(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Closed Differential Forms on Moduli Spaces of Sheaves

Francesco Bottacin

University of Padova

ETH Zurich, 27 October 2011

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Outline

Moduli Spaces of Sheaves

- Definitions
- Construction
- Infinitesimal Deformations
- More General Sheaves

Outline

Moduli Spaces of Sheaves

- Definitions
- Construction
- Infinitesimal Deformations
- More General Sheaves

2 Differential Forms

- Symplectic Structures
- Construction of Differential Forms

Outline

Moduli Spaces of Sheaves

- Definitions
- Construction
- Infinitesimal Deformations
- More General Sheaves

2 Differential Forms

- Symplectic Structures
- Construction of Differential Forms

3 Applications

- Symplectic Structures
- Hilbert Schemes of Points

Moduli Spaces

Definition (very rough)

A Moduli Space is a "space" that parametrizes equivalence classes of "geometric objects"

- < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Moduli Spaces

Definition (very rough)

A Moduli Space is a "space" that parametrizes equivalence classes of "geometric objects"

Example 1

- X a fixed complex manifold
- objects = holomorphic vector bundles over X
- equivalence = isomorphism of vector bundles

Moduli space M = set of isomorphism classes of holomorphic vector bundles over X

Moduli Spaces

Example 2

- X a fixed projective variety
- objects = closed subschemes of X
- equivalence = isomorphism of schemes

 \mathcal{M} = set of isomorphism classes of closed subschemes of *X* (this is called the Hilbert scheme)

Moduli Spaces

Example 2

- X a fixed projective variety
- objects = closed subschemes of X
- equivalence = isomorphism of schemes

 \mathcal{M} = set of isomorphism classes of closed subschemes of *X* (this is called the Hilbert scheme)

 \mathcal{M} is just a set. We would like it to be a space (a manifold, a variety, a scheme, ...), and in some natural way.

(the correct way of doing this is to define ${\cal M}$ as a functor and then try to see if it is representable)

Moduli Spaces

Example 2

- X a fixed projective variety
- objects = closed subschemes of X
- equivalence = isomorphism of schemes

M = set of isomorphism classes of closed subschemes of *X* (this is called the Hilbert scheme)

 \mathcal{M} is just a set. We would like it to be a space (a manifold, a variety, a scheme, ...), and in some natural way.

(the correct way of doing this is to define ${\cal M}$ as a functor and then try to see if it is representable)

Usually, this is not possible!

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Construction of the Moduli Space of Vector Bundles

Differential geometric construction of the moduli space of vector bundles on a Kähler manifold.

Construction of the Moduli Space of Vector Bundles

Differential geometric construction of the moduli space of vector bundles on a Kähler manifold.

Notations:

- X a complex Kähler manifold
- $A^r = C^\infty$ complex *r*-forms over *X*
- $A^{p,q} = C^{\infty}$ complex (p,q)-forms over X
- $d: A^r \to A^{r+1}$ exterior differential

We write d = d' + d'', where

$$d': \mathcal{A}^{p,q} \rightarrow \mathcal{A}^{p+1,q}, \qquad d'': \mathcal{A}^{p,q} \rightarrow \mathcal{A}^{p,q+1}$$

Construction of the Moduli Space of Vector Bundles

- E a fixed C[∞] complex vector bundle over X
- $A^r(E) = C^{\infty}$ complex *r*-forms over *X* with values in *E*
- $A^{p,q}(E) = C^{\infty}$ complex (p,q)-forms over X with values in E
- $D: A^0(E) \rightarrow A^1(E)$ a connection on E

We write D = D' + D'', where

$$D': A^0(E) \to A^{1,0}(E), \qquad D'': A^0(E) \to A^{0,1}(E)$$

D'' is \mathbb{C} -linear and

$$D''(fs) = (d''f)s + f D''(s),$$

for $s \in A^0(E)$ and $f \in A^0$.

Construction of the Moduli Space of Vector Bundles

 $\mathcal{D}''(E)$ = set of all D'' as above

It is an infinite-dimensional affine space, modeled on the vector space $A^{0,1}(\underline{End} E)$

Construction of the Moduli Space of Vector Bundles

 $\mathcal{D}''(E)$ = set of all D'' as above

It is an infinite-dimensional affine space, modeled on the vector space $A^{0,1}(\underline{End} E)$

$$\mathcal{H}''(E) := \{ D'' \in \mathcal{D}''(E) \mid D'' \circ D'' = 0 \}$$

 $\mathcal{H}''(E)$ is the set of all holomorphic structures on the C^{∞} vector bundle *E*. But...

