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1 Introduction

Customers of many financial products, that are traded on over-the-counter (OTC) markets, face

substantial differences in trading terms, offered by different dealers in a dealer network. Empirical

evidence on the market for municipal bonds shows that there is a centrality premium: more active

dealers charge up to 80% higher bid-ask spread for medium-size customer trades (Li and Schürhoff

[2014]), while on the market for asset-backed securities and non-agency collateralized mortgage

obligations there is a centrality discount: more active dealers charge smaller bid-ask spreads to

customers (Hollifield, Neklyudov, and Spatt [2014]). More generally, recent empirical studies docu-

ment stark heterogeneity of broker-dealers in terms of trade volumes, inventory imbalances, degree

of interconnectedness on interdealer market, and customer bid-ask spreads. As the first contribu-

tion, this paper shows that both the centrality discount and the centrality premium can arise in an

equilibrium of a trading model with a search friction, and the exact outcome depends on: 1) the

level of customer sophistication (bargaining power with dealers), 2) the relative size of the inter-

dealer network, and 3) the magnitude of trading gains relative to the fixed costs of trading. Further

analysis based on these findings can be used to show which OTC markets benefit the most from

a core-peripheral structure of dealer networks, and in contrast which markets suffer from the core-

peripheral structure due to sub-optimal asset allocation. Thus, the same policy recomendations,

that improve quality of some markets, may at the same time hurt quality of other markets.

This paper presents a model of an OTC market with a search friction, in which customers trade

with heterogeneous dealers who have different search technologies and the interdealer market is

decentralized. Trading gains are due to random binary preference shocks that occasionally send

a customer or a dealers in a liquidity-distress state. As in Duffie, Gârleanu, and Pedersen [2005],

Vayanos and Wang [2007], Weill [2008], Shen and Yan [2014], such shocks capture changes in

individual liquidity needs or hedging motives of a customer or a dealer and result in temporary asset

misallocation. A dealer with a better search technology (referred to as a core dealer) finds trade

opportunities faster than other peripheral dealers, and thus has relatively higher trade execution

efficiency and lower equilibrium asset-holding period, or time in inventory. This endogenously

creates additional trading gains between core and peripheral dealers who are in the same liquidity
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state—a core dealer wants to buy the asset from a peripheral dealer when both are in a liquidity-

distress state; a core dealer wants to sell the asset to a peripheral dealer when both are not in

distress.

In equilibrium, the centrality discount pertains to lower riskiness of core dealers’ inventories,

while its magnitude (and even sign) depends on the relative strength of the interdealer trade pattern

that facilitates risk-sharing between core and peripheral dealers. Intermediation flows between core

and peripheral dealers impede average terms of trade between peripheral dealers and customers

when the interdealer market is relatively large—the measure of dealers in the population is larger

relative to the measure of customers, when customer bargaining power is large, or when the trading

gains are large relative to the fixed costs of trading.

The paper contributes to a growing search theory of OTC markets. Duffie, Gârleanu, and Ped-

ersen [2005, 2007] develop the seminal search-and-matching model of an OTC market and derive

bid-ask spreads charged by dealers who have access to a frictionless interdealer market. Hugonnier,

Lester, and Weill [2014] develop a more general model where preference types of agents differ con-

tinuously within the population and show how agents with marginal preference types arise endoge-

nously as the most active intermediaries. My model complements this line of research by having

agents who differ continuosuly in their trading technologies and contact speeds, which allows to

analyze how technological heterogeneity affects endogenous intermediation patterns. Dunne, Hau,

and Moore [2012] characterize dealers’ intermediation role and inventory management between mo-

nopolistic customer market and frictionless interdealer market. Atkeson, Eisfeldt, and Weill [2012]

characterize single-period trading patterns in credit-default swaps contracts (CDS) between banks

with heterogeneous exposures to the aggregate default risk and show that an interdealer market

with close to common prices arises endogenously. Babus [2012] develops a model of endogenous

formation of a central broker-dealer when agents are allowed to invest in trading relationships. In

contrast, in my model the interdealer market is not frictionless, and dealers with different search

technologies have different reservation values in equilibrium. The model is similar to Gofman [2011]

in that trade prices are outcomes of a bilateral bargaining and are affected by dealers’ private asset

values, however, in my model dealers match with counterparties randomly and the trading network
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is a realization of a random search process. Unlike Zhu [2012], who studies pricing implications of

a ringing phone curse, when sellers contact buyers sequentially with possibility of a repeat contact,

in my model the market is large enough so that reputation effects of repeat contacts do not occur.

Babus and Kondor [2013] develop a model where a centrality discount arises due to adverse selec-

tion, rather than due to inventory risk as in my model, and their model fits better the markets with

large information asymmetries among agents.

The remainder of the paper is organized as follows. Section 2 describes the environment and

introduces dealers’ search technologies. Section 3 studies the equilibrium implications for the cus-

tomer bid-ask spreads and provides intuition for the main findings. Section 4 presents a numerical

simulation of a generalized model, the analysis of dealer networks that emerge in equilibrium, and al-

ternative bargaining procedures. Section 5 presents a discussion of origins of dealers’ heterogeneity.

Section 6 concludes.

2 The Environment

Over-the-counter markets for a majority of fixed-income instruments such as corporate bonds, mu-

nicipal bonds, various types of securitized products—lack an institutional mechanism that would

allow customers of these products to trade directly with each other. Instead, all transactions are

intermediated by designated dealers who are registered with corresponding regulatory authorities.

Trades are executed through bilateral meetings and negotiations between a customer and a dealer

or between two dealers. This section describes an exchange economy and a random-matching tech-

nology for dealers who differ in their trade execution speed.

2.1 Customers and Dealers

There are two types of agents in the model: Dealers and customers, both risk-neutral and infinitely-

lived. Every agent has measure zero in a continuum of agents. The set of dealers has measure

Md ∈ (0, 1), and the set of customers has measure (1 −Md). Customers and dealers can hold and

trade an asset in positive per capita supply s ∈ (0, 1), which is traded on an over-the-counter market

with a search friction. All agents discount future cash flows at a constant rate r > 0.
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At any point in time, customers and dealers differ in their marginal utilities of holding the asset

and in terms of their trade execution speed in the over-the-counter market. For these two reasons,

there are gains from trade.

Marginal utility of holding the asset θi(t) follows a two-state stochastic Markov process. Both

customers and dealers can be either in “high” or “low” intrinsic liquidity state at any point in time.

The liquidity state switches from low to high with intensity γup and from high to low with intensity

γdn, independent across agents. A customer in the low liquidity state receives constant per unit

utility flow θi(t) = θlow, and a customer in the high liquidity state receives utility flow θi(t) = θhigh.

A dealer in the low liquidity state receives θi(t) = θl, and a dealer in the high liquidity state

receives θi(t) = θh. I assume that θhigh > θh ≥ θl > θlow. Such stochastic variation in the

utility flows generates gains from trade and is a traditional modeling tool used in the literature on

over-the-counter markets (Duffie, Gârleanu, and Pedersen [2005], Vayanos and Wang [2007], Weill

[2008], Shen and Yan [2014]). The setup allows for both customer-to-dealer and dealer-to-dealer

transactions.

Asset holdings of agents are restricted to the [0, 1] interval. Both short selling and holding

more than one unit of the asset is not feasible for agents. In equilibrium, due to the risk-neutrality

assumption and resulting linearity of the expected utility function, all agents hold either 0 or 1

unit of the asset. Thus, in the paper I refer to the two types of asset holdings: “Owners” hold one

unit of the asset, and “non-owners” hold zero units. Together with the two liquidity states, both

customers and dealers can be characterized by one of the following four types at any point in time:

{ho, lo, hn, ln}—high owner, low owner, high non-owner, and low non-owner. This constitutes the

complete set of possible types for customers, and I denote their measure in the overall population

by µCho, µ
C
lo, µ

C
hn, µ

C
ln, respectively. The following identity holds for customers’ masses:

µCho + µClo + µChn + µCln = (1−Md). (1)

Customers in the model have the lowest level of trade execution speed, which is normalized to

zero. Customers passively wait for dealers to find them on the market. Unlike customers, dealers

differ in their trade execution speed λi ∈ [0,+∞), thus the number of different dealer types is
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infinite. More interconnected dealers are assumed to have higher trade execution speed and thus

lower expected trade execution delays. In the following subsection 2.2, I describe how trade execution

speed λi determines the likelihood of finding a counterparty. I assume that the distribution of λi in

the population of dealers is characterized by strictly increasing and continuous cumulative density

function F (λ). Dealer i is born with trade execution speed λi ∈ [0,+∞), and it remains constant

throughout his life. I let µho(λ) be the measure of all high owner dealers with λi ≤ λ in the total

population of agents, similarly I define functions µlo(λ), µhn(λ), and µln(λ). The following identities

hold for dealers’ masses:

∫ +∞

λ=0
dµho(λ) +

∫ +∞

λ=0
dµlo(λ) +

∫ +∞

λ=0
dµhn(λ) +

∫ +∞

λ=0
dµln(λ) = Md, (2)∫ +∞

λ=0
dµho(λ) +

∫ +∞

λ=0
dµlo(λ) = s−

(
µCho + µClo

)
. (3)

2.2 Random-Matching Technology

There is a search friction on the market: A pair of agents can execute a trade with each other only

after they have been matched according to a specified random matching technology. I assume that

neither customers nor dealers are able to execute a trade instantly, however, trade execution delays

are shorter on the interdealer market because dealers have better search technology.

Definition 2.1. An agent who has a search technology λi is matched at Poisson-arrival times that

arrive with intensity λi ∈ [0,+∞) with another agent, a customer or a dealer, who is chosen from

the population of agents randomly and uniformly.

A better search technology in this framework associates with a higher intensity of meetings,

shorter trade execution delays, a lower exposure to the search friction of the OTC market. I further

assume that customers have the zero search technology λi = 0, so that they cannot initiate a

meeting by themselves, and can execute a trade only when some dealer with λi > 0 finds them.

This assumption allows me to capture an institutional feature of trading in most types of fixed-

income instruments—customers cannot trade directly with other customers, and can only execute

a trade through legally-designated broker-dealers.
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Consider subset of customers that contains a fraction µ of the overall population. A dealer with

trade execution speed λi contacts a customer from the given subset at an almost sure rate λiµ. Note

that this rate is the product of dealer’s λi and the measure µ of the subset under consideration. The

same line of argument cannot be directly applied to interdealer meetings. All dealers have different

trade execution speed, and dealers with higher speed are more likely to find another dealer. The

interdealer matching process is not uniform, and the Law of Large Numbers developed for the

uniform random matching cannot be directly applied (Podczeck and Puzzello [2010], Ferland and

Giroux [2008], Duffie and Sun [2007]). Fortunately, there exists an appropriate change of dealers’

measure outlined below. Under the new dealers’ measure the interdealer matching is back to being

uniform, and standard results apply.

