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PLAN:

Discussion on probability distributions and their

uniqueness/non-uniqueness in terms of the moments.

Relation of these with infinite divisibility.

Non-uniqueness may appear for heavy-tailed distributions.

Most distributions used in stochastic financial models are heavy-tailed

and infinitely divisible.

Uniqueness is important. Non-uniqueness is risky!

Recent results along with Classics. Open questions and Conjectures.

Joint with G.D. Lin (Taipei), C. Kleiber (Basel), S. Ostrovska (Ankara).
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Standard notations and terminology

Basics: Probability space (Ω,F ,P), r.v. X , d.f. F , µF .

Assumption: Finite moments, ∫ ∣x ∣k dF (x) < ∞, k = 1,2, . . .

kth order moment mk = E[X k], {mk} the moment sequence of X , F .

Classical Moment Problem: Two questions: existence, uniqueness.

X , or F , is either M-determinate, unique with the moments {mk},

or M-indeterminate, non-unique, there are others, same moments.

Write: M-det and M-indet. For M-indet, fundamental result! Later.

Specific names depending on the support of F , the range of X :

supp(F ): [0,1] (Hausdorff);

R+ = [0,∞) (Stieltjes);

R1 = (−∞,∞) (Hamburger).
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Why the moments? Many reasons.

Fréchet-Shohat Theorem: Sequence of d.f.s F1,F2, . . . ,Fn, . . . with

m
(n)
k = ∫ xk dFn(x) → mk , as n →∞ for k = 1,2, . . . .

Then: {mk} is a moment sequence of a d.f., say F .

If F is M-det, then Fn ⇒ F as n →∞.

Remark: Chebyshev, Markov, ..., Stieltjes, many more later.

Name: Second Limit Theorem. In some areas, e.g. Random Graphs,

Number Theory, Random Matrices, the only way to derive some

asymptotic results is to use the above theorem, i.e. convergence of

moments.

Inverse problem: Given the moments {mk}, find the d.f. F , or density.

In Financial Models: Find bounds for derivatives prices or calculate the

fair price of options, SD linear programming ...
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Best known M-indet distribution?

Log-normal distribution: Z ∼ N(0,1), X = eZ ∼ Log N(0,1)

f (x) =
1

√
2π

1

x
exp [−

1

2
(ln x)2] , x > 0; mk = E[X k] = ek

2
/2, k = 1,2, . . . .

Define two infinite sets of random variables, Stieltjes classes:

Sc = {Xε, ε ∈ [−1,1]}, Xε ∼ fε, fε(x) = f (x) [1 + ε sin(2π ln x)], x ∈ R;

Sd = {Ya, a > 0}, P[Ya = aen] = a−n e−n
2
/2/A, n = 0,±1,±2, . . . .

For any ε ∈ [−1,1] and any a > 0, the following relations hold:

E[X k
ε ] = E[Y k

a ] = E[X k] = ek
2
/2, for k = 1,2, . . . .

⇒ Log N is M-indet. Too ‘many’, same moments. Look at Sc and Sd .
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Black-Scholes Model, GBM = a linear SDE, constant µ > 0 and σ > 0:

dSt = µStdt + σStdWt , S0 > 0 ⇒ St ∼ Log N(µt , σ
2
t ), M-indet for t > 0.

Classics: Log N is infinitely divisible (inf.div.). Thorin (1978).

What can we say about the members of the above family

Sc = {Xε, ε ∈ [−1,1]}, Xε ∼ fε, fε(x) = f (x) [1 + ε sin(2π ln x)], x ∈ R?

It is known that for ε = 1, the r.v. X1 ∼ f1 is not inf.div. Same for X−1.

Conjecture: All Xε, ε ≠ 0, are not inf.div.

Next, Log N is unimodal, while any fε, ε ≠ 0, has infinitely many modes.

