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Outline

• Primal-Dual Geometry of Level Sets in Conic Optimization

• A Geometric Measure of Feasible Regions and Interior-Point

Method (IPM) Complexity Theory

• Geometric Measures and their Explanatory Value of the Prac-

tical Performance of IPMs
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Primal and Dual Linear Optimization Problems

P : VAL := minx cTx D : VAL := maxy,z bTy

s.t. Ax = b s.t. ATy + z = c
x ≥ 0 z ≥ 0

A ∈ IRm×n

“x ≥ 0” is “x ∈ <n+”
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Primal and Dual Conic Problem

P : VAL∗ := minx cTx D : VAL∗ := maxy,z bTy

s.t. Ax = b s.t. ATy + z = c
x ∈ C z ∈ C∗

C ⊂ X is a regular cone: closed, convex, pointed, with nonempty

interior

C∗ := {z : zTx ≥ 0 ∀x ∈ C}
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The Semidefinite Cone

Sk denotes the set of symmetric k × k matrices

Sk+ denotes the set of positive semi-definite k × k symmetric
matrices

Sk++ denotes the set of positive definite k×k symmetric matrices

“X � 0” denotes that X is symmetric positive semi-definite

“X � Y ” denotes that X − Y � 0

“X � 0” to denote that X is symmetric positive definite, etc.

Remark: Sk+ = {X ∈ Sk | X � 0} is a regular convex cone.

Furthermore, (Sk+)∗ = Sk+, i.e., Sk+ is self-dual.
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Primal and Dual Semidefinite Optimization

P : VAL∗ := minx cTx D : VAL∗ := maxy,z bTy

s.t. Ax = b s.t. ATy + z = c

x ∈ Sk+ z ∈ Sk+

This is slightly awkward as we are not used to conceptualizing x

as a matrix.
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Primal and Dual Semidefinite Optimization,
again

minX C •X maxy,Z
∑m
i=1 yibi

s.t. Ai •X = bi , i = 1, . . . ,m s.t.
∑m
i=1 yiAi + Z = C

X � 0 Z � 0

Here C •X :=
k∑
i=1

k∑
j=1

CijXij is the “trace inner product,”

since C •X = trace(CTX)

7



Back to Linear Optimization

P : VAL := minx cTx D : VAL := maxy,z bTy

s.t. Ax = b s.t. ATy + z = c
x ≥ 0 z ≥ 0
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Meta-Lessons from Interior-Point
Theory/Methods

• Linear optimization is not much more special than conic con-
vex optimization

• A problem is ill-conditioned if VAL is finite but the primal or
dual objective function level sets are unbounded

• ε-optimal solutions are important objects in their own right

• Choice of norm is important; some norms are more natural
for certain settings
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Meta-Lessons from Interior-Point
Theory/Methods, continued

• All the important activity is in the (regular) cones

Indeed, we could eliminate the y-variable and re-write P and D as:

P : minx cTx D : VAL := minz (x0)Tz

s.t. x− x0 ∈ L s.t. z − c ∈ L⊥
x ≥ 0 z ≥ 0

where x0 satisfies Ax0 = b and L = null(A).

But we won’t.
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Primal and Dual Near-Optimal Level Sets

P : VAL := minx cTx D : VAL := maxy,z bTy

s.t. Ax = b s.t. ATy + z = c
x ≥ 0 z ≥ 0

Pε := {x : Ax = b, x ≥ 0, cTx ≤ VAL + ε}

Dδ := {z : ∃y satisfying ATy + z = c, z ≥ 0, bTy ≥ VAL− δ}
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Level Set Geometry Measures

Let e := (1,1, . . . ,1)T . Define for ε, δ > 0:

RPε := maxx ‖x‖1 rDδ := maxy,z,r r

s.t. Ax = b s.t. ATy + z = c
x ≥ 0 z ≥ 0
cTx ≤ VAL + ε bTy ≥ VAL− δ

z ≥ r · e

RPε is the norm of the largest primal ε-optimal solution

rDδ measures the largest distance to the boundary of <n+ among
all dual δ-optimal solutions z
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Level Set Geometry Measures, continued