Consider two sets of dealers A and B, and let µA be the measure of set A and FA(λ) be

the conditional cumulative density function of dealers in set A with λi ≤ λ. Similarly, I define

µB and FB(λ). For the set A define Radon-Nikodym derivative fA(λi) = λi/
∫

(λ)dFA(λ) and

for the set B define similarly fB(λi) = λi/
∫

(λ)dFB(λ). fA and fB are used to rescale dealers

in the two sets A and B, respectively. Dealers with higher trade execution speed are split in

greater number of representatives for the matching purposes. Once rescaled, I assume there is

independent uniform matching between representatives in sets A and B with the total meeting rate

of (
∫

(λ)dFA(λ)+
∫

(λ)dFB(λ))µAµB. The exact Law of Large Numbers applies for meetings between

dealers in A and B. It remains to verify that the described matching technology is consistent: The

total meeting rate is additive for disjoint sets of dealers. I verify this claim in the following lemma:

Lemma 2.1. Let A, B, and C be disjoint sets of dealers with measures µA, µB, and µC , respectively.

Let m(X,Y ) be the total meeting rate between dealers in arbitrary sets X and Y . Under the described

random matching technology the total meeting rate satisfies:

m(A,B ∪ C) = m(A,B) +m(A,C). (4)

Proof: See Appendix C.1.

To illustrate the change of measure described above, consider the following example. Let A be
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a set of dealers and let their trade execution speed λi be uniformly distributed on an interval from

0 to 10. In this case, the cumulative density function is FA(λ) = λ/10, the mean execution speed

level is
∫ 10

0 λdFA(λ) = 5, and the Radon-Nikodym derivative is fA(λi) = λi/5. The distribution of

dealers under the new measure is GA(λ) = λ2/100. Figure 1 compares the original and the new

distribution of dealers. Dealers with higher trade execution speed λi are overrepresented under the

new measure, captured by convexity of GA(λ).

Figure 1: The λ-Scaled Measure of Agents: Example with Uniform Distribution
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It follows, that the random matching technology can be applied to the entire population of

dealers. Under this technology a dealer with trade execution speed λi contacts a dealer from set A

with measure µA and conditional cumulative density function FA(λ) at the almost sure rate (λi +∫
(λ)dFA(λ))µA. This expression corresponds to per capita limit of the total contact rate between

sets A and B as the measure of set B goes to zero. The described random-matching technology is an

example of a linear search technology used by Duffie, Gârleanu, and Pedersen [2005] and extended

to heterogeneous search intensities setting. The idea originally was introduced by Diamond [1982]

and Mortensen [1982]. The random-matching technology closely relates to other literature that

deals with heterogeneous search intensities in continuous time with continuum of agents in the

population. Shimer and Smith [2001] develop a random-matching technology where each agent

establishes a contact with a subset of agents according to his individual search intensity and then
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the potential partner is drawn randomly from the subset with likelihood proportional to partner’s

search intensity. It has been shown that the choice of particular random-matching technology affects

agents’ incentives for optimal search; however, agents’ search intensities are exogenous.

In the following section, I apply the described random matching technology to study customers’

and dealers’ equilibrium asset valuations and customer bid-ask spreads.

2.3 Trading Equilibrium

When an owner of the asset meets a non-owner, they bargain over the terms of trade. The asset

changes hands when gains from trade are positive, otherwise trade does not happen.

In interdealer meetings, all dealers divide existing gains from trade according to the symmetric

Nash bargaining solution. I assume the Nash bargaining power in interdealer meetings is equal to 0.5

for all dealers, and does not depend on dealers’ trade execution speed λi. This assumption simplifies

the exposition and establishes an important benchmark—the outcome of interdealer bargaining is

being determined solely by dealers’ outside options and not by relative differences in their market

power. I discuss plausibility of this assumption and provide details on the underlying bargaining

procedure in section 4.4.

In every transaction with a customer, all dealers have bargaining power q ≥ 0.5. When there

are positive trading gains in a customer-dealer meeting, the emerging transaction price is called “bid

quote” when it is a buy from customer, and “ask quote” when it is a sell to customer. These quotes

are used in the measurement of customer bid-ask spreads. Dealers may have higher bargaining

power that customers in the model.

I focus on the steady-state dynamic trading equilibria. In these equilibria, agents’ asset val-

uations and the distribution of agents’ types in the overall population do not change over time.

A steady-state dynamic trading equilibrium is characterized by a set of agents’ state-contingent

valuations and a distribution of masses that satisfy the two conditions below.

Definition 2.2. A steady state dynamic trading equilibrium is characterized by state- and type-

contingent asset valuations ∆V σ (customers’ valuations ∆V C
h and ∆V C

l , and dealers’ valuations

as functions of their trade execution speed ∆Vh(λi) and ∆Vl(λi)), and the distribution of agents’
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masses µ (its components are listed in equations (2) and (3)), that satisfy the following consistency

and optimality conditions:

Optimality: ∆V σ(t) = Et{max (Vσ(owner))−max (Vσ(non− owner))|µt}, (5)

Consistency:
dµt
dt

(∆V σ) = 0. (6)

In the rest of this subsection, I describe components of the definition 2.2 presented above. Similar

to Duffie, Gârleanu, and Pedersen [2005, 2007] I express each agent’s value function in terms of the

next stopping time τu at which agent’s marginal utility changes, and the next stopping time τm at

which the agent is matched with a counterparty. The optimality condition above implies that only

trades with positive trading gains are executed. For example, the steady state value function for a

dealer who holds one unit of the asset in high liquidity state, and has trade execution speed λi is:

Vho(λi) = Et

(∫ min (τu,τm)

t
(θh)e−r(u−t)du+ e−r(τu−t) ×A+ e−r(τm−t) ×B

)
, (7)

A = Vlo(λi)× 1{min (τu,τm)=τu},

B = E(max (Vhn(λi) + P , Vho(λi))|µt)× 1{min (τu,τm)=τm}

In each bilateral meeting with positive trading gains, the asset is exchanged at the price set

according to the Nash bargaining solution. The discussion of the bargaining process is in section

4.4. I assume there is no asymmetric information about counterparties’ types and thus all positive

trading gains in this environment are realized in equilibrium. Let X and Y denote two opposite

liquidity states. Equilibrium transaction prices have the following form:

Customer-Dealer: P
ask/bid
XY (λi) = (1− q)×∆VX(λi) + q ×∆V C

Y , (8)

Interdealer: PXY(i, j) = 0.5×∆VX(λi) + 0.5×∆VY (λj).

Finally, the evolution of agents’ masses in the population is described by the following system
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of differential equations. The system for customers’ masses is:

dµClo
dt

= −γup × µClo + γdn × µCho − µClo
(∫ +∞

0

(λj) dµln (λj) +

∫ +∞

0

(λj) dµhn (λj)

)
,

dµChn

dt
= −γdn × µChn + γup × µCln − µChn

(∫ +∞

0

(λj) dµlo (λj) +

∫ +∞

0

(λj) dµho (λj)

)
,

dµCln
dt

= −γup × µCln + γdn × µChn + µClo

(∫ +∞

0

(λj) dµln (λj) +

∫ +∞

0

(λj) dµhn (λj)

)
,

dµCho

dt
= −γdn × µCho + γup × µClo + µChn

(∫ +∞

0

(λj) dµlo (λj) +

∫ +∞

0

(λj) dµho (λj)

)
. (9)

For any level of trade execution speed λ, the following system describes evolution of dealers’ masses

(the equation for dealers-owners is shown).

dµXo(λ)

dt
= γX × µYo(λ)− γY × µXo(λ) +

∫ λ

0

(BXn (λi) +AXn (λi)) dµXn (λi)−
∫ λ

0

(AXo (λi) +BXo (λi)) dµXo (λi) ,

AXo (λi) =

∫ +∞

0

(
1{PXl(i,j)>∆Vl(λi)} × (λi + λj)

)
dµln (λj) +

∫ +∞

0

(
1{PXh(i,j)>∆Vl(λi)} × (λi + λj)

)
dµhn (λj) ,

BXo (λi) = 1{∆VC
h
>Pask

Xh (λi)} × λi × µ
C
hn. (10)

To solve for the steady-state dynamic trading equilibrium a numerical algorithm is developed. I

conjecture, that dealers reservation prices for the asset ∆Vh(λi) and ∆Vl(λi) are monotonic functions

of trade execution speed λi. Under this conjecture, equilibrium agents masses and asset valuations

are obtained. I then verify that the conjecture holds. Details on the algorithm are in the Appendix

B. In the following section, I discuss customer bid-ask spreads for dealers with different search

technologies λi.

3 Customer Bid-Ask Spreads

In environments with bilateral bargaining, heterogeneous agents have different outside options and

consequently different reservation values for the asset. In order to understand how dealers’ intercon-

nectedness and levels of trade execution speed affects bid-ask spreads in equilibrium, I first study

how dealers’ reservation values are affected. A simplified environment below develops intuition

behind the general theoretical results that follow.
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3.1 Dealers’ Reservation Values

Consider a simplified trading model with a search friction. I use it to develop economic intuition.

There is a pool of customers comprised of buyers and sellers. At every instant of time t ≥ 0, there is

a continuum of buyers with common reservation values for an asset P buy and a continuum of sellers

with reservation values P sell < P buy, who cannot trade with each other. Dealer market consists of

one single infinitesimal dealer who is risk-neutral, infinitely-lived, and discounts his cash flows at a

rate r > 0. The dealer meets customers at a deterministic sequence of event times that are equally

spaced in time: t = {∆, 2∆, 3∆, . . .}. At every event time only one customer is met, either buyer or

seller at the dealer’s discretion. Asset holdings are restricted to [0, 1], each unit of the asset provides

constant cash flow of θ to the dealer such that θ/r ∈ (P sell, P buy). Gains from trade are always

positive and split according to the Nash bargaining solution in which dealer’s bargaining power is

q ∈ [0, 1].