Construction of the Moduli Space of Vector Bundles

 $\mathcal{D}''(E)$ = set of all D'' as above

It is an infinite-dimensional affine space, modeled on the vector space $A^{0,1}(\underline{End} E)$

$$\mathcal{H}''(E) := \{ D'' \in \mathcal{D}''(E) \mid D'' \circ D'' = 0 \}$$

 $\mathcal{H}''(E)$ is the set of all holomorphic structures on the C^{∞} vector bundle *E*. But...

 $\mathcal{H}''(E)$ is not the moduli space of holomorphic vector bundles. Different holomorphic structures may produce isomorphic vector bundles

Construction of the Moduli Space of Vector Bundles

GL(E) acts on $\mathcal{H}''(E)$:

$$D'' \mapsto f^{-1} \circ D'' \circ f = D'' + f^{-1} d'' f$$

for any $D'' \in \mathcal{H}''(E)$, $f \in GL(E)$.

Construction of the Moduli Space of Vector Bundles

GL(E) acts on $\mathcal{H}''(E)$:

$$D'' \mapsto f^{-1} \circ D'' \circ f = D'' + f^{-1} d'' f$$

for any $D'' \in \mathcal{H}''(E)$, $f \in GL(E)$.

The moduli space of holomorphic vector bundles is

$$\mathcal{M} = \mathcal{H}''(E)/\operatorname{GL}(E)$$

▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

Construction of the Moduli Space of Vector Bundles

GL(E) acts on $\mathcal{H}''(E)$:

$$D'' \mapsto f^{-1} \circ D'' \circ f = D'' + f^{-1} d'' f$$

for any $D'' \in \mathcal{H}''(E)$, $f \in GL(E)$.

The moduli space of holomorphic vector bundles is

$$\mathcal{M} = \mathcal{H}''(E)/\operatorname{GL}(E)$$

Problem: This quotient is not a "nice space" (e.g., it is not Hausdorff)

▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

Construction of the Moduli Space of Vector Bundles

Reason: the set of isomorphism classes of all holomorphic vector bundles is too large to be parametrized by a nice space

Construction of the Moduli Space of Vector Bundles

Reason: the set of isomorphism classes of all holomorphic vector bundles is too large to be parametrized by a nice space

 Classical solution: consider only a suitable subset of vector bundles, the (semi)stable ones
 Def. of Stability

Construction of the Moduli Space of Vector Bundles

Reason: the set of isomorphism classes of all holomorphic vector bundles is too large to be parametrized by a nice space

- Classical solution: consider only a suitable subset of vector bundles, the (semi)stable ones

 Def. of Stability
- Another solution: accept to deal with more fancy spaces, like stacks

Construction of the Moduli Space of Vector Bundles

Reason: the set of isomorphism classes of all holomorphic vector bundles is too large to be parametrized by a nice space

- Classical solution: consider only a suitable subset of vector bundles, the (semi)stable ones
 Def. of Stability
- Another solution: accept to deal with more fancy spaces, like stacks

In this talk we shall consider the first approach.

Existence of Moduli Spaces

Typical existence result:

Theorem

A moduli space \mathcal{M} of (semi)stable holomorphic vector bundles over X exists.

It is a complex space, usually not compact and singular.

It can be compactified by adding suitable equivalence classes of sheaves (that are not locally free)

Existence of Moduli Spaces

Typical existence result:

Theorem

A moduli space \mathcal{M} of (semi)stable holomorphic vector bundles over X exists.

It is a complex space, usually not compact and singular.

It can be compactified by adding suitable equivalence classes of sheaves (that are not locally free)

Remark

Usually, moduli spaces of (semi)stable sheaves on X carry information about the variety X itself.

Local Structure

Local Structure of Moduli Spaces

Deformations of vector bundles

Study infinitesimal deformations of bundles.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Deformations of vector bundles

Study infinitesimal deformations of bundles.

An infinitesimal deformation of a vector bundle $E \in \mathcal{M}$ is a tangent vector to \mathcal{M} at the point E

Deformations of vector bundles

Study infinitesimal deformations of bundles.

