbabwe, July 2009: for instance, prices increased by an
annualized inflation rate of over 2 ∗ 108 percent.
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