In the simplified environment, ∆ is a proxy for dealers’ trade execution speed. The larger ∆

is, the longer it takes to trade with a counterparty. Dealers’ intrinsic buy-and-hold valuation for

the asset is θ/r. As ∆ approaches infinity, dealer’s reservation value for the asset approaches his

buy-and-hold valuation. When ∆ is finite, the Bellman equations for the dealer’ state-contingent

value function are (the states here are “owner” and “non-owner”):

Vown =

∫ ∆

0
θe−rtdt+ (Vnon + q × P buy + (1− q)× (Vown − Vnon))e−r∆, (11)

Vnon = (Vown − q × P sell − (1− q)× (Vown − Vnon))e−r∆. (12)

The following lemma presents the equilibrium dealer’s reservation value of the asset (Vown−Vnon).

It turns out, that in this environment the dealer’s reservation value is a weighted average of dealer’s

buy-and-hold value and the average of customers’ reservation prices, or market “midquote”.

Lemma 3.1. In the simplified environment, the equilibrium dealer’s value of the asset is equal to

the weighted average of dealer’s buy-and-hold valuation and the average of customers’ reservation

prices:

Vown − Vnon =

(
P buy + P sell

2

)
× 2q

er∆ − 1 + 2q
+

(
θ

r

)
× er∆ − 1

er∆ − 1 + 2q
. (13)
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Proof: See Appendix D.1.

The weight 2q/(er∆ − 1 + 2q) on the customers’ average reservation prices is monotonically

increasing in both dealer’s trade execution speed (inverse of ∆) and bargaining power q. Buy-and-

hold valuation matters less for more efficient dealers. In the limit, as trade delays diminish ∆→ 0

dealer’s buy-and-hold valuation θ/r no longer matters for bargaining outcomes.

A similar result arises when transaction delays are not symmetric for buying versus selling. This

may be the case for dealers in low liquidity state that have higher likelihood of meeting buyers than

sellers. In the following lemma, I assume the transaction delay for the dealer is longer when he sells

to a customer-buyer (k ×∆, k ∈ (1,+∞)) than when he buys from a customer-seller (∆).

Lemma 3.2. In the simplified environment, the equilibrium dealer’s value of the asset is equal

to the weighted average of dealer’s buy-and-hold valuation and the weighted average of customers’

reservation prices, so that when delays in dealing with customers-buyers are longer, the weight on

customers-sellers reservation price is larger (w1 < 0.5).

Vown − Vnon =
(
Pbuy × w1 + Psell × (1− w1)

)
× w2 +

θ

r
× (1− w2) , (14)

w1 =

(
er∆ − 1

)(
ek×r∆ + er∆ − 2

) ,
w2 =

(
ek×r∆ + er∆ − 2

)
q(

er∆ − 1
) (
ek×r∆ − 1

)
+
(
ek×r∆ + er∆ − 2

)
q
.

Proof: See Appendix D.1.

Similarly to the symmetric case, the weight w2 on the average reservation prices of customers is

monotonically increasing in dealer’s trade execution speed (inverse of ∆) and bargaining power q.

The simplified environment demonstrates that a dealer’s reservation value for the asset lies in

between his buy-and-hold value and an appropriately defined average market value. As dealer’s

trade execution speed increases, reservation value depends less on dealer’s buy-and-hold value. This

finding is intuitive, as a more efficient dealer has lower holding periods, for which the buy-and-hold

utility flow matters. In a more general environment where dealers’ buy-and-hold values are exposed

to random liquidity shocks, I expect the quotes from more efficient dealers to be less affected by
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Figure 2: Execution delays ∆ and the dealer’s value of the asset
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such variability. The market “mid-quote” is a more important determinant of bargaining positions

for more efficient dealers. Thus, the variability of quotes posted by more efficient dealers should

be smaller. Conversely, dealers with lower trade execution speed will be willing to provide a better

deal to customers when they are in the opposite liquidity state.

I demonstrate the relationship between dealers’ reservation values and customers bid-ask spreads

graphically in Figure 3. The x-axis is the inverse of dealer’s trade execution delay ∆—dealers with

higher trade execution speed are on the right side along the x-axis. Panel B of Figure 3 demonstrates

bid- and ask-quotes charged by the dealer. There is lower variability of customer quotes for dealers

with higher trade execution speed. This holds in the general model with multiple dealers and

random matching. Higher variability of customer quotes offered by peripheral dealers is a testable

prediction of the model.

The average bid-ask spread customers face when trading with different types of dealers depends

on the cross-sectional distribution of dealers across liquidity states and asset ownership types. In

Figure 3, the quotes shown on the dashed lines of Panel B correspond to dealers-sellers with relatively

low buy-and-hold values (dashed ask quotes) and dealers-buyers with relatively high buy-and-hold

values (dashed bid quotes). These quotes also correspond to relatively good deals for customers

on each side of the market. In a similar fashion, the quotes shown on the solid lines correspond
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Figure 3: Relationship between dealers’ reservation values and bid-ask spreads
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to relatively bad deals for customers, because trading gains realized in such transactions are low.

When owners and non-owners are uniformly distributed across different liquidity states in the cross-

section, the dashed lines and dotted lines are equally likely to occur and the average bid-ask spread

is the same for dealers with different trade execution speed and transaction delays ∆. However, the

general model with search and matching that follows predicts that there are more owners in high

liquidity state than owners in low liquidity state in the steady-state equilibrium, and thus on Figure

3 solid lines are more likely to occur. This implies a negative relationship between average customer

bid-ask spread and dealers’ trade execution speed. Less interconnected dealers are expected to offer

wider spreads on average than more interconnected dealers, consistent with evidence in Hollifield,

Neklyudov, and Spatt [2014] for ABS and CMO markets.

Now imagine that customers are actively shopping for good bargains provided by dealers in the

opposite liquidity states, shown by dashed lines on Figure 3. This puts extra probability on smallest

possible bid-ask spreads values and can eventually revert the relationship between average customer

bid-ask spread and dealers’ trade execution speed. The positive relationship observed documented

by Li and Schürhoff [2014] for municipal bonds market is consistent with such customer shopping.

I explore this extension of the general model in section 4.3.
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3.2 General Model

A similar line of argument to the one developed above applies in the general environment. In any

steady state dynamic trading equilibrium (definition 2.2) there exists a unique market “mid-quote”

that serves as the limit for reservation values of dealers as trade execution execution speed increases.

Dealers with higher trade execution speed are less affected by their buy-and-hold values when they

bargain with customers. This occurs when the gap in dealers’ reservation values in two liquidity

states ∆Vh(λi)−∆Vl(λi) is decreasing in dealer’s trade execution speed λi.

In this subsection, I conjecture that a steady-state dynamic trading equilibrium exists. Existence

and uniqueness of such equilibrium for symmetric markets is discussed in section 4. Let {∆V σ,µ}

be an equilibrium. The first step is to identify the average market “mid-quote”:

Definition 3.1. For any steady state dynamic trading equilibrium {∆V σ,µ} define the average

market mid-quote ∆V as the limit of reservation price of a zero-measure dealer as that dealer’s

trade execution speed λi goes to infinity:

∆V = lim
λ→+∞

(∆V (λi)). (15)

Definition 3.1 states the average market mid-quote as the asset reservation price for a dealer

not exposed to search friction. Such dealer does not have to exist for us to be able to compute the

average market mid-quote. A single zero-measure dealer does not affect the steady state trading

equilibrium {∆V σ,µ} and can be added to the population without consequences.

Proposition 3.1. Let {∆V σ,µ} be a steady-state dynamic trading equilibrium. There exists a
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unique average market mid-quote ∆V , which is the fixed point of the following mapping:

∆V = T1(∆V ), (16)

T1(x) =

(
q × (max(∆V C

h , x)µChn + max(∆V C
l , x)µCln + min(∆V C

h , x)µCho + min(∆V C
l , x)µClo)

+
1

2
×

(∫ +∞

0
max(∆Vh(λj), x)dµhn(λj) +

∫ +∞

0
max(∆Vl(λj), x)dµln(λj)

+

∫ +∞

0
min(∆Vh(λj), x)dµho(λj) +

∫ +∞

0
min(∆Vl(λj), x)dµlo(λj)

))
×

×(q × (1−Md) + 0.5×Md)
−1.

Proof: See Appendix D.2.

The average market midquote can be thought of as the representative asset valuation on an over-

the-counter market with heterogeneous participants. This is also a benchmark point above which

any dealer with sufficiently high trade execution speed will be willing to sell, and below which the

same dealer will be willing to buy.

I do not study asymmetric steady-state equilibria with some dealers having their reservation

values on one side of the average market midquote in all possible liquidity states. In an asymmetric

steady-state equilibrium, some dealers are always more likely to buy than sell, while others are

always more likely to sell than buy. I concentrate on the subclass of market equilibria that are

relatively symmetric, that is each dealer depending on its liquidity state can be on the either side of

the midquote from time to time, and experience both buying and selling pressures. The definition

of a relatively symmetric equilibrium follows:

Definition 3.2. A steady state dynamic trading equilibrium {∆V σ,µ} is relatively symmetric when

the average market midquote ∆V is in between all agents’ reservation values in the two opposite

liquidity states:

∆Vh(λ) > ∆V > ∆Vl(λ) , for ∀λ ∈ [0,+∞). (17)

Note that in Definition 3.2 perfect symmetry is not required, as the reservation values of dealers

in the opposite liquidity states are not required to be equidistant from the average market midquote.

17



However the case of perfect symmetry is interesting due to its tractability, and is presented in section

4.

The key result is the following proposition. In any relatively symmetric steady-state equilibrium

dealers with higher trade execution speed are less exposed to variability in their buy-and-hold

values. This result allows us to demonstrate negative relationship between bid-ask spreads and

dealers’ trade execution speed.

Proposition 3.2. Let {∆V σ,µ} be a steady-state dynamic trading equilibrium that is relatively

symmetric. Then ∆V σ satisfies the following property:

d(∆Vh(λ)−∆Vl(λ))

dλ
< 0. (18)

Proof: See Appendix D.3.

This finding shows that the intuition developed in section 3 holds in the generalized setting with

search and matching. The general model is used to compute the steady-state masses of different

dealers in a cross-section and use these to compute average customer bid-ask spreads. I perform

this analysis numerically in the following section.

4 Analysis of Symmetric Markets

In this section, I study a special type of steady-state dynamic trading equilibria that are symmetric.

Such equilibria occur when the buy-and-hold values of dealers and customers are symmetric: (θhigh+

θlow)/2 = (θh + θl)/2, the switching process between the two liquidity states for each agent is

symmetric: γup = γdn = γ, and the asset initial supply is: s = 1/2.