An infinitesimal deformation of a vector bundle $E \in \mathcal{M}$ is a tangent vector to \mathcal{M} at the point E

How do we make sense of $\frac{dE_t}{dt}$?

Deformations of vector bundles

Cover X by open subsets U_i , such that $E_t|_{U_i}$ is trivial

$$E_t|_{U_i}\cong U_i imes \mathbb{C}^r$$

On $U_i \cap U_i$ we get a transition function

$$g_{ij}: U_i \cap U_j \to \operatorname{GL}(r)$$

 E_t is equivalent to the family $\{g_{ij}(t)\}$ of transition functions.

Deformations of vector bundles

Cover X by open subsets U_i , such that $E_t|_{U_i}$ is trivial

$$E_t|_{U_i}\cong U_i imes \mathbb{C}^r$$

On $U_i \cap U_i$ we get a transition function

$$g_{ij}: U_i \cap U_j \to \operatorname{GL}(r)$$

 E_t is equivalent to the family $\{g_{ij}(t)\}$ of transition functions. Then

$$\frac{dE_t}{dt} \approx \left\{\frac{dg_{ij}}{dt}\right\}_{ij}$$

ロ>
 (日)
 (日)

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Deformations of vector bundles

Transition functions $\{g_{ij}(t)\}$ satisfy cocycle relations

 $g_{jk}(t) g_{ij}(t) = g_{ik}(t), \quad \text{on } U_i \cap U_j \cap U_k$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Deformations of vector bundles

Transition functions $\{g_{ij}(t)\}$ satisfy cocycle relations

$$g_{jk}(t)\,g_{ij}(t)=g_{ik}(t),\qquad ext{on }U_i\cap U_j\cap U_k$$

It follows that

$$\Big\{\frac{dg_{ij}}{dt}\Big|_{t=0}\Big\}_{ij}$$

is a Čech cocycle representing a cohomology class in $H^1(X, \underline{End} E)$

Deformations of vector bundles

Transition functions $\{g_{ij}(t)\}$ satisfy cocycle relations

$$g_{jk}(t)\,g_{ij}(t)=g_{ik}(t),\qquad ext{on }U_i\cap U_j\cap U_k$$

It follows that

$$\left\{\frac{dg_{ij}}{dt}\Big|_{t=0}\right\}_{ij}$$

is a Čech cocycle representing a cohomology class in $H^1(X, \underline{End} E)$

Theorem

There is a natural identification (Kodaira–Spencer map)

$$T_E \mathcal{M} \cong H^1(X, \underline{End}\, E)$$

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

Obstructions

Question: can a first-order deformation E_{ϵ} of E be extended to higher orders?

Obstructions

Question: can a first-order deformation E_{ϵ} of *E* be extended to higher orders?

Answer: in general, NO. There are "obstructions"

Obstructions

Question: can a first-order deformation E_{ϵ} of E be extended to higher orders?

Answer: in general, NO. There are "obstructions"

Theorem

All obstructions to deforming E lie in $H^2(X, \underline{End} E)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
Obstructions

Question: can a first-order deformation E_{ϵ} of E be extended to higher orders?

Answer: in general, NO. There are "obstructions"

Theorem

All obstructions to deforming E lie in $H^2(X, \underline{End} E)$

Corollary

If $H^2(X, \underline{End} E) = 0$ then all obstructions vanish. As a consequence, E is a non-singular point of \mathcal{M}

Kuranishi's Theory

General results:

• \mathcal{M} can be smooth at E even if $H^2(X, \underline{End} E) \neq 0$

Kuranishi's Theory

General results:

- \mathcal{M} can be smooth at E even if $H^2(X, \underline{End} E) \neq 0$
- Obstructions actually lie in H²(X, <u>End</u>₀ E), where <u>End</u>₀ E is the sub-bundle of trace-free endomorphisms of E.

Kuranishi's Theory

General results:

- \mathcal{M} can be smooth at E even if $H^2(X, \underline{End} E) \neq 0$
- Obstructions actually lie in H²(X, <u>End</u>₀ E), where <u>End</u>₀ E is the sub-bundle of trace-free endomorphisms of E.
- If *E* is a singular point of *M*, a small neighborhood of *E* in *M* is homeomorphic to a subset of *H*¹(*X*, <u>*End*</u>*E*), which is the zero locus of a quadratic polynomial map (Kuranishi map).