RPε := maxx ‖x‖1 rDδ := maxz,r r

s.t. x ∈ Pε s.t. z ∈ Dδ
z ≥ r · e

Pε := {x : Ax = b, x ≥ 0, cTx ≤ VAL + ε}

Dδ := {z : ∃y satisfying ATy + z = c, z ≥ 0, bTy ≥ VAL− δ}
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RPε Measures Large Near-Optimal Solutions
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RPε Measures Large Near-Optimal Solutions
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rDδ Measures Nicely Interior Near-Optimal
Solutions
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rDδ Measures Nicely Interior Near-Optimal
Solutions
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rDδ Measures Nicely Interior Near-Optimal
Solutions

18



Main Result: RPε and rDδ are Reciprocally
Related

RPε := maxx ‖x‖1 rDδ := maxz,r r

s.t. x ∈ Pε s.t. z ∈ Dδ
z ≥ r · e

Main Theorem: Suppose VAL is finite. If RPε is positive and
finite, then

min{ε, δ} ≤ RPε · rDδ ≤ ε+ δ .

Otherwise {RPε , rDδ } = {∞, 0}.
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Comments

min{ε, δ} ≤ RPε · rDδ ≤ ε+ δ

• RPε , rDδ each involves primal and dual information

• each inequality can be tight (and cannot be improved)

• setting δ = ε, we obtain ε ≤ RPε · rDε ≤ 2ε, showing these two

measures are inversely proportional (to within a factor of 2)
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Comments, continued

min{ε, δ} ≤ RPε · rDδ ≤ ε+ δ

• exchanging the roles of P and D

• how to prove
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Comments, continued

RPε := maxx ‖x‖1 rDδ := maxz,r r

s.t. x ∈ Pε s.t. z ∈ Dδ
z ≥ r · e

ε ≤ RPε · rDδ ≤ 2ε

“The maximum norms of the primal objective level sets are al-

most exactly inversely proportional to the maximum distances to

the boundary of the dual objective level sets”
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Relation to LP Non-Regularity Property

Standard LP Non-Regularity Property: If VAL is finite, the

set of primal optimal solutions is unbounded iff every dual feasi-

ble z lies in the boundary of <n+.

RPε := maxx ‖x‖1 rDδ := maxz,r r

s.t. x ∈ Pε s.t. z ∈ Dδ
z ≥ r · e

In our notation, this is RPε = ∞ iff rDδ = 0, which is the second

part of the Main Theorem
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Relation to LP Non-Regularity, continued

RPε := maxx ‖x‖1 rDδ := maxz,r r

s.t. x ∈ Pε s.t. z ∈ Dδ
z ≥ r · e

The first part of the main theorem is: if RPε is finite and positive,

then

min{ε, δ} ≤ RPε · rDδ ≤ ε+ δ

This then is a generalization to nearly-non-regular problems,

where RPε is finite and rDδ is non-zero
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Question about Main Result

RPε := maxx ‖x‖1 rDδ := maxz,r r

s.t. x ∈ Pε s.t. z ∈ Dδ
z ≥ r · e

Q: Why the ‖ · ‖1 norm?

A: Because f(x) := ‖x‖1 is a linear function on the cone <n+.

The linearity gives RPε nice properties. If ‖ · ‖ is not linear on <n+
then we have to slightly weaken the main theorem as we will see

. . . .
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Primal and Dual Conic Problem

P : VAL∗ := minx cTx D : VAL∗ := maxy,z bTy

s.t. Ax = b s.t. ATy + z = c
x ∈ C z ∈ C∗

C ⊂ X is a regular cone: closed, convex, pointed, with nonempty

interior

C∗ := {z : zTx ≥ 0 ∀x ∈ C}
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Primal and Dual Level Sets

P : VAL∗ := minx cTx D : VAL∗ := maxy,z bTy

s.t. Ax = b s.t. ATy + z = c
x ∈ C z ∈ C∗

Pε := {x : Ax = b, x ∈ C, cTx ≤ VAL∗+ ε}

Dδ := {z : ∃y satisfying ATy + z = c, z ∈ C∗, bTy ≥ VAL∗ − δ}
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Level Set Geometry Measures

Fix a norm ‖x‖ for the space of the x variables.