Definition 4.1. A steady-state dynamic trading equilibrium {∆V σ,µ} is symmetric when the fol-
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lowing conditions hold:

µ satisfies: µChn = µClo = µC ,

µCho = µCln = (1−Md)/2− µC ,

µhn(λ) = µlo(λ) = µ(λ), ∀λ ∈ [0,+∞),

µho(λ) = µln(λ) = (F (λ)/2− µ(λ)), ∀λ ∈ [0,+∞).

Any symmetric steady-state trading equilibrium is relatively symmetric as well, as it satisfies the

property in Definition 3.2. The average market mid-quote for a symmetric market is (θhigh+θlow)/2

and any agent’s valuation in the high liquidity state is above this value.

The following lemma allows us to solve for equilibrium masses of customers and dealers in a

symmetric steady-state equilibrium.

Lemma 4.1. In a symmetric steady-state dynamic trading equilibrium the function µlo(λ) (describ-

ing distribution of search speeds λ across dealers who hold the asset in low liquidity state) satisfies

the following ODE:

Md

2

((
γ + xµC − y(x) + 2xy′(x)

)
F ′(x) + x(F (x)− 1)y′′(x)

)
(19)

=

(
2γ + 2xµC − 2y(x) + 4xy′(x) +

∫ +∞

x

1

2
zMdF

′(x)dz

)
y′′(x),

where: y(x) =

∫ x

0
µlo(λ)dλ

y(0) = 0, y′(0) = 0.

Proof: See Appendix E.1.

I solve the model numerically. I let dealers’ trade execution speed λi be uniformly distributed

on an interval from 0 to 10. In this case, the conditional cumulative density function F (λ) = λ/10,

and the mean execution speed level is
∫ 10

0 λdF (λ) = 5. Figure 7 demonstrates the solution for the

following parameters of the model:
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parameter value comment
γup = γdn 0.5 the same to ensure symmetry of equilibrium
Md 1/2 half of the population are dealers
q 0.7 dealers have higher bargaining power than customers
θhigh 5.1 MU of customer in high state
θlow 4.4 MU of customer in low state
θh 5 MU of dealer in high state
θl 4.5 MU of dealer in low state

4.1 Equilibrium Dealer Networks

In the dynamic trading equilibrium, dealers differ in the number of counterparties they meet over

time. The numbers of transactions with customers and interdealer transactions differ as well. In

equilibrium, there is an infinitely dense network of trading relationships, which is random at the

level of individual agent, and deterministic in aggregate (by the appropriate law of large numbers,

see Duffie and Sun [2007] for discussion). Despite the fact that the model features a continuum of

dealers and customers, it is possible to compute expected number of counterparties encountered over

a given interval of time by a given agent, which would correspond to that agent’s degree centrality.

As all agents are infinitesimally small, no pair of agents will meet each other twice in the equilibrium

almost surely, thus the number of trades and the number of counterparties are the same.

Consider a dealer with trade execution speed λi ≥ 0. In the steady-state, the lifetime of this

dealer follows a four-state continuous-time Markov chain with the generator matrix Q(λi):

Q(λi) =

ho

lo

hn

ln



(−γdn − λhighsell ) γdn λhighsell 0

γup (−γup − λlowsell) 0 λlowsell

λhighbuy 0 (−γdn − λhighbuy ) γdn

0 λlowbuy γup (−γup − λlowbuy)


. (20)
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where: λhighsell = λi × µChn +

∫ λi

λ=0
(λi + λ)dµhn(λ)

λlowsell = λi × µChn +

∫ ∞
λ=0

(λi + λ)dµhn(λ) +

∫ ∞
λ=λi

(λi + λ)dµln(λ)

λhighbuy = λi × µClo +

∫ ∞
λ=0

(λi + λ)dµlo(λ) +

∫ ∞
λ=λi

(λi + λ)dµho(λ)

λlowbuy = λi × µClo +

∫ λi

λ=0
(λi + λ)dµlo(λ).

The matrix of conditional probabilities P (t, λi) of a dealer residing in each given state at a given

point in time can be obtained by solving the Kolmogorov equation (∂P /∂t)(t, λi) = Q(λi)×P (t, λi).

I then compute the expected number of transitions in this Markov chain over a given fixed period

of time, using results on Markov chains from Guttorp [1995]. For example, the expected number of

dealer’s buys over time period t ∈ (0, T ) (both from customers and on interdealer market) is equal

to:

E[Nbuy] =
4∑
i=1

[
Prob(X0 = i)×

∫ T

0

(
λhighbuy Pi→hn(t, λi) + λlowbuyPi→ln(t, λi)

)
dt

]
. (21)

The expected number of customer and interdealer trades can be computed separately, by using the

relevant customer and interdealer portions of λhighbuy and λlowbuy in the formula above.1 For the analysis

below I assume that the initial state probabilities Prob(X0 = i) are consistent with the stationary

distribution of this Markov chain. In this case unconditional probabilities of being in each state are

constant in time and the above equation reduces to:

E[Nbuy] =

∫ T

0

(
λhighbuy Phn(t, λi) + λlowbuyPln(t, λi)

)
dt,

where: Phn(t, λi) =
γup(γdnλ

low
sell + λhighsell (γup + λlowbuy + λlowsell))

(γdn + γup)(γup(λ
high
buy + λhighsell ) + (γdn + λhighbuy + λhighsell )(λlowbuy + λlowsell))

,

Pln(t, λi) =
γdn(γupλ

high
sell + λlowsell(γdn + λhighbuy + λhighsell ))

(γdn + γup)(γup(λ
high
buy + λhighsell ) + (γdn + λhighbuy + λhighsell )(λlowbuy + λlowsell))

.

Here I study equilibrium trading frequencies and dealers’ interconnectedness. The random

matching between customers and dealers generates a network of trading relationships. In this
1This is justified, since the future lifetime of a dealer does not depend on whether the asset was purchased on the

interdealer market or from a customer. This allows to reduce the number of relevant states to 4.
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section I characterize various properties of the realized network.

Figure 4: Dealers’ Expected Centralities (and Volumes) in Symmetric Market
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Figure 5: Degree Centrality Distribution in Symmetric Market
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An empirical feature of many observed networks is a power law distribution of the number of

links. The model suggests that a uniform distribution of trade execution speed levels for dealers

may generate a convex distribution of expected numbers of links (degree centrality) and trading

volume across dealers. More efficient dealers endogenously receive larger volume of interdealer

trades, shown on Figure 4. This convexity is explained by the endogenous intermediation role more

efficient dealers obtain among the less efficient dealers. However such growth in degree centrality
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reduces once the efficiency reaches relatively high values on the market—the top dealers experience

a reduction in the positive matching externality by always dealing with less efficient dealers. Thus,

the distribution of degree centrality on the market is bi-modal (shown in Figure 5). It reflects an

exponential decay for relatively lower values of λ (as in power law distributions), and fat right tails

due to the matching externality effect.

Figure 6: Dealers’ Expected Centralities (and Volumes) in Relatively Symmetric Market
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Large imbalances in the aggregate initial asset endowment may flatten out the convexity of the

numbers of interdealer links, shown on Figure 6.

These results allow us to establish the mapping from the underlying search economy to the

empirically observed network structure.
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4.2 Customer Bid-Ask Spreads

Figure 7: Numerical Solution for the symmetric steady-state trading equilibrium
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Based on the reservation values on Panel B of Figure 7 and the cross-sectional distribution of

dealers, I compute conditional average bid-ask spreads customers face when meeting a dealer with

a given level of trade execution speed λi. The resulting customer bid-ask spreads are presented on

Panel D of Figure 7. There is a negative relationship between bid-ask spreads and dealers’ trade

execution speed λi. It is possible to demonstrate that as the intensity of switching across liquidity

states γ increases, the negative relationship between computed bid-ask spreads flattens in the limit.

The explanation for the negative relationship between dealers’ trade execution speed and average

bid-ask spreads observed is the following. In relatively symmetric steady-state equilibrium, less
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efficient dealers are more exposed to search friction and have more weight on their buy-and-hold

valuations in their asset reservation values. Their buy-and-hold valuations are exposed to random

liquidity shocks. More efficient dealers suffer less from these shocks, because their reservation

values are closer to the constant average market midquote. Interdealer trading results in over-

representation of high-owners and low-non-owners in the population, because owners in high liquidity

state are less likely to sell than owners in low liquidity state. Dealers in the same liquidity state as

customers cannot offer good bargains because trading gains are small. As dealer’s trade execution

speed diminishes, these trading gains become even lower. This is the reason, why higher average

bid-ask spreads are observed for less interconnected dealers when they trade with customers.

4.3 Customers’ Shopping Activity

Active customer shopping for better quotes may have important consequences and reverse the

negative relationship pertaining to the baseline model. Below I define formally what active customer

shopping stands for in the environment.

Definition 4.2. A market is characterized by active customer shopping when a trade between a

customer and a dealer is more likely to occur when the dealer and the customer are in the opposite

liquidity states than when they are in the same liquidity state.

In the baseline model, any customer in a high liquidity state who does not have an asset can

trade with both high-liquidity state dealers and low-liquidity state dealers. The high-liquidity state

dealers are over-represented in the cross-section of dealers in the steady-state equilibrium and they

have lower trading gains with customers.

Consider the following example. There are three dealers on a market and one customer. In this

example, I assume the dealers have equal trade execution speed, to concentrate on the customer

shopping. The customer does not have the asset and is in high liquidity state, so that the customer’s

buy-and-hold valuation is relatively high. The three dealers hold the asset, and their liquidity states

as well as gains from trading with the customer are shown in the table:
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Figure 8: Numerical Solution for the symmetric equilibrium with shopping
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trading gains
liquidity state with the customer

dealer A high $2 (lowest)
dealer B high $3
dealer C low $11 (highest)

All the three dealers have positive gains from trading with the customer. In the baseline model

that would imply all the three transactions are equally likely. The probability p of a “Dealer C to

customer” transaction occurring is 1/3. Note that this dealer offers the highest gains from trading to

the customer. Active customer shopping would occur when this probability is larger p > 1/3. In this

section, I modify the random-matching technology of the baseline model and assume the extreme

case scenario of such customer shopping—no trade happens between a customer and a dealer in the
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same liquidity state, p = 1.