Applications

▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

Moduli Spaces of More General Sheaves

In many situations, working only with locally free sheaves (vector bundles) is not enough.

Applications

Moduli Spaces of More General Sheaves

In many situations, working only with locally free sheaves (vector bundles) is not enough.

• There are notions of stability for more general sheaves (coherent torsion-free, or even torsion sheaves).

Moduli Spaces of More General Sheaves

In many situations, working only with locally free sheaves (vector bundles) is not enough.

- There are notions of stability for more general sheaves (coherent torsion-free, or even torsion sheaves).
- There exist moduli spaces of (semi)stable sheaves on a projective variety. In general, they are (quasi)projective schemes.

Moduli Spaces of More General Sheaves

In many situations, working only with locally free sheaves (vector bundles) is not enough.

- There are notions of stability for more general sheaves (coherent torsion-free, or even torsion sheaves).
- There exist moduli spaces of (semi)stable sheaves on a projective variety. In general, they are (quasi)projective schemes.
- Technical point: if *E* is not locally free, all cohomology groups *Hⁱ*(*X*, <u>End</u> *E*) must be replaced by Extⁱ(*E*, *E*) (*Extⁱ* is the *i*-th derived functor of the *Hom*-functor)

Applications

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Tangent Space and Obstructions

Local theory of these more general moduli spaces is analogous to the one for vector bundles:

Tangent Space and Obstructions

Local theory of these more general moduli spaces is analogous to the one for vector bundles:

• Tangent space: $T_E \mathcal{M} \cong \operatorname{Ext}^1(E, E)$

Tangent Space and Obstructions

Local theory of these more general moduli spaces is analogous to the one for vector bundles:

- Tangent space: $T_E \mathcal{M} \cong \operatorname{Ext}^1(E, E)$
- Obstruction space: Ext²(*E*, *E*)

Tangent Space and Obstructions

Local theory of these more general moduli spaces is analogous to the one for vector bundles:

- Tangent space: $T_E \mathcal{M} \cong \operatorname{Ext}^1(E, E)$
- Obstruction space: Ext²(*E*, *E*)
- More precisely: there is a trace map

$$\mathsf{tr}:\mathsf{Ext}^2(E,E)\to H^2(X,\mathcal{O}_X)$$

and all obstructions to deforming *E* lie in the kernel of this map, denoted by $\text{Ext}_0^2(E, E)$

Moduli Spaces

Differential Forms

Applications

Differential Forms on \mathcal{M}

Differential Forms on ${\cal M}$

(日)

Differential Forms

Applications

Symplectic Structures on \mathcal{M}

Example: (Mukai, 1984)

Symplectic Structures on \mathcal{M}

Example: (Mukai, 1984)

X smooth projective surface with trivial canonical bundle: $\Omega_X^2 \cong \mathcal{O}_X$ (*X* is a K3 or abelian surface, it has a holomorphic symplectic structure)

Symplectic Structures on \mathcal{M}

Example: (Mukai, 1984)

X smooth projective surface with trivial canonical bundle: $\Omega_X^2 \cong \mathcal{O}_X$ (*X* is a K3 or abelian surface, it has a holomorphic symplectic structure)

 \mathcal{M} moduli space of stable sheaves on X.

▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

Symplectic Structures on \mathcal{M}

Example: (Mukai, 1984)

X smooth projective surface with trivial canonical bundle: $\Omega_X^2 \cong \mathcal{O}_X$ (*X* is a K3 or abelian surface, it has a holomorphic symplectic structure)

 \mathcal{M} moduli space of stable sheaves on X.

Theorem

 \mathcal{M} is non-singular.

Moduli Spaces

Differential Forms

Applications

Symplectic Structures on \mathcal{M}

Proof:

▲□▶ ▲圖▶ ▲目▶ ▲目■ のQQ

Symplectic Structures on \mathcal{M}

Proof:

Let $E \in \mathcal{M}$. The obstructions to the smoothness of \mathcal{M} at E lie in the trace-free part of $\text{Ext}^2(E, E)$.

