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Section 1

Strict Local Martingales
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Strict Local Martingales

Strict local martingales are local martingales which are no true
martingales

Appear in Probability theory, e.g. in the context of Girsanov’s
theorem, Novikov’s condition, etc.

Interesting in financial mathematics, because they are . . .

examples of arbitrage-free markets where market prices deviate from
fundamental prices,

often considered as models of asset price bubbles, (cf. Heston et al.
(2007), Protter, Jarrow, . . . )
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Fundamental Theorem of Asset Pricing

Theorem (FTAP; Delbaen & Schachermayer (1998))

Let S be a locally bounded semimartingale on a given filtered probability
space. The following are equivalent:

1 The Financial Market described by (S ,P) does not allow for arbitrage
in the sense of No Free Lunch with Vanishing Risk (NFLVR).

2 There exists Q ∼ P such that S is a local Q-martingale.

Any ‘reasonable’ model for a stock price S has the local martingale
property under Q.

If ‘locally bounded’ is dropped, the implication (2) ⇒ (1) remains
valid.
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Pricing Bubbles (1)

Definition (Price Bubble; Heston, Loewenstein & Willard (2007))

The Financial Market (S ,Q) with time horizon T contains a price bubble,
if for some t ∈ [0,T ) the current stock price St exceeds the fundamental
price EQ [ST | Ft ], i.e., if

St > EQ [ST | Ft ] .

Clearly, for locally bounded processes, an arbitrage-free financial
market (S ,Q) contains a bubble iff S is a strict local Q-martingale.

If ‘locally bounded’ is dropped, the strict local martingale property is
still sufficient for the appearance of a bubble in an arbitrage free
market model.

Martin Keller-Ressel (TU Dresden) Implied Volatilities from Strict Local Martingales October 8th, 2015 5 / 32



Pricing Bubbles (1)

Definition (Price Bubble; Heston, Loewenstein & Willard (2007))

The Financial Market (S ,Q) with time horizon T contains a price bubble,
if for some t ∈ [0,T ) the current stock price St exceeds the fundamental
price EQ [ST | Ft ], i.e., if

St > EQ [ST | Ft ] .

Clearly, for locally bounded processes, an arbitrage-free financial
market (S ,Q) contains a bubble iff S is a strict local Q-martingale.

If ‘locally bounded’ is dropped, the strict local martingale property is
still sufficient for the appearance of a bubble in an arbitrage free
market model.

Martin Keller-Ressel (TU Dresden) Implied Volatilities from Strict Local Martingales October 8th, 2015 5 / 32



Pricing Bubbles (2)

In a similar way, price bubbles of Put & Call options, bond prices etc.
can be studied.

In a strict local martingale model put-call-parity may fail and other
pathologies appear.

Strict local martingales are a continuous-time phenomenon.

Can bubbles be detected from implied volatilities?
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Section 2

The Setting of Continuous Local Martingales
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One-dimensional Markovian Diffusions

Local Volatility setting: Assume S given as (weak) solution of:

dSt = σ(St)dW
Q
t ,

where σ(0) = 0, σ−2 ∈ L1(0,∞) and S0 > 0.

Theorem (Delbaen & Shirakawa (2002), Blei-Engelbert-Senf (1990,
2009))

S is a strict local martingale if and only if∫ ∞
1

y

σ(y)2
dy <∞.
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Testing for Pricing Bubbles

Test for Price Bubbles (Jarrow, Kchia & Protter (2011))

Estimate σ(.) from historical (high-frequency) data

Extrapolate σ to (0,∞)

Evaluate the integral criterion of Delbaen & Shirakawa

Similar ideas can be found in Hulley & Platen (2011))

Applied by Jarrow et al. to stock price time-series

Claim to detect bubble in LinkedIn stock briefly after 2011 IPO.
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Testing for Pricing Bubbles

Some limitations of the Jarrow-Kchia-Protter test:

Sufficiently long time-series are needed

Result depends on extrapolation procedure

Test is based on local-volatility assumption

Result is sensitive to estimation procedure
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Section 3

Implied Volatility
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Implied Volatility

Definition (Implied Volatility)

Given a market or model price C (T ,K ) of a European call option with
maturity T and strike K , the implied volatility I (T ,K ) is the solution of

C (T ,K ) = CBS(T ,K , I (T ,K ))

where CBS(T ,K , σ) = S0N (d1(T ,K , σ))− Ke−rTN (d2(T ,K , σ)) is the
Black-Scholes price with volatility σ.