Active customer shopping may occur for various reasons. First, customers may apply an extra

effort to locate low-liquidity owners among dealers and get better deals. Second, exogenous transac-

tion costs may make transactions with small trading gains infeasible to carry out. For these reasons,

active customer shopping is not necessarily associated with sophistication of customers, because so-

phisticated customers may be less sensitive to these exogenous transaction costs. Active customer

shopping may not be observed on markets with relatively large overall magnitude of trading gains.

When trading gains are large even for counterparties in the same liquidity state, all trades with

positive gains will be executed as in the baseline version of the model.

In what follows, I assume that no trade happens between a customer and a dealer in the same

liquidity state. I solve for the steady-state equilibrium of the modified model numerically using the

same parameters values as in the previous subsection.

Panel D of Figure 8 demonstrates positive relationship between average bid-ask spreads and

dealers’ trade execution speed. The finding is consistent with empirical evidence in Li and Schürhoff

[2014] on municipal bond markets.

4.4 The Bargaining Model

So far in the analysis I worked with Nash bargaining solution, where trading gains were split

proportionally in all bilateral meetings (in all interdealer meetings the gains were split equally, while

in customer-dealer meetings, dealers were getting fixed proportion q of the gains). Two questions for

this section are: 1) can these fixed proportions be justified using equilibrium outcomes of a dynamic

bargaining model; and 2) how changes in the fixed proportions affect the results.

As it is known in the literature, in a bilateral bargaining game with simultaneous offers, any value

of the fixed proportion q can be justified as a Nash equilibrium (discussed in Kreps [1990]). In the

context of over-the-counter trading, Duffie et al. [2003] present a version of a dynamic bargaining

game with alternating offers, where at each stage of the game one of the two agents is chosen

randomly to make an ultimatum take-it-or-leave-it offer, and the continuous-time limit of such

game is considered. In one version of the game, when agents are not allowed to search for other
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counterparties during bargaining process, the endogenous bargaining power arises as a function

of model parameters and probabilities of making an ultimatum offer. The bargaining power is

higher when the probability of making an offer is higher for each agent, or when agent’s ability to

meet other partners is lower (making the agent relatively more patient). In another version of the

game, when agents are allowed to search for other counterparties during the bargaining process,

the endogenous bargaining power of an agent is equal to the probability of making an ultimatum

offer and does not depend on other model parameters. Intuitively, agent’s ability to keep searching

for counterparties during bargaining implies that there is no sacrifice being made when bargaining

process is initiated. Higher ability of meeting other partners increases the likelihood of a breakdown

in any given bargaining round.

I follow Duffie et al. [2003], and use the framework of Rubinstein and Wolinsky [1985] and others,

to verify whether similar results can be obtained in a model with a continuum of different types of

dealers, and what are the required assumptions. I show that under a set of reasonable assumptions,

the Nash bargaining can be justified using a dynamic bargaining game with alternating offers.

In the trading model, customers and dealers could be in one of the two liquidity states and can

have different trade execution speed (note that trade execution speed of customers is normalized

to zero). These agents’ types determine a subset of potential counterparties with positive trading

gains in the population for each agent. I take two arbitrary agents and assume they play a dynamic

bargaining game when they are matched, in which they are allowed to exchange offers at discrete

moments of time ∆t. In each customer-dealer round, one agent is chosen randomly to make an

ultimatum offer, so that the probability of a dealer making an ultimatum offer is q̂. In each

interdealer round, one of the dealers is chosen equally likely. From now on I will focus on customer-

dealer meetings where customer is a buyer, and dealer has execution speed λi. Denote dealer’s

optimal offer by Pi and customer’s optimal offer by PC . Denote the expected transaction price by

P̂ = q̂Pi+(1− q̂)PC . Similar analysis holds for customers-sellers, as well as for interdealer meetings

with minor modifications.

Let A be a subset of dealers with measure µA, who have positive trading gains when matched

with the given customer, and let λA be their average trade execution speed: λA =
∫
A λdFA(λ).
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Similarly, let B be a subset of other dealers and customers, who have positive trading gains with

the given dealer, with average trade execution speed λB (here I assign zero trade execution speed

for all customers in B). The rate, at which the customer finds a substitute for the dealer he is

negotiating with is λAµA, while a similar rate for the dealer is (λi +λB)µB. Additionally, let γA be

the rate at which the liquidity state of the customer switches (γA = γdn, as high-liquidity customers

are the only buyers in the model), and let γB be the rate at which the dealer’s liquidity state

switches (γB ∈ {γup, γdn}, depending on the initial liquidity state of the dealer). Assume further

that the bargaining process stops once any of the two agents is matched with another counterparty

or when the liquidity state switches (plausibility of this assumption is discussed below).

Under the assumption that both customer and dealer can search for other counterparties during

the bargaining process, the optimal prices offered satisfy the following set of equations (W denotes

the value function of an agent who has a counterparty to bargain with at the moment):

PC + Vn(λi) = Wo(λi) = Vo(λi) + e−r∆t

(
e−(γA+γB+λAµA+λBµB)∆t

)(
P̂ −∆V (λi)

)
, (22)

V C
o − Pi = WC

n = V C
n + e−r∆t

(
e−(γA+γB+λAµA+λBµB)∆t

)(
∆V C − P̂

)
,

lim
∆t→∞

(PC) = lim
∆t→∞

(Pi) = (1− q)×∆V (λi) + q ×∆V C ,

where: q = q̂.

The result above suggests that as long as both agents are allowed to keep looking for coun-

terparties while bargaining and the bargaining stops when such counterparty is encountered, the

bargaining power does not depend on agents’ search abilities (relative measures of A and B sets,

and average trade execution efficiencies λA and λB). This is consistent with Duffie et al. [2003]

and justifies the fixed proportion q for customer trades (and 1/2 for interdealer trades) used in

the trading model. Here I assume that the bargaining process stops once any of the two agents

finds a substitute counterparty or when the liquidity state switches. The latter can constitute an

issue, when for example a customer-buyer is bargaining with a dealer in high liquidity state, while

the dealer switches to low liquidity state in between rounds. Alternatively, a customer may find

a counterparty with significantly lower trading gains, so that he would not want to drop out from
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bargaining. In Rubinstein and Wolinsky [1985] this is not a problem, because all matches generate

the same amount of good to share.

This observation suggests that in a match which is particularly favorable for one party, the

bargaining power of this party can be overestimated by assuming the fixed proportion in the split

of the pie. The results above require a credible commitment from such party to withdraw from

bargaining process whenever other deal appears even with lower gains. Such situation occurs when

customers bargain with dealers in the opposite liquidity state (the customer is unlikely to find a

better deal and will be less likely to terminate bargaining).

The import of this discussion is that it is reasonable to modify the Nash bargaining assumption

and instead think of q as a function of both the probability of making an offer in a bargaining

round and the size of the trading gain relative to the market-wide average trading gain. In this

case, customers who encounter a peripheral dealer in the same liquidity state will have slightly

higher bargaining power than in the baseline model, and the negative relationship may be flattened.

However, one should note, that such effect is of a second-order nature, and primaryly the bargaining

power is still driven by the probability of making an ultimatum offer. The latter point implies that

quantitatively this does not change the results too much, while it reduces tractability of the model.

Moreover, the reverse logic applies to the case when agents are not allowed to look for other

counterparties while bargaining. Here, both agents make a commitment to each other to continue

bargaining and reject any other match. In this situation the party to which such commitment is

most expensive (a more efficient party in finding good deals outside) has lower bargaining power,

which is consistent with the finding in Duffie et al. [2003]. This suggests that the fixed proportions

is somewhere in between the two models (with searching allowed and without) and makes them even

more reasonable. Further, all these issues can be reconciled, when a more anxious party is more

likely to make the ultimatum offer, effectively altering the probability of making an ultimatum offer

so that in the end all gains are split in fixed proportions.

Finally I discuss comparative statics with respect to changes in the values of relative bargaining

power of dealers and customers. The figure below shows agents’ reservation values and associated

bid-ask spreads for three different values of bargaining power q ∈ {0.05, 0.5, 0.95}, as well as the
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relationship between average bid-ask spreads and dealer’s trade execution speed.

Figure 9: Equilibrium reservation values for different dealers’ bargaining power values
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Panel A: Reservation values for q = 0.05
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Panel B: Reservation values for q = 0.5
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Panel C: Reservation values for q = 0.95
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Panel D: Equilibrium Average Bid-Ask Spreads

It can be observed from Panel D of Figure 9 that the relationship between dealers’ trade exe-

cution speed and average bid-ask spreads flattens out as q increases, while overall average spreads

rise. Intuitively, when customers have little bargaining power with dealers, transaction prices are

determined by customers’ reservation values only, which do not depend on dealer’s individual levels

of trade execution speed. When dealers always make ultimatum offers to customers, the model

predicts no relationship between average bid-ask spreads and dealers’ trade execution speed. Pres-

ence of a negative relationship in the data suggests that customers may have significant bargaining

power.
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5 The Origins of F (λ)

In this section, I investigate the economics behind and possible origins of dealers’ trade execution

speed distribution F (λ). In the model, dealers’ trade execution speed corresponds to abilities of

dealers to search for counterparties. The delay in trade execution is larger for dealers with lower

λi, implying that it is more difficult and costly for these dealers to establish profitable matches on

a decentralized market and realize gains from trading. When such dealers are hit with an adverse

liquidity shock, it takes some time for them to rebalance their asset holdings. In the model, I assume

dealers are born with a particular value of λi and this value remains unchanged throughout dealers’

lifetime.

Technological “trading capital” can be one determinant of λi for each dealer. For example, in

the over-the-counter equity space, there are several IT-infrastructure products that are designed to

enhance the matching of counterparties, such as “OTC Link.” These products often do not cover the

securitizations trading, however it is reasonable to think that broker-dealers in securitizations rely

on similar electronic communication systems (and potentially more sophisticated and fragmented

systems). A broker-dealer with a wider access to these types of systems (or even owning and

designing such a system) will have higher value of λi in the model. Then the distribution F (λ)

describes how the extent of such “trading capital” is distributed in the cross-section of dealers at a

given point in time.2

In the model, a dealer with higher λi is more efficient at trading both with the pool of customers

and with other dealers. Customer-relations capital, which includes the extent of marketing activity,

performance of the sales-efforts and sales-personnel, contributes to the speed of profitable customer

trade execution. Hollifield, Neklyudov, and Spatt [2014] document that the extent of customer and

interdealer activity of different dealers is highly correlated, with fairly few dealers having substantial

differences in their customer and interdealer participation measures. Thus, a dealer with high λi

is substantially invested in customer-relations capital as well. Finally, the legal support and the

extent of in-house expertise contribute to the value of dealer’s λi, especially for more advanced

securitized products. These considerations suggest that λi in the model can be the result of a costly
2F (λ) is assumed to be stable over time in the model.
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investment, and dealers with different λi differ in their equilibrium investment levels, captured by

the cross-sectional distribution F (λ).