The dual norm is ‖z‖∗ := max{zTx : ‖x‖ ≤ 1} for the z variables.

Define for ε, δ > 0:

RPε := maxx ‖x‖ rDδ := maxy,z dist∗(z, ∂C∗)

s.t. Ax = b s.t. ATy + z = c
x ∈ C z ∈ C∗
cTx ≤ VAL∗+ ε bTy ≥ VAL∗ − δ

dist∗(z, ∂C∗) denotes the distance from z to ∂C∗ in the dual norm
‖z‖∗
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Level Set Geometry Measures, continued

RPε := maxx ‖x‖ rDδ := maxy,z dist∗(z, ∂C∗)

s.t. Ax = b s.t. ATy + z = c
x ∈ C z ∈ C∗
cTx ≤ VAL∗+ ε bTy ≥ VAL∗ − δ

RPε is the norm of the largest primal ε-optimal solution

rDδ measures the largest distance to the boundary of C∗ among

all dual δ-optimal solutions z
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Level Set Geometry Measures, continued

RPε := maxx ‖x‖ rDδ := maxz dist∗(z, ∂C∗)

s.t. x ∈ Pε s.t. z ∈ Dδ

Pε := {x : Ax = b, x ∈ C, cTx ≤ VAL∗+ ε}

Dδ := {z : ∃y satisfying ATy + z = c, z ∈ C∗, bTy ≥ VAL∗ − δ}
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RPε Measures Large Near-Optimal Solutions
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RPε Measures Large Near-Optimal Solutions
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rDδ Measures Nicely Interior Near-Optimal
Solutions
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rDδ Measures Nicely Interior Near-Optimal
Solutions
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rDδ Measures Nicely Interior Near-Optimal
Solutions
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Main Result, Again: RPε and rDδ are Reciprocally
Related

RPε := maxx ‖x‖ rDδ := maxz dist∗(z, ∂C∗)

s.t. x ∈ Pε s.t. z ∈ Dδ

Main Theorem: Suppose VAL∗ is finite. If RPε is positive and
finite, then

τC∗ ·min{ε, δ} ≤ RPε · rDδ ≤ ε+ δ .

If RPε = 0, then rDδ = ∞. If RPε = ∞ and VAL∗ is finite, then
rDδ = 0.

Here τC∗ denotes the width of the cone C∗ . . . .
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On the Width of a Cone

Let K be a convex cone with nonempty interior

τK := max
x
{dist(x, ∂K) : x ∈ K, ‖x‖ ≤ 1}

If K is a regular cone, then τK ∈ (0, 1]

τK generalizes Goffin’s “inner measure”
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A Cone with small Width τK

τK << 1
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Equivalence of Norm Linearity and Width of
Polar Cone

Proposition: Let K be a regular cone. The following statements

are equivalent:

• τK∗ ≥ α, and

• there exists w̄ for which

αw̄Tx ≤ ‖x‖ ≤ w̄Tx for all x ∈ K

Corollary: τK∗ = 1 implies f(x) := ‖x‖ is linear on K
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Main Result, Again: RPε and rDδ are Reciprocally
Related

RPε := maxx ‖x‖ rDδ := maxz dist∗(z, ∂C∗)

s.t. x ∈ Pε s.t. z ∈ Dδ

Main Theorem: Suppose VAL∗ is finite. If RPε is positive and

finite, then

τC∗ ·min{ε, δ} ≤ RPε · rDδ ≤ ε+ δ .

If RPε = 0, then rDδ = ∞. If RPε = ∞ and VAL∗ is finite, then

rDδ = 0.
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Comments

τC∗ ·min{ε, δ} ≤ RPε · rDδ ≤ ε+ δ

• RPε , rDδ each involves primal and dual information

• each inequality can be tight (and cannot be improved)

• many naturally arising norms have τC∗ = 1

• setting δ = ε, we obtain ε ≤ RPε · rDε ≤ 2ε, showing these two

measures are inversely proportional (to within a factor of 2)
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Application: Robust Optimization [J.Vera]

Amended format:

P : z∗(b) := maxx cTx D : miny bTy

s.t. b−Ax ∈ K s.t. ATy = c
y ∈ K∗

For a given tolerance ε > 0, what is the limit on the size of a

perturbation ∆b so that |z∗(b+ ∆b)− z∗(b)| ≤ ε ?
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Application: Robust Optimization, continued

P : z∗(b) := maxx cTx D : miny bTy

s.t. b−Ax ∈ K s.t. ATy = c
y ∈ K∗

Theorem [Vera]: Let ε > 0 and ∆b satisfy:

‖∆b‖ ≤ τK

(
ε

RDε

)
.