Implied volatility can be equivalently defined in terms of put prices
(given put-call-parity holds)

We reparameterize by log-moneyness x = log(K/S0)
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Asymptotics of Implied Volatility

Theorem (Lee’s formula)

Let the underlying S be a positive Q-martingale. Then the implied
volatility satisfies

lim sup
x↑∞

I (T , x)2T

x
= ψ(p∗ − 1) ∈ [0, 2],

lim sup
x↓−∞

I (T , x)2T

|x |
= ψ(q∗) ∈ [0, 2],

where

p∗ = sup{p ≥ 1 : EQ(Sp
T ) <∞},

q∗ = sup{q ≥ 0 : EQ(S−qT ) <∞} and

ψ(p) = 2− 4(
√

p(p + 1)− p).
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Asymptotics of Implied Volatility (2)

The heavier the right tail of log ST , the steeper the right wing of the
implied volatility smile,

The maximum possible slope of I 2(x)T is 2,

Friz & Benaim: Conditions under which limsup can be replaced by lim

Many higher order expansions (Gulisashvili,...)

Lee’s formula holds under the assumption that

S is a true Q-martingale,
S does not have mass at zero, i.e. Q(ST = 0) = 0.

Extension to mass-at-zero: De Marco, Hillairet & Jacquier (2014).
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Section 4

Implied Volatility in Strict Local Martingale Models
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The Martingale Defect

We assume that S is a non-negative local Q-martingale with S0 = 1

Definition (Martingale Defect)

The quantity
mT := 1− EQ [ST ] ∈ [0, 1]

is called the martingale defect of S at time T .

mT = 0: S is a true Q-martingale,

mT > 0: S is a strict local Q-martingale (stock price bubble).
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Put- and Call-Pricing

We set

CS(x) := EQ [(ST − ex)+] and PS(x) := EQ [(ex − ST )+] .

In complete markets these are the unique minimal super-replication
prices of calls resp. puts

It holds that
CS(x)− PS(x) = 1− ex −mT

and
(1−mT − ex)+ ≤ CS(x) < 1−mT ,

where the lower bound is asymptotically attained as x → −∞.
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Put- and Call-Pricing (2)

Hence the following are equivalent

S is a strict local Q-martingale

Put-Call parity fails

Call prices violate the classic no-static-arbitrage bounds for small
strikes

Call-implied volatility is different from Put-implied volatility

There exists x∗ ≤ 0 such that Call-implied volatility is undefined on
(−∞, x∗).
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Collateralized Calls

Cox & Hobson (2005) require that the value process V of a hedging
portfolio for the Call must satisfy the collateral requirement Vt ≥ G (St) at
intermediate times and show:

Theorem (Thm 5.2 in Cox & Hobson (2005))

Let G be a positive convex function satisfying lim sups↑∞
G(s)
s = α, and H

an arbitrary payoff satisfying H ≥ G , then under the above collateral
requirement the fair price (at inception) of a European option with
payoff H(ST ) is equal to EQ(H(ST )) + αmT .
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Collateralized Calls (2)

We set CαS (x) := CS(x) + αmT and call CαS (x) the α-collateralized
call.

The fully collateralized call price C 1
S (x) coincides with the call prices

in strict local martingale models proposed in Madan & Yor (2006),
Lewis (2000) and Heston et al. (2007).

The fully collateralized call price restores put-call-parity and respects
static no-arbitrage bounds.
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Collateralized Calls (3)

With respect to implied volatility we obtain the following:

Theorem (Jacquier, K.-R. (2015))

Let S be a non-negative local martingale.

(i) The implied volatility I pS of the Put PS is well defined on the whole
real line;

(ii) The implied volatility I 1S of the fully collateralised Call C 1
S is well

defined on R and coincides with the Put-implied volatility:
I 1S (x) = I pS (x), for all x ∈ R;

(iii) For α ∈ [0, 1) there exists x∗(α) ≤ 0 such that the implied
volatility IαS of the α-collateralised Call is well defined
on [x∗(α),+∞), but not on (−∞, x∗(α)).
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Expansion of Implied Volatility

Theorem (Jacquier, K.-R. (2015))

Let S be a non-negative strict local martingale with martingale defect mT

and suppose that α > 0. Then, as x tends to infinity, the following
expansions hold:

I pS (x) = I 1S (x) =

√
2x

T
+
N−1(mT )√

T
+ o(1)

and

IαS (x) =

√
2x

T
+
N−1(αmT )√

T
+ o(1).
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Expansion of Implied Volatility (2)

Corollary (Jacquier, K.-R. (2015))

If α = 0 then

lim
x↑∞

(
I 0S (x)−

√
2x

T

)
= −∞.