5.1 Market shares of dealers

The link between costly “trading” capital and the trade execution speed distribution F (λ) can be

formalized as follows. The set of dealers in the population has measureMd. Each dealer has obtained

ki amount of “trading capital”, at cost ci(ki). The heterogeneity of dealers comes from different cost

functions for obtaining the same level of trading capital. Denote the measure of dealers with trading

capital less than k by H(k) = Md × Pr(ki < k), and let H−1(F ) be the inverse cumulative density

function of trading capital. Denote the average level of trading capital across dealers by k̄. Then

the market share Mi of dealer i ∈ [0,Md] is:

Mi =
1

Md
× H−1(i)∫Md

0 H−1(x)dx
=
ki
k̄
. (23)

The trade execution speed of a dealer λi is proportional to the dealer’s market share Mi, where λ̄

is the average number of trades one dealer on a homogeneous market executes with a unit measure

of customers with positive trading gains per unit of time (possibly a function of k̄):

λi = λ̄(k̄)×Mi. (24)

This way λ̄ can be thought of the average severity of search friction on the decentralized market.

Note that there are two forces that determine dealers’ λi: the crowding-out (or the arms-race),

when investment of other dealers reduce the market share of a given dealer. This force is strongest,

when λ̄ is constant and does not depend on the average level of trading capital on the market. In

this case only relative values of trading capital matter, while absolute levels do not. The other force

is the overall market efficiency, which is strongest when λ̄ is an increasing function of the average

trading capital k̄. In this case, each unit of trading capital contributes both to individual market

share and the overall market efficiency.

Now I turn to the shapes of cost functions that may justify a particular F (λ) distribution.
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5.2 The costs of trade efficiency

In the trading model faster trade execution is a Pareto-improvement, as everybody benefits from

it. For this reason, without an exogenous cost of faster trading, all parties would prefer to increase

their trade execution speed λi to infinity. The exogenous cost can originate from the capital and

human investment needed in order to increase one’s efficiency (speed) of trading. I use the trading

model to evaluate marginal benefits MB(λi) of having a given level of efficiency on the market.

The shape of the MB(λ) curve can be used to deduce marginal costs of obtaining a given level of

λi when dealers are able to choose optimally their levels of trade execution speed.

The argument is as follows. I take a given distribution F (λ) and obtain the steady-state expected

trading profits of dealers as a function of trade execution speed level λ. There is a continuum of

dealers, thus each single dealer’s decision does not affect the overall market equilibrium. This is a

simplifying feature of the analysis, and it allows us to obtain the individual marginal benefit curve

MB(λ) as the derivative of the cross-sectional expected trading profit function. I assume that each

dealer in period t = 0 is assigned randomly one of the liquidity and asset-ownership types, according

to the steady-state distribution of these for a particular level of trade execution speed λi. The model

starts in its steady-state from the beginning of time. Results from section 4.1 that characterize the

steady-state probability distribution for the Markov chain are used here.

I use the same calibration as in Section 4 to illustrate the analysis and reveal economic principles

that drive dealers’ profitability on fragmented markets. The resulting marginal benefit curve is

shown on Figure 10. The figure demonstrates that the marginal benefit from trading on the market

is increasing in the level of trade execution speed, except for the least efficient dealers. These

dealers enjoy a positive matching externality and benefit indirectly from trading with more efficient

dealers. They receive additional intermediation services from more efficient dealers. As their trade

execution speed increases, the value of such externality drops, which is reflected in the downward-

sloping portion of the marginal benefit curve. Dealers with different cost functions select their

optimal efficiency levels along the curve. Generally, the marginal cost is smaller for less efficient

dealers, which shows that being efficient is highly profitable on a decentralized interdealer market.

The positive externality faced by less efficient dealers creates an additional barrier to entry to the
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Figure 10: Equilibrium marginal benefit of trade execution speed
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6 Conclusion

In this paper, I present a model of a decentralized interdealer market where dealers differed in their

trade execution speed. The model is designed to fit the core-peripheral structure of dealer networks

documented in recent empirical studies of various fixed-income instruments. In equilibrium, more

efficient dealers intermediate order flow of peripheral dealers. The baseline model predicts a negative

relationship between dealers’ trade execution speed and customer average bid-ask spreads when

customers are equally likely to trade irrespective of the size of positive trading gains. Results

demonstrate an interesting link between the extent of active customer shopping and the difference

in average bid-ask spreads that customers face when they trade with central versus peripheral

dealers.

In the context of over-the-counter markets, this paper links together traditional search-theory,

in which intermediaries are typically homogeneous and the interdealer market is centralized, with

network-theory, which allows for richer network structures that are typically non-stochastic and
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exogenously fixed. Here the network structure arises endogenously as a result of heterogeneity in

dealers’ search technologies. Dealers with ex ante higher trade execution speed emerge as more

interconnected dealers in the steady-state trading equilibrium.

One particular application of these tools is the empirical analysis of transaction level data—the

model allows us to evaluate the part of customer bid-ask spreads that is attributable to heterogeneity

of dealers and their outside options. It is possible to estimate the distribution of dealers’ trade

execution speed separately for subcategories of different instruments and compare implications of

the model. This is particularly relevant to highly segmented markets in securitized products and

derivatives.

There are several directions for future research. Firstly, in the current paper I focus on the

benchmark scenario under which dealers differ in trade execution speed, while bargaining power is

the same across dealers. In reality, more efficient dealers may have greater market power in dealing

with their counterparties. The analysis of exogenous differences in market power across dealers

could strengthen the findings quantitatively.

Another important aspect of the current analysis is how the trading protocol is set up. The

analysis relies on random search-and-matching, where agents do not strategically choose other coun-

terparties. The condition for a successful trade execution is positive training gains. An alternative

way of setting up the trading process is a directed-search framework as in Burdett, Shi, and Wright

[2001]. Under the directed-search methodology sellers post quotes and buyers strategically choose a

seller to trade with. The directed-search methodology is not common in the literature on over-the-

counter markets; however, it is important to evaluate robustness of the key findings to alternative

specifications of the trading protocol.
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Appendices

A Supplementary Notation
To simplify the exposition of the formulas in this appendix, I introduce and define the following variables
and functions. I refer to this notation throughout the appendix as supplementary:

Agents’ Masses in the Population
1. The rate of meeting a dealer in set A with higher trade execution speed

by a dealer with trade execution speed λi = y:

mfstD(y, FA(·)) =

∫ ∞
y

(y + z)× dFA(z). (25)

2. Similarly, the rate of meeting a dealer with
lower trade execution speed:

mslwD(y, FA(·)) =

∫ y

0

(y + z)× dFA(z). (26)

3. The rate of meeting a dealer by
a customer:

mDo = mfstD(0, µho(·)) + mfstD(0, µlo(·)), for a non-owner customer; (27)
mDn = mfstD(0, µhn(·)) + mfstD(0, µln(·)), for an owner customer. (28)

4. The difference between two rates: the total rate of meetings between
low-owner dealers with trade execution speed lower than x and their
conjectured counterparties, and the total rate of such meetings
for low-non-owner dealers:

trdnetlow(x) =

∫ x

0

(
y × µChn + mfstD(y, µln(·)) + mfstD(y, µhn(·)) + mslwD(y, µhn(·))

)
× dµlo(z)

−
∫ x

0

(
y × µClo + mslwD(y, µlo(·))

)
× dµln(z). (29)

5. Similarly defined difference in rates for
dealers in high-liquidity state:

trdnethigh(x) = −
∫ x

0

(
y × µClo + mfstD(y, µho(·)) + mfstD(y, µlo(·)) + mslwD(y, µlo(·))

)
× dµhn(z)

+

∫ x

0

(
y × µChn + mslwD(y, µhn(·))

)
× dµho(z). (30)
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Agents’ Asset Valuations

6. The customer trading mapping used to
derive dealers’ asset valuations:

TC(x) = (1−Md)
−1 ×

(
max

(
∆VCh , x

)
µChn + max

(
∆VCl , x

)
µCln

+ min
(

∆VCh , x
)
µCho + min

(
∆VCl , x

)
µClo

)
. (31)

7. Dealers’ measure in the population weighted
by their trade execution speed levels:

Mλd =

∫ +∞

0

(
λj
)
dµhn

(
λj
)

+

∫ +∞

0

(
λj
)
dµln

(
λj
)

+

+

∫ +∞

0

(
λj
)
dµho

(
λj
)

+

∫ +∞

0

(
λj
)
dµlo

(
λj
)
. (32)

8. Two interdealer trading mappings (unweighted and weighted)
used to derive dealers’ asset valuations:

T (x) = (Md)
−1 ×

(∫ +∞

0

max (∆Vh (λj) , x) dµhn (λj) +

∫ +∞

0

max (∆Vl (λj) , x) dµln (λj)

+

∫ +∞

0

min (∆Vh (λj) , x) dµho (λj) +

∫ +∞

0

min (∆Vl (λj) , x) dµlo (λj)

)
, (33)

Tλ(x) = (Mλd)
−1 ×

(∫ +∞

0

λj max (∆Vh (λj) , x) dµhn (λj) +

∫ +∞

0

λj max (∆Vl (λj) , x) dµln (λj)

+

∫ +∞

0

λj min (∆Vh (λj) , x) dµho (λj) +

∫ +∞

0

λj min (∆Vl (λj) , x) dµlo (λj)

)
. (34)

In the following lemma, I prove that the mappings TC(x), T (x), and Tλ(x) are contraction mappings. I use
this result in other proofs that follow.

Lemma A.1. Let X = [(θlow/r), (θhigh/r)] and let ∆Vh(λ),∆Vh(λ) : [0,+∞) → X. The mapping T (x) :
X → X (standard Euclidean metric) satisfies the condition for being a contraction: ∀x, y ∈ X,∃k : 0 < k < 1
and |T (x)− T (y)| ≤ k × |x− y|. Similarly, this result holds for mappings TC(x) and Tλ(x).

Proof. I present a proof of the claim for T (x), the same line of argument applies to the two other mappings.
For any continuous cdf function FA(·):∫ +∞

0

max
(
g(λj), x

)
dFA

(
λj
)

= x×
∫ +∞

0

1{g(λj)≤x}dFA
(
λj
)

+

∫ +∞

0

g(λj)× 1{g(λj)>x}dFA
(
λj
)
.