Symplectic Structures on \mathcal{M}

Proof:

Let $E \in \mathcal{M}$. The obstructions to the smoothness of \mathcal{M} at E lie in the trace-free part of $\text{Ext}^2(E, E)$. By Serre duality and stability of E we have

$$\operatorname{Ext}^{2}(E,E)^{*} \cong \operatorname{Ext}^{0}(E,E\otimes\omega_{X})\cong\operatorname{Hom}(E,E)\cong\mathbb{C}.$$

Symplectic Structures on \mathcal{M}

Proof:

Let $E \in \mathcal{M}$. The obstructions to the smoothness of \mathcal{M} at E lie in the trace-free part of $Ext^2(E, E)$. By Serre duality and stability of E we have

$$\operatorname{Ext}^{2}(E, E)^{*} \cong \operatorname{Ext}^{0}(E, E \otimes \omega_{X}) \cong \operatorname{Hom}(E, E) \cong \mathbb{C}.$$

The trace-free part is 0, hence there are no obstructions.

Symplectic Structures on \mathcal{M}

Using smoothness of \mathcal{M} and the Kodaira-Spencer isomorphism $T_E \mathcal{M} \cong \operatorname{Ext}^1(E, E)$, define a map

 $\tau: T\mathcal{M} \times T\mathcal{M} \to \mathcal{O}_{\mathcal{M}}$

for any $E \in M$, τ_E is given by composing

 $\operatorname{Ext}^{1}(E, E) \times \operatorname{Ext}^{1}(E, E) \to \operatorname{Ext}^{2}(E, E)$

Symplectic Structures on \mathcal{M}

Using smoothness of \mathcal{M} and the Kodaira-Spencer isomorphism $T_E \mathcal{M} \cong \operatorname{Ext}^1(E, E)$, define a map

 $\tau: T\mathcal{M} \times T\mathcal{M} \to \mathcal{O}_{\mathcal{M}}$

for any $E \in M$, τ_E is given by composing

$$\begin{aligned} &\mathsf{Ext}^1(E,E)\times\mathsf{Ext}^1(E,E)\to\mathsf{Ext}^2(E,E)\\ &\mathsf{Ext}^2(E,E)\to H^2(X,\mathcal{O}_X)=H^2(X,\omega_X)\cong\mathbb{C} \end{aligned}$$

(日)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Symplectic Structures on \mathcal{M}

Theorem (Mukai)

The maps τ_E , $\forall E \in M$, define a non-degenerate 2-form

 $\tau: T\mathcal{M} \times T\mathcal{M} \to \mathcal{O}_\mathcal{M}$

This 2-form is d-closed, hence it is a holomorphic symplectic structure on \mathcal{M} .

Symplectic Structures on \mathcal{M}

Theorem (Mukai)

The maps τ_E , $\forall E \in M$, define a non-degenerate 2-form

 $\tau: T\mathcal{M} \times T\mathcal{M} \to \mathcal{O}_\mathcal{M}$

This 2-form is d-closed, hence it is a holomorphic symplectic structure on \mathcal{M} .

(Actually, the closedness of the 2-form on ${\cal M}$ was not proved in the original paper by Mukai)

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Applications and generalizations

1. Construction of new examples of irreducible symplectic manifolds (moduli spaces of sheaves, or Hilbert schemes of points of a K3 surface)

▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

Applications and generalizations

1. Construction of new examples of irreducible symplectic manifolds (moduli spaces of sheaves, or Hilbert schemes of points of a K3 surface)

2. Construction of algebro-geometric analogues of Donaldson's polynomial invariants (O'Grady, et al.)

Applications and generalizations

1. Construction of new examples of irreducible symplectic manifolds (moduli spaces of sheaves, or Hilbert schemes of points of a K3 surface)

2. Construction of algebro-geometric analogues of Donaldson's polynomial invariants (O'Grady, et al.)

3. Construction of Poisson structures on moduli spaces of sheaves on a Poisson surface: by choosing a Poisson structure on a surface X we can construct, in a natural way, a Poisson structure on the moduli space \mathcal{M} .

Applications and generalizations

1. Construction of new examples of irreducible symplectic manifolds (moduli spaces of sheaves, or Hilbert schemes of points of a K3 surface)

2. Construction of algebro-geometric analogues of Donaldson's polynomial invariants (O'Grady, et al.)

3. Construction of Poisson structures on moduli spaces of sheaves on a Poisson surface: by choosing a Poisson structure on a surface X we can construct, in a natural way, a Poisson structure on the moduli space \mathcal{M} .

4. Construction of algebraically completely