Then |z∗(b+ ∆b)− z∗(b)| ≤ ε.

The result says that τK · ε/RDε is the required bound on the
perturbation of the RHS needed to guarantee a change of no
more than ε in the value of the problem.
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τK for Self-Scaled Cones

Nonnegative Orthant: K = K∗ = IRn+, define ‖x‖p := p
√∑n

j=1 |xj|
p

Then τK = n(1/p−1), whereby τK = 1 for p = 1

Semidefinite Cone: K = K∗ = Sk+,

Define ‖X‖p := ‖λ(X)‖p := p
√∑k

j=1 |λj(X)|p

Then τK = k(1/p−1), whereby τK = 1 for p = 1

Second-Order Cone: K = K∗ = {x ∈ <n : ‖(x1, . . . , xn−1)‖2 ≤
xn}

Define ‖x‖ := max{‖(x1, . . . , xn−1)‖2, |xn|}, then τK = 1
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Some Relations with Renegar’s Condition
Number

For ε ≤ ‖c‖∗ it holds that:

RPε ≤ C2(d) + C(d)
ε

‖c‖∗

rPε ≥
ετC

3‖c‖∗(C2(d) + C(d))
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Outline, again

• Primal-Dual Geometry of Level Sets in Conic Optimization

• A Geometric Measure of Feasible Regions and Interior-Point

Method (IPM) Complexity Theory

• Geometric Measures and their Explanatory Value of the Prac-

tical Performance of IPMs
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Primal and Dual Conic Problem

P : VAL∗ := minx cTx D : VAL∗ := maxy,z bTy

s.t. Ax = b s.t. ATy + z = c
x ∈ C z ∈ C∗

C ⊂ X is a regular cone: closed, convex, pointed, with nonempty

interior

C∗ := {z : zTx ≥ 0 ∀x ∈ C}
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Geometric Measure of Primal Feasible Region

GP := minimumx max

{
‖x‖

dist(x, ∂C)
, ‖x‖,

1

dist(x, ∂C)

}

s.t. Ax = b
x ∈ C

GP is smaller to the extent that there is a feasible solution that

is not too large and that is not too close to ∂C

GP is smaller if the primal has a “well-conditioned” feasible so-

lution
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Geometric Complexity Theory of Conic
Optimization

GP := minimumx max

{
‖x‖

dist(x, ∂C)
, ‖x‖,

1

dist(x, ∂C)

}

s.t. Ax = b
x ∈ C

[F 04] Using a (theoretical) interior-point method that solves a
primal-Phase-I followed by a primal-Phase-II, one can bound the
IPM iterations to compute an ε-optimal solution by

O

(√
ϑC

(
ln
(
RPε

)
+ ln

(
GP

)
+ ln(1/ε)

))
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Geometric Complexity Theory of Conic
Optimization

Computational complexity of solving primal problem P is:

O

(√
ϑC

(
ln
(
RPε

)
+ ln

(
GP

)
+ ln(1/ε)

))

Is this just a pretty theory?

Are RPε and GP correlated with the performance of IPMs on
conic problems in practice, say from the SDPLIB suite of SDP
problems?