Take any y < x ∈ R :∫ +∞

0

(
max

(
g(λj), x

)
−max

(
g(λj), y

))
dFA

(
λj
)

=

= (x− y)×
∫ +∞

0

1{g(λj)≤y}dFA
(
λj
)

+

∫ +∞

0

(x− g(λj))× 1{y<g(λj)≤x}dFA
(
λj
)

=

= (x− y)×
∫ +∞

0

1{g(λj)≤x}dFA
(
λj
)
−
∫ +∞

0

(g(λj)− y)× 1{y<g(λj)≤x}dFA
(
λj
)
.
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Similarly: ∫ +∞

0

(
min

(
g(λj), x

)
−min

(
g(λj), y

))
dFA

(
λj
)

=

= (x− y)×
∫ +∞

0

1{g(λj)≥x}dFA
(
λj
)

+

∫ +∞

0

(g(λj)− y)× 1{x>g(λj)≥y}dFA
(
λj
)

=

= (x− y)×
∫ +∞

0

1{g(λj)≥y}dFA
(
λj
)
−
∫ +∞

0

(x− g(λj))× 1{x>g(λj)≥y}dFA
(
λj
)
.

Use the facts established above to derive upper bound on T (x)− T (y) (clearly T (x) is non-decreasing in x,
so T (x)− T (y) ≥ 0 and I drop absolute value operators from the needed contraction condition):

T (x)− T (y) = (x− y)× (Md)
−1 (A)− (Md)

−1(B),

where A =

(∫ +∞

0

1{∆Vh(λj)≤x}dµhn (λj) +

∫ +∞

0

1{∆Vl(λj)≤x}dµln (λj) +

+

∫ +∞

0

1{∆Vh(λj)≥y}dµho (λj) +

∫ +∞

0

1{∆Vl(λj)≥y}dµlo (λj)

)
, and

B =

(∫ +∞

0

(∆Vh(λj)− y)× 1{y<∆Vh(λj)≤x}dµhn (λj) +

∫ +∞

0

(∆Vl(λj)− y)× 1{y<∆Vl(λj)≤x}dµln (λj) +

+

∫ +∞

0

(x−∆Vh(λj))× 1{x>∆Vh(λj)≥y}dµho (λj) +

∫ +∞

0

(x−∆Vl(λj))× 1{x>∆Vl(λj)≥y}dµlo (λj)

)
.

A is the total measure of dealers, to which a dealer with reservation value x would have sold the asset and
from which a dealer with reservation value y would have bought the asset. B is the mean trading gain for
dealers with reservation values in between x and y when they buy from a dealer with reservation value x
and sell to a dealer with reservation value y. As A increases, B increases by construction. The maximum
possible value for A is Md, and at this value B < 0. Thus it is possible to define k ∈ (0, 1) such that:

T (x)− T (y) < (x− y)× k.

One possible way to define k is as follows. Take any ε ∈ (0, 1). Over the set of any x and y such that the
measure A is greater than 1 − ε compute the minimum level b(ε) of the conditional gains from trade B,
which is strictly positive (otherwise A must be zero, which results in a contradiction). Then a plausible
value for k is:

k = max

(
ε, 1− r × b(ε)

θhigh − θlow

)
.

B Solving for Steady-State Equilibrium
I conjecture that in equilibrium dealers’ reservation values ∆Vh(λ) and ∆Vl(λ) are monotonic functions of
λ. I verify this conjecture once I obtain the solution for ∆Vh(λ) and ∆Vl(λ). Under this conjecture, the
system of differential equations describing law of motion for agents’ masses is (I use supplementary notation
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from appendix A).

dµln(λ)

dt
= γdn × µhn(λ)− γup × µln(λ) + trdnetlow(λ);

dµlo(λ)

dt
= γdn × µho(λ)− γup × µlo(λ)− trdnetlow(λ);

dµhn(λ)

dt
= −γdn × µhn(λ) + γup × µln(λ) + trdnethigh(λ);

dµho(λ)

dt
= −γdn × µho(λ) + γup × µlo(λ)− trdnethigh(λ).

It follows that when ∆Vh(λ) and ∆Vl(λ) are monotonic functions of λ, Proposition 3.2 together with the
relative symmetry condition from definition 3.2 implies that ∆Vh(λ) is decreasing in λ, while ∆Vl(λ) is
increasing. In such an equilibrium, more efficient dealers in low liquidity state will be buying the asset from
less efficient dealers in low liquidity state, while more efficient dealers in high liquidity state will be selling
to less efficient dealers in high liquidity state. Customers in high liquidity state never sell the asset, while
customers in low liquidity never buy, and this is consistent with customers’ equilibrium asset valuations.
These trading patterns are imposed in the system of differential equations above.

The Markov-switching across liquidity types is independent of trading, thus in the steady state the
proportion of agents in the high-liquidity state is always equal to γup/(γup + γdn). This allows us to solve
for customers’ masses in the population in terms of dealers’ masses:

µClo =
mDo (1−Md) γdnγup(

γdn + γup
) (

mDn× γdn + mDo
(
mDn + γup

)) , µCln =
γdn

γup + γdn
× (1−Md)− µClo;

µCho =
mDo (1−Md) γup

(
mDn + γup

)(
γdn + γup

) (
mDn× γdn + mDo

(
mDn + γup

)) , µChn =
γup

γup + γdn
× (1−Md)− µCho.

The restrictions on dealers’ masses are:

µhn(λ) =
γup

γup + γdn
× F (λ)×Md − µho(λ), µln(λ) =

γdn

γup + γdn
× F (λ)×Md − µlo(λ).

Dealers are born with a particular trade execution speed level λ. To simplify the exposition, I assume
that liquidity state switching intensities are symmetric: γup = γdn = γ. In the steady state, the left-hand side
of the system of differential equations above is zero, independent of λ. Thus I differentiate these equations
with respect to λ and obtain:

γ ×
(
µ′lo(λ)− µ′ho(λ)

)
+

(
λ× µChn +

∫ λ

0

(λ+ z)µ′hn(z)dz +

∫ ∞
λ

(λ+ z)
(
µ′hn(z) + µ′ln(z)

)
dz

)
µ′lo(λ)−

−

(
λ× µClo +

∫ λ

0

(λ+ z)µ′lo(z)dz

)
µ′ln(λ) = 0,

γ ×
(
µ′ho(λ)− µ′lo(λ)

)
−

(
λ× µClo +

∫ λ

0

(λ+ z)µ′lo(z)dz +

∫ ∞
λ

(λ+ z)
(
µ′ho(z) + µ′lo(z)

)
dz

)
µ′hn(λ) +

+

(
λ× µChn +

∫ λ

0

(λ+ z)µ′hn(λ)dz

)
µ′ho(λ) = 0.

I guess values of A =
∫∞

0
µho(z)dz and B =

∫∞
0
µlo(z)dz. Given the guesses for A and B, the above

system simplifies to a two-dimensional system of second order ODEs in terms of
∫ λ

0
µho(z)dz, and

∫ λ
0
µlo(z)dz.

I solve the system numerically and obtain µho(λ) and µlo(λ). I use this solution to update the guesses of A
and B and iterate until convergence. The convergence occurs very quickly. In the case of symmetric markets
defined in 4.1, no iteration is needed, because the system of ODEs does not depend on A nor B, see Lemma
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4.1.
After I obtain agents’ masses in a candidate equilibrium, it remains to solve for agents’ asset valuations

and verify the initial conjecture about monotonicity of dealers’ valuations ∆Vh(λ) and ∆Vl(λ). The solution
for agents masses does not depend on particular values of ∆Vh(λ) and ∆Vl(λ), because in the baseline model
any trade is executed as long as trading gains are positive.

The Bellman equation for dealers’ asset valuations implies (expression for ∆Vl(λ) is similar):

∆Vh (λ) = A(λ)−1 × { r × (θh/r) + γdn ×∆Vl (λ) +

+λ× (q(1−Md)T
C (∆Vh (λ)) + 0.5×MdT (∆Vh (λ))) + 0.5MλdTλ (∆Vh (λ)) }

where A(λ) = (r + γdn + λ× (q × (1−Md) + 0.5×Md) + 0.5×Mλd) .

Use Lemma A.1 that establishes contraction mapping property for TC(·), T (·), and Tλ(·). Holding agents’
masses fixed, the initial guess for ∆Vh(λ) and ∆Vl(λ) comes from agents’ buy-and-hold valuations and no
trading. Guesses are updated using the system of two Bellman equations above. The convergence occurs
very quickly, because the two Bellman equations are weighted averages of the three contraction mappings
and a constant.

C Random-Matching Technology

C.1 Lemma 2.1
Let A, B, and C be disjoint sets of dealers with measures µA, µB, and µC , respectively. Let m(X,Y ) be
the total meeting rate between dealers in arbitrary sets X and Y . Under the described random matching
technology the total meeting rate satisfies m(A,B ∪ C) = m(A,B) +m(A,C).

Proof.

Recall that according to the described random matching technology:

m(A,B ∪ C) =

(∫
(λ)dFA(λ) +

∫
(λ)dF(B∪C)(λ)

)
× µA(µB + µC).

Use the fact that for two disjoint sets the conditional cumulative distribution of dealers satisfies:

F(B∪C)(λ) =
FB(λ)× µB + FC(λ)× µC

µB + µC
.

Combine these two facts and rearrange terms:

m(A,B ∪ C) =

(∫
(λ)dFA(λ) +

∫
(λ)dFB(λ)× µB +

∫
(λ)dFC(λ)× µC

µB + µC

)
× µA(µB + µC)

=

∫
(λ)dFA(λ)× µA(µB + µC) +

∫
(λ)dFB(λ)× µAµB +

∫
(λ)dFC(λ)× µAµC

= m(A,B) +m(A,C).

D Customer Bid-Ask Spreads

D.1 Lemma 3.1
In the simplified environment, the equilibrium dealer’s value of the asset is equal to the weighted average of
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dealer’s buy-and-hold valuation and the average of customers’ reservation prices.

Proof.

Start with the Bellman equations for the dealer:

Vown =

∫ ∆

0

(θ)e−rtdt+
(
Vnon + q × Pbuy + (1− q)× (Vown − Vnon)

)
e−r∆

=
θ

r
+

(
q × Pbuy + (1− q)× (Vown − Vnon) + Vnon −

θ

r

)
e−r∆,

Vnon =
(
Vown − q × Psell − (1− q)× (Vown − Vnon)

)
e−r∆.