Open Question: Suppose that F is an absolutely continuous distribution

function on R+ with all moments finite. Let for F two ‘properties’ hold:

(i) mk(F ) = ∫
∞

0 xk dF (x) = ek
2
/2, k = 1,2, . . . ; (ii) F is unimodal.

Prove that F = Log N . Otherwise give a counterexample.

Remark: If F has moments {ek
2
/2} and is inf.div. ⇏ F = Log N . C.Berg.
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Classical Conditions:

Cramér’s: For a r.v. X ∼ F on R, let the m.g.f. exist, i.e.

M(t) = E[etX ] < ∞ for t ∈ (−t0, t0), t0 > 0 ⇒

light tails. Then: X has all moments finite, and X , i.e. F , is M-det.

If no m.g.f., heavy tails ⇒ X is either M-det, or M-indet.

Hardy’s: Consider a r.v. X > 0, X ∼ F . Suppose
√

X has a m.g.f.:

E[et
√

X ] < ∞ for t ∈ [0, t1), t1 > 0.

Then X has all moments finite, say mk = E[X k], k = 1,2, . . . and more,

X is M-det, i.e. F is the only d.f. with the moment sequence {mk}.

Notice: Condition on
√

X , conclusion for X . Rôle of exponent 1
2
.

Corollary: If a r.v. X > 0 has a m.g.f., then its square X 2 is M-det.
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Carleman’s: Depending on the support, R or R+,

C =
∞

∑
k=1

1

(m2k)1/2k
, C =

∞

∑
k=1

1

(mk)1/2k
.

Statement: C = ∞ ⇒ F is M-det. Only sufficient.

Krein’s: Assume density f > 0. For support R or R+,

K[f ] ≡ ∫
∞

−∞

− ln f (y)

1 + y2
dy , K[f ] ≡ ∫

∞

a

− ln f (y2)

1 + y2
dy , a ≥ 0.

Statement: K[f ] < ∞ ⇒ F is M-indet. Only sufficient.

Remark: Available are converses to Carleman’s and Krein’s (A. Pakes,

G.D. Lin) and a discrete version of Krein’s (H. Pedersen).
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Stieltjes Class: Given X ∼ F , finite moments, density f , L2[f ].

Suppose we have found a function h, call it a perturbation function:

∣h(x)∣ ≤ 1, x ∈ R1 and f (x)h(x), x ∈ R1, has vanishing moments:

∫ xk f (x)h(x)dx = 0, k = 0,1,2, . . . (h � P in L2[f ]).

Then the following family of functions is called Stieltjes class:

S = S(f ,h) = {fε(x) = f (x)[1 + εh(x)], x ∈ R1, ε ∈ [−1,1]}.

If h is proper, for any ε ∈ [−1,1], fε is density. If Xε ∼ Fε, fε, then

E[X k
ε ] = E[X k], k = 1,2, . . . ; ε ∈ [−1,1]; X0 = X .

All r.v.s in S are M-indet. If F is M-det ⇒ h = 0 and S = {f }.

Index of dissimilarity in S: D(f ,h) = ∫ ∣h(x)∣f (x)dx , in [0,1].
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Rate of growth of the moments and (in)determinacy

Stieltjes case: r.v. X ∈ R+, mk = E[X k], k = 1,2, . . . Define:

∆k =
mk+1

mk
. It increases in k and let ∆k = O((k + 1)γ) as k →∞.

The number γ = rate of growth of the moments of X .

Statement 1: If γ ≤ 2, then X is M-det.

Statement 2: γ = 2 is the best possible constant for X to be M-det.

Equiv: If ∆k = O((k + 1)2+δ), δ > 0, there is a r.v. Y which is M-indet.

Statement 3: If γ > 2, we add Lin’s condition: −x f ′(x)/f (x), x →∞,

is ultimately monotone and tends to infinity. Then X is M-indet.