If mT = 0, then, for all α ∈ [0, 1],

lim
x↑∞

(
I pS (x)−

√
2x

T

)
= lim

x↑∞

(
IαS (x)−

√
2x

T

)
= −∞.
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Expansion of Implied Volatility & Testing for Bubbles

(I pS (T , x)2T always attains the maximum slope of 2 in a strict local
martingale model

At first order, IVs in a strict local martingale model look like IVs in a
true martingale model with a heavy right tail

First + Second order behavior: Necessary and sufficient condition for
strict local martingale property

Higher order expansions are possible under additional assumptions.

Test for Price Bubbles based on implied volatility

Fit a regression line to implied volatilities of options with large strike

Compare slope and intercept to theoretical expansion
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Testing for Bubbles

Advantages:

Test is model-free (no assumption on dynamics of S)

Uses implied instead of historical volatility (no time-series data
necessary)

Disadvantages:

Needs option-price data

Also based on extrapolation (x →∞)
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Section 5

Duality to martingale models with mass at zero
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Models in Duality

Definition (Models in Duality)

Let Q and P be probability measures on a filtered measure space and let
T > 0 be a fixed time horizon.

Let S be a strictly positive local Q-martingale and M be a non-negative
true P-martingale on [0,T ]. Denote by τ := inf{t > 0 : Mt = 0} the first
hitting time (of M) of zero and assume that τ is predictable and τ > 0,
P-a.s.

We say that the pair (S ,Q) is in duality to (M,P) if Q is absolutely
continuous with respect to P on FT , with

dQ
dP

∣∣∣∣
FT

= MT and St =
1

Mt
P-a.s. on {t < τ ∧ T}.
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Models in Duality (2)

In financial modelling, Q can be interpreted as the ‘share measure’
corresponding to the stock price M under P or—in the context of
currency models—as the ‘foreign measure’ corresponding to the
domestic measure P and the exchange rate process M.

The martingale defect of S (under Q) equals the mass at zero of M
(under P)

Hence, strict local martingale models are dual to true martingale
models with mass at zero.

Existence of a dual model (to a given strict local martingale model) is
shown in Kardaras et al. (2015) under very general conditions.

Relations between call and put-prices under Q and P are known as
‘put-call-duality’ or ‘put-call-symmetry’.
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Implied Volatilties in dual models

Theorem (Jacquier, K.-R. (2015))

Let S be a strictly positive strict local Q-martingale in duality with the
true P-martingale M with mass at zero.

Denote by IM(x) the implied volatility under P for log-strike x and
underlying M.

Then, for all x ∈ R,
I pS (x) = I 1S (x) = IM(−x).

Implied volatility in martingale models with mass at zero has been
studied in De Marco, Hillairet & Jacquier (2014).

‘Dualizing’ their results to the strict local martingale case we obtain
higher order expansions of implied volaility. . .
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Implied Volatilties in dual models (2)

Corollary (Jacquier, K.-R. (2015))

Let S be a strictly positive strict local Q-martingale, T > 0 and mT the
martingale defect of S . Set G (x) := EQ(ST11{ST≥ex}) and
nT := N−1(mT ).

If G (x) = o(x−1/2) as x tends to infinity, then

I pS (x) = I 1S (x) =

√
2x

T
+

nT√
T

+
n2T

2
√

2Tx
+

exp(12n
2
T )

√
2Tx

Ψ(x),

as x tends to infinity, where the function Ψ is such that
0 ≤ lim supx↑∞Ψ(x) ≤ 1.

. . .
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Implied Volatilties in dual models (3)

Corollary
. . .

If G (x) = O(e−εx) as x tends to infinity, for some ε > 0, then

I pS (x) = I 1S (x) =

√
2x

T
+

nT√
T

+
n2T

2
√

2Tx
+ Φ(x),

as x tends to infinity ,where the function Φ satisfies
lim supx↑∞

√
2Tx |Φ(x)| ≤ 1.
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Thank you for your attention!

A. Jacquier, M. Keller-Ressel. Implied Volatility in Strict
Local Martingale Models (2015). arXiv:1508.04351.
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