One can solve for dealer’s value function Vown and Vnon in terms of dealer’s reservation value (Vown−Vnon):

Vown =
q × r ×

(
Pbuy − (Vown − Vnon)

)
+
(
er∆ − 1

)
θ

(er∆ − 1) r
,

Vnon =
q
(

(Vown − Vnon)− Psell
)

er∆ − 1
.

Take the difference of the above expressions and solve for (Vown − Vnon):

(Vown − Vnon) =

(
P buy + P sell

)
2

× 2q

(er∆ − 1 + 2q)
+
θ

r
×

(
er∆ − 1

)
(er∆ − 1 + 2q)

.

I now show the second part of the lemma that corresponds to unequal delays in trading with customers-buyers
versus customers-sellers:

In the simplified environment, the equilibrium dealer’s value of the asset is equal to the weighted average
of dealer’s buy-and-hold valuation and the weighted average average of customers’ reservation prices, so that
when delays in dealing with customers-buyers are longer, the weight on customers-sellers reservation price
is larger.

When trading delays are more severe when selling to customers compared to buying from customers (the
opposite case is symmetric), I modify the Bellman equations in the following way, with k ∈ (1,+∞):

Vown =

∫ k∆

0

(θ)e−rtdt+
(
Vnon + q × Pbuy + (1− q)× (Vown − Vnon)

)
e−k×r∆

=
θ

r
+

(
q × Pbuy + (1− q)× (Vown − Vnon) + Vnon −

θ

r

)
e−k×r∆,

Vnon =
(
Vown − q × Psell − (1− q)× (Vown − Vnon)

)
e−r∆.

Similar steps as in Lemma 3.1 yield the following result:

(Vown − Vnon) =
(
Pbuy × w1 + Psell × (1− w1)

)
× w2 +

θ

r
× (1− w2) ,

w1 =

(
er∆ − 1

)
(ek×r∆ + er∆ − 2)

,

w2 =

(
ek×r∆ + er∆ − 2

)
q

(er∆ − 1) (ek×r∆ − 1) + (ek×r∆ + er∆ − 2) q
.

When delays in dealing with customers-buyers are longer (k > 1), the weight on customers-sellers reservation
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price is larger.

D.2 Proposition 3.1
Proof.

Let {∆V σ,µ} be a steady-state dynamic trading equilibrium. Below are the Bellman equations for a dealer’s
lifetime value function in terms of trade execution speed λi. As usual I use X and Y to refer to opposite
liquidity states of the dealer (when X = high, Y = low, and vice versa).

For a dealer who owns a unit of the asset:

r × VXo (λi) = θiX + γY × (VYo (λi)− VXo (λi)) +

+λi ×
(
Max

((
P ask

Xh (λi)−∆Vl (λi)
)
, 0
)
µChn + Max

((
P ask

Xl (λi)−∆Vl (λi)
)
µCln, 0

))
+

+

∫ +∞

0

Max ((PXh(i, j)−∆Vl (λi)) , 0)×
(
λi + λj

)
dµhn

(
λj
)

+

+

∫ +∞

0

Max ((PXl(i, j)−∆Vl (λi)) , 0)×
(
λi + λj

)
dµln

(
λj
)
.

For a dealer who does not own the asset:

r × VXn (λi) = γY × (VYn (λi)− VXn (λi)) +

+λi ×
(
Max

((
∆VX (λi)− P bid

Xh (λi)
)
µCho, 0

)
+ Max

((
∆VX (λi)− P bid

Xl (λi)
)
µClo, 0

))
+

+

∫ +∞

0

Max ((∆VX (λi)− PXh(i, j)) , 0)×
(
λi + λj

)
dµho

(
λj
)

+

+

∫ +∞

0

Max ((∆VX (λi)− PXl(i, j)) , 0)×
(
λi + λj

)
dµlo

(
λj
)
.

Recall that the equilibrium prices satisfy:

Customer-Dealer: P
ask/bid
XY (λi) = (1− q)×∆VX(λi) + q ×∆V CY ,

Interdealer: PXY(i, j) = 0.5×∆VX(λi) + 0.5×∆VY (λj).

I take the difference of the two equations and obtain dealer’s reservation value ∆VX(λi):

∆VX (λi) = A(λi)
−1 × { θiX + γY ×∆VY (λi) +

+λi × (q(1−Md)T
C (∆VX (λi)) + 0.5×MdT (∆VX (λi))) + 0.5MλdTλ (∆VX (λi)) }

where A(λi) = (r + γY + λi × (q × (1−Md) + 0.5×Md) + 0.5×Mλd) .

As λi →∞ the expression above gets arbitrarily close to:

∆VX (λi) =
q × (1−Md)× TC (∆VX (λi)) + 0.5×Md × T (∆VX (λi))

q × (1−Md) + 0.5×Md
.

Define the following mapping:

T1(x) =
q × (1−Md)

q × (1−Md) + 0.5×Md
× TC (x) +

0.5×Md

q × (1−Md) + 0.5×Md
× T (x) .

T1(x) is a contraction mapping (as a linear combination of two contraction mappings using Lemma A.1).
By definition, the average market mid-quote satisfies ∆V = T1(∆V ) and thus is a fixed point of T1(x). By
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contraction mapping theorem it exists and is unique.

D.3 Proposition 3.2
Proof.

Let {∆V σ,µ} be a steady-state dynamic trading equilibrium that is relatively symmetric. It implies, that
∆Vh(λ) ≥ ∆V ≥ ∆Vl(λ) for any value of λ ∈ [0,+∞). I use the fact that T1(x) in the definition of the
average market midquote is a contraction mapping (established in the proof of Proposition 3.1) and that
∆V is the fixed-point. The contraction property implies:

when x ≥ ∆V : ∆V ≤ T1(x) ≤ x.

Take λ1 > λ2 and show that:

∆Vh(λ1)−∆Vl(λ1) < ∆Vh(λ2)−∆Vl(λ2).

Recall that the Bellman equation implies (expression for ∆Vl(λ) is similar):

∆Vh (λ) = A(λ)−1 × { r × (θh/r) + γdn ×∆Vl (λ) +

+λ× (q(1−Md)T
C (∆Vh (λ)) + 0.5×MdT (∆Vh (λ))) + 0.5MλdTλ (∆Vh (λ)) },

where A(λ) = (r + γdn + λ× (q × (1−Md) + 0.5×Md) + 0.5×Mλd) .

The above expression for ∆Vh(λ) is a weighted average of dealer’s buy-and-hold value in perpetual high-
liquidity state (θh/r), dealer’s reservation value in the opposite liquidity state ∆Vl(λ), and the two trading
mappings:

∆Vh(λ) = rA(λ)−1 × (θh/r) + γdnA(λ)−1 ×∆Vl(λ) +

+λ× (q × (1−Md) + 0.5×Md)A(λ)−1 × T1(∆Vh(λ)) +

+0.5×MλdA(λ)−1 × Tλ (∆Vh (λ)) ,

where:

T1(∆Vh(λ)) =
q × (1−Md)

q × (1−Md) + 0.5×Md
× TC (∆Vh(λ)) +

0.5×Md

q × (1−Md) + 0.5×Md
× T (∆Vh(λ)) .

Using proposition above, I know that the fixed point of T1 is the market mid-quote. Bellman equations for
dealers’ valuations imply the following for the difference between reservation values (similar expression holds
for low liquidity state):

(r + γdn)× (∆Vh (λ1)−∆Vh (λ2))

≤ γdn × (∆Vl (λ1)−∆Vl (λ2)) + (λ1 − λ2)× (T1(∆Vh (λ2))−∆Vh (λ2)).

I use the fact that T1(·) is a contraction mapping, thus:

(∆Vh (λ1)−∆Vh (λ2)) ≤ γdn × (∆Vl (λ1)−∆Vl (λ2))

(r + γdn)
,

(∆Vl (λ1)−∆Vl (λ2)) ≤ γup × (∆Vh (λ1)−∆Vh (λ2))(
r + γup

) .

The result follows.
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E Analysis of Symmetric Markets

E.1 Lemma 4.1
Proof.

Start with the system of differential equations describing law of motion for agents’ masses (I use supplemen-
tary notation from appendix A).

dµln(λ)

dt
= γdn × µhn(λ)− γup × µln(λ) + trdnetlow(λ);

dµlo(λ)

dt
= γdn × µho(λ)− γup × µlo(λ)− trdnetlow(λ);

dµhn(λ)

dt
= −γdn × µhn(λ) + γup × µln(λ) + trdnethigh(λ);

dµho(λ)

dt
= −γdn × µho(λ) + γup × µlo(λ)− trdnethigh(λ).

Since the system above holds for any value of λ, and the left-hand side is always zero, I differentiate the
system with respect to λ. I also note that the Markov-switching across liquidity types is independent of
trading process, thus in the steady state the proportion of agents in the high-liquidity state is always equal
to γup/(γup + γdn).

The system collapses to two equations after symmetry conditions in definition 4.1 are imposed:

dµ(λ)

dt
= 0 = γ ×

(
F (λ)Md

2
− µ(λ)

)
− γ × µ(λ)−

−
∫ λ

0

(
y × µC +

∫ +∞

y

(y + z)× d
(
F (λ)Md

2
− µ(λ)

)
+

∫ +∞

0

(y + z)× dµ(λ)

)
× dµ(λ) +

+

∫ λ

0

(
y × µC +

∫ y

0

(y + z)× dµ(λ)

)
× d

(
F (λ)Md

2
− µ(λ)

)
,

where µC =
γ (1−Md)

4γ +Md

∫ +∞
0

zdF (z)
.

Simplifying the first equation (use integration by parts) and taking derivative with respect to λ, I obtain:

Md

2

((
γ + λµC −

∫ λ

0

µ(z)dz + 2λµ(λ)

)
F ′(λ) + λ(F (λ)− 1)µ′(λ)

)

=

(
2γ + 2λµC − 2

∫ λ

0

µ(λ)dz +
1

2

∫ +∞

λ

zMdF
′(z)dz + 4λµ(λ)

)
µ′(λ).

I denote x = λ and y(x) =
∫ x

0
µ(z) dz. The resulting equation is a second-order ODE:

Md

2

((
γ + xµC − y(x) + 2xy′(x)

)
F ′(x) + x(F (x)− 1)y′′(x)

)
=

(
2γ + 2xµC − 2y(x) + 4xy′(x) +

∫ +∞

x

1

2
zMdF

′(x)dz

)
y′′(x).
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