Hamburger case: Similar statements for r.v.s on R, with m2(k+1)/m2k .
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Exp Example: ξ ∼ Exp(1), density e−x , x > 0, m.g.f., Cramér, Hardy.

Result: ξr is M-det for 0 ≤ r ≤ 2 and M-indet for r > 2. By Krein-Lin.

Now, X = ξ3 ∼ G has mk = E[X k] = (3k)!, fast ↗. Rate γ > 2. Density

g = G ′ is g(x) = 1
3

x−2/3 e−x
1/3
, satisfies Lin’s condition ⇒ ξ3 is M-indet.

Stieltjes class: Use g(x) and perturbation h(x) = sin(
√

3 x1/3 − π/3)

S(g ,h) = {gε(x) = g(x)[1 + εh(x)], x > 0, ε ∈ [−1,1]}.

Notice, X = ξ3 is both unimodal and inf.div.

Conjecture: In S(g ,h) any gε, ε ≠ 0, has infinitely many modes (easy),

and is not inf.div.

Open Question: Let F on R+ be absolutely continuous, unimodal and

with moments {(3k)!}. Is it true that F = G ?

More Questions: Instead of ‘unimodal’, assume ‘inf.div.’, or even both.

Is F = G ?
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Normal Example: Z ∼ N(0,1), Z 2, Z 3, Z 4, ∣Z ∣r .

Z is Cramér’s ⇒ Z is M-det. ∣Z ∣ is Cramér’s ⇒ Z 2 is M-det, by Hardy’s.

However, Z 2 = χ2
1 (light tail) is also Cramér’s ⇒ Z 4 is M-det, by Hardy’s.

Comment: To apply twice Cramér’s, and twice Hardy’s, is the shortest

way to prove that power 4 of the normal r.v. Z , Z 4, is M-det.

General Result: ∣Z ∣r is M-det for 0 ≤ r ≤ 4, and M-indet for r > 4.

Different proofs. Explicit Stieltjes classes.

Strange Case: X = Z 3 is M-indet, however ∣X ∣ = ∣Z ∣3 is M-det. Why?

Hint: X on R and ∣X ∣ on R+ have different rate of growth of moments.

Remark: The M-indet property of X = Z 3 can be analyzed with its

unimodality and inf.div. As before: Conjectures, Open Questions.
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Recent Multidimensional Results: Not much done!

KS JMVA (2013); SL, TPA (2012/2013).

Theorem: Given a random vector X ∼ F with arbitrary distribution in Rn

and finite all multi-indexed moments mk1,...,kn = E[X k1
1 ⋯ X kn

n ].

Consider the length of X : ∣∣X ∣∣ =
√

∣∣X ∣∣2 =
√

X 2
1 + ... +X 2

n .

Suppose: 1-dim. non-neg. r.v. ∣∣X ∣∣ is Cramér’s: E[ec ∣∣X ∣∣] < ∞, c > 0.

Then the n-dim. Hamburger moment problem for F has a unique

solution, i.e. the random vector X ∈ Rn is M-det. Equivalently: F is the

only n-dim. d.f. with the set of multi-indexed moments {mk1,...,kn}.

Proof: We follow two steps.

Step 1: Cramér’s for ∣∣X ∣∣ ⇒ ∣∣X ∣∣2 is M-det, by Hardy’s (Stieltjes case).

Step 2: Amazing statement by Putinar-Schmüdgen: If ∣∣X ∣∣2 is M-det

(1-dim. Stieltjes), then F is M-det (n-dim. Hamburger).

J. Stoyanov Probability Distributions



Moment determinacy of the solutions of SDEs

Stochastic process X = (Xt , t ∈ [0,T ]), solution of Itô’s type SDE:

dXt = a(t,Xt)dt + σ(t,Xt)dWt , X0, t ∈ [0,T ], or t ≥ 0.

Here W = (Wt , t ≥ 0) is a standard BM, X0 is constant or a r.v. Under

‘general conditions’ on the drift a(⋅) and the diffusion σ2(⋅) this SDE has

a unique weak solution, s.t. at any time t, Xt has all moments finite.

Question: When are the 1-dimensional and the n-dimensional distr. of

X uniquely determined by their marginal or multi-indexed moments?

It may happen that a SDE has a unique weak solution which, however, is

non-unique in terms of the moments. No surprise!

Cases: ∣σ(⋅)∣ ≤ K , σ(x) =
√

x and σ(x) = x . Rôle of σ2(⋅).
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Now a Challenge: Given are the sequences {k!},{(2k)!},{(3k)!}.

Do you believe, at one glance, in what follows?

● There is only one SDE such that at any time t > 0, the moments of

the solution Xt are {k!, k = 1,2, . . .}.

● There is only one SDE such that at any time t > 0, the moments of

the solution Xt are {(2k)!, k = 1,2, . . .}.

● There are infinitely many SDEs such that at any time t > 0, all

solutions have the same moments {(3k)!, k = 1,2, . . .}.

Details follow ...
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Theorem 1: (Involves {k!})

There is only one SDE with explicit coefficients such that its unique weak

solution X = (Xt , t ≥ 0) is a stationary diffusion Markov process with

correlation function e−ct , c > 0, and at any time t ≥ 0, the moments of

Xt are E[X k
t ] = k!, k = 1,2, . . . More, Xt is exponentially integrable.

Theorem 2: (Involves {(2k)!})

There is only one SDE with explicit coefficients such that its unique weak

solution X = (Xt , t ≥ 0) is a stationary diffusion Markov process with

correlation function e−ct and at any time t ≥ 0, the moments of Xt are

E[X k
t ] = (2k)!, k = 1,2, . . . Here Xt is not exponentially integrable.
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Theorem 3: (Involves {(3k)!})

There are infinitely many stationary diffusion Markov processes

{X (ε), ε ∈ [−1,1]} satisfying explicit SDEs, such that at any time t ≥ 0,

all X
(ε)
t have the same moments E[(X

(ε)
t )k] = (3k)!, k = 1,2, . . . .

None is exponentially integrable.

J. Stoyanov Probability Distributions



How to prove the above? We need different arguments, A, B and:

Fundamental Result (C. Berg and co.): If a d.f. F with finite

moments is M-indet, then there are infinitely many absolutely continuous

and infinitely many discrete distributions all with the same moments as F .

A: The numbers k!, (2k)!, (3k)! are related to the r.v. ξ ∼ Exp(1) ∶

mk(ξ) = k!, mk(ξ
2) = (2k)!, mk(ξ

3) = (3k)!, k = 1,2, . . . .

And we know everything about their moment determinacy:

ξ is M-det, ξ2 is M-det, ξ3 is M-indet.

For later we need the densities: e−x , 1
2

x−1/2e−x
1/2
, 1

3
x−2/3 e−x

1/3
, x > 0.

B: How to construct a stochastic process X = (Xt , t ≥ 0) with prescribed

marginal distributions and correlation structure?
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Regarding B: Start with a d.f. F , whose density f = F ′ is continuous,

bounded and strictly positive in (a,b) ∶= supp(F ) (finite or infinite).

Assume that the variance of F is finite; denote the mean by m1.

For constant c > 0, define the function v(x), x ∈ (a,b), as follows:

v(x) =
2 c

f (x) ∫
x

a
(m1 − u)f (u)du =

2 c

f (x)
(m1 F (x) − ∫

x

a
u f (u)du) .

Theorem. (Bibby et al, 2005) Suppose that F , f and v are as above, W

is a standard BM indep. of r.v. X0. Then the following SDE

dXt = −c(Xt −m1)dt +
√

v(Xt)dWt , Xt ∣t=0 = X0, t ≥ 0

has a unique weak solution X = (Xt , t ≥ 0) which is a diffusion Markov

process. Moreover, X is ergodic with ergodic density f . If the density of

X0 is f , the process X is stationary with correlation function e−ct , t ≥ 0.
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Hint for Th. 1:

Use ξ ∼ Exp(1) and its density f (x) = e−x on (0,∞), calculate v(x), the

‘future’ diffusion coefficient; the drift is prescribed as above.

Write explicitly a SDE with X0 ∼ f ⇒ homogeneous diffusion Markov

ergodic process X with invariant density f . For t ≥ 0, the moments of Xt

are {k!}, Xt is M-det, and Xt is exp. integrable. All done!

Hint for Th. 2:

Use ξ2, its density is f (x) = 1
2

x−1/2e−x
1/2

on (0,∞), calculate v(x), the

‘future’ diffusion coefficient; the drift is prescribed as before.

Write explicitly a SDE with X0 ∼ f ⇒ homogeneous diffusion Markov

ergodic process X with invariant density f . For t ≥ 0, the moments of Xt

are (2k)!, Xt is M-det, Xt is not exp. integrable. Done
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Hint for Th. 3:

Step 1. Use ξ3, density f (x) = 1
3

x−2/3 e−x
1/3

on (0,∞). Calculate v(x),

write a SDE with X0 ∼ f ⇒ homog. diffusion Markov ergodic process X

with invariant density f . For t ≥ 0, the moments of Xt are (3k)!, Xt is

M-indet, ‘very’ heavy tail, no exp. integrability.

Step 2. Stieltjes class: Use the above f and h(x) = sin(
√

3x2/3 − π/3):

S = {fε(x) = f (x)[1 + εh(x)], x ∈ R1, ε ∈ [−1,1]}

Use density fε, calculate vε, write SDE(ε), same drift as before, X0 ∼ fε,

and diffusion coeff. vε ⇒ homogeneous diffusion ergodic Markov process

X (ε) = (X
(ε)
t , t ≥ 0) with invariant density fε.

Thus obtain an infinite family {X (ε), ε ∈ [−1,1]}. Clearly, all

X
(ε)
t , t ≥ 0, ε ∈ [−1,1], have moments {(3k)!}. No exp. integrability.
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Question: Why chosen the moments k!, (2k)!, (3k)!, k = 1,2, . . .?

Answer: Not just for curiosity. It was good to use our findings on Exp.

More important is that these numbers show where are the boundaries

between the following three groups of SDEs:

SDEs with M-determinacy and exponential integrability;

SDEs with M-determinacy but no exponential integrability;

SDEs with M-indeterminacy and hence no exponential integrability.

General result: We can find explicitly a SDE such that its solution has

the moment sequence {mk} coming from an arbitrary absolutely

continuous distribution F . Details ... the next time!

More topics: Random sums and ruin times, volatility processes, ...
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Two Final Questions:

Open Question 1: For ξ ∼ Exp, we know that the cube ξ3 has moments

{(3k)!} and is M-indet. Since ξ3 is absolutely continuous, in view of the

above Fundamental theorem, we arrive at this question: How to find a

discrete r.v. whose moment sequence is {(3k)!}?

Open Question 2: Given X ∼ F , L2[f ] = Hilbert space, ‘weight’ f = F ′.

Known: If X is Cramér’s, E[etX ] < ∞, t ∈ (−t0, t0), then the set of

polynomials P is dense in L2[f ].

In this spirit, Engelbert & Di Tella TPA (2015) showed that the

monomials are dense in an appropriate L2 Hilbert space of r.v.s.

Essential in their proof is the M-det of X , implied by Cramér’s.

Now, Hardy’s is a weaker condition for M-uniqueness. Hence a question:

If a r.v. X ∼ F , X > 0 is Hardy’s, E[et
√

X ] < ∞, t ∈ [0, t1), is it true that

the polynomials P are dense in the Hilbert space L2[f ]?

What about the monomials?
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