IPMs in practice are interchangeable insofar as role of primal
versus dual. Therefore let us replicate the above theory for the
dual problem.
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Geometric Measure of Dual Feasible Region

GD := minimumy,z max

{
‖z‖∗

dist∗(z, ∂C∗)
, ‖z‖∗,

1

dist∗(z, ∂C∗)

}

s.t. ATy + z = c
z ∈ C∗

GD is smaller to the extent that there is a feasible dual solution

that is not too large and that is not too close to ∂C∗

GD is smaller if the dual has a “well-conditioned” feasible solution
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Geometric Complexity Theory of Conic
Optimization

GD := minimumz max

{
‖z‖∗

dist∗(z, ∂C∗)
, ‖z‖∗,

1

dist∗(z, ∂C∗)

}

s.t. ATy + z = c
z ∈ C∗

[F 04] Using a (theoretical) interior-point method that solves
a dual-Phase-I followed by a dual-Phase-II, one can bound the
IPM iterations to compute an ε-optimal solution by

O

(√
ϑC

(
ln
(
RDε

)
+ ln

(
GD

)
+ ln(1/ε)

))
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Aggregate Geometry Measure for Primal and
Dual

Define the aggregate geometry measure:

GA :=
(
RPε ×RDε ×GP ×GD

)1/4

GA aggregates the primal and dual level set measures and the

primal and dual feasible region geometry measures

Let us compute GA for the SDPLIB suite and see if GA is cor-

related with IPM iterations.
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Outline, again

• Primal-Dual Geometry of Level Sets in Conic Optimization

• A Geometric Measure of Feasible Regions and Interior-Point

Method (IPM) Complexity Theory

• Geometric Measures and their Explanatory Value of the Prac-

tical Performance of IPMs
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Semi-Definite Programming (SDP)

• broad generalization of LP

• emerged in early 1990’s as the most significant computationally

tractable generalization of LP

• independently discovered by Alizadeh and Nesterov-Nemirovskii

• applications of SDP are vast, encompassing such diverse areas

as integer programming and control theory
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Partial List of Applications of SDP

• LP, Convex QP, Convex QCQP

• tighter relaxations of IP (≤ 12% of optimality for MAXCUT)

• static structural (truss) design, dymamic truss design, antenna array filter
design, other engineered systems problems

• control theory

• shape optimization, geometric design, volume optimization problems

• D-optimal experimental design, outlier identification, data mining, robust
regression

• eigenvalue problems, matrix scaling/design

• sensor network localization

• optimization or near-optimization with large classes of non-convex polyno-
mial constraints and objectives (Parrilo, Lasserre, SOS methods)

• robust optimization methods for standard LP, QCQP
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IPM Set-up for SDP

minX C •X maxy,Z
∑m
i=1 yibi

s.t. Ai •X = bi , i = 1, . . . ,m s.t.
∑m
i=1 yiAi + Z = C

X � 0 Z � 0
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IPM for SDP, Central Path

Central path: X(µ) := argminX C •X − µ
∑n
j=1 ln(λj(X))

s.t. Ai •X = bi , i = 1, . . . ,m
X � 0

Central path: X(µ) := argminX C •X − µ ln(det(X))

s.t. Ai •X = bi , i = 1, . . . ,m
X � 0
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IPM for SDP, Central Path, continued

Central path: X(µ) := argminX C •X + µ ln(det(X))

s.t. Ai •X = bi , i = 1, . . . ,m
X � 0
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IPM for SDP, Central Path, continued

Central path: X(µ) := argminX C •X + µ ln(det(X))

s.t. Ai •X = bi , i = 1, . . . ,m
X � 0

Optimality gap property of the central path:

C •X(µ)−VAL∗ ≤ n · µ

Algorithm strategy: trace the central path X(µ) for a decreasing

sequence of values of µ↘ 0
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IPM Strategy for SDP
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IPM for SDP: Computational Reality

• 1991-94 - Alizadeh, Nesterov and Nemirovski - IPM theory for SDP

• 1996 - software for SOCP, SDP - 10-60 iterations on SDPLIB suite,
typically ∼30 iterations

• Each IPM iteration is expensive to solve:(
H(xk) AT

A 0

)(
∆x
∆y

)
=

(
r1

r2

)
• O(n6) work per iteration, managing sparsity and numerical stability are

tougher bottlenecks

• most IPM computational research since 1996 has focused on work per
iteration, sparsity, numerical stability, lower-order methods, etc.
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SDPLIB Suite

• http://www.nmt.edu/~sdplib/

• 92 problems

• standard equality block form, SDP variables and LP variables

• no linear dependent equations

• Work with 85 problems:

– removed 4 infeasible problems: infd1, infd2, infp1, infp2

– removed 3 very large problems: maxG55 (5000×5000), maxG60 (7000×
7000), thetaG51 (6910× 1001)

• m : 6− 4375, n : 13− 2000
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Histogram of IPM Iterations for SDPLIB
problems
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SDPT3-3.1 default settings used throughout

SDPT3-3.1 solves the 85 SDPLIB problem instances in 10-60 iterations
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IPM Iterations versus n
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IPM Iterations versus m
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Computing the Aggregate Geometry Measure
GA

GA :=
(
RPε ×RDε ×GP ×GD

)1/4

RPε , RDε are maximum norm problems, so are generally non-

convex.

Computing GP , GD involves working with “dist(x, ∂C), dist∗(z, ∂C∗)”

which is not efficiently computable in general

A judicious choice of norms allows us to compute all four quan-

tities efficiently via one associated SDP for each quantity.
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Geometry Measure Results

GA was computed for 85 SDPLIB problems:

GA RPε RDε GP GD

Finite 53 85 53 53 85
Infinite 32 - 32 32 -

Total 85 85 85 85 85

62% of problems have finite GA

The pattern in the table is no coincidence . . .

GP =∞ ⇐⇒ RDε =∞ and GD =∞ ⇐⇒ RPε =∞
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= 0.901 (53 problems)
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What About Other Behavioral Measures?

How well does Renegar’s “condition measure” C(d) explain the

practical performance of IPMs on the SDPLIB suite?
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C(d): Renegar’s Condition Measure

(Pd) : min cTx (Dd) : max bTy

s.t. Ax = b s.t. ATy + z = c
x ∈ C z ∈ C∗

• d = (A, b, c) is the data for the instance Pd and Dd

• ‖d‖ = max {‖A‖ , ‖b‖ , ‖c‖∗}
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Distance to Primal and Dual Infeasibility

(Pd) : min cTx (Dd) : max bTy

s.t. Ax = b s.t. ATy + z = c
x ∈ C z ∈ C∗

Distance to primal infeasibility:

ρP (d) = min
{
‖∆d‖ : Pd+∆d is infeasible

}
Distance to dual infeasibility:

ρD(d) = min
{
‖∆d‖ : Dd+∆d is infeasible

}
The condition measure is:

C(d) =
‖d‖

min{ρP (d), ρD(d)}
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C(d): Renegar’s Condition Measure

C(d) =
‖d‖

min{ρP (d), ρD(d)}

In theory, C(d) has been shown to be connected to:

• bounds on sizes of feasible solutions and aspect ratios of inscribed balls
in feasible regions

• bounds on sizes of optimal solutions and objective values

• bounds on rates of deformation of feasible regions as data is modified

• bounds on deformation of optimal solutions as data is modified

• bounds on the complexity of a variety of algorithms
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[Renegar 95] Using a (theoretical) IPM that solves a primal-

phase-I followed by a primal-Phase-II, one can bound IPM itera-

tions needed to compute an ε-optimal solution by

O

(√
ϑC (ln (C(d)) + ln(1/ε))

)

ϑC = ns + nl for SDP

Is C(d) just really nice theory?

Is C(d) correlated with IPM iterations among SDPLIB problems?
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Condition Measure Results

Computed C(d) for 80 (out of 85) problems:

Unable to compute ρp(d) for 5 problems: control11, equalG51,

maxG32, theta6, thetaG11 (m = 1596, 1001, 2000, 4375, 2401,
respectively)

ρD(d)
0 > 0 Total

0 0 32 32
ρP (d) > 0 0 48 48

Total 0 80 80

• 60% are well-posed

• 40% are almost primal infeasible
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CORR(log (C(d)) , IPM Iterations) = 0.630 (48 problems)
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Some Conclusions

• 62% of 85 SDPLIB problems have finite aggregate geometry measure
GA

• CORR(log
(
GA
)
, IPM Iterations) = 0.901 among the SDPLIB problems

with finite geometry measure GA

• 32 of 80 SDPLIB problems are almost primal infeasible, i.e. C(d) = +∞

• CORR(log (C(d)) , IPM Iterations) = 0.630 among the 42 problems with
finite C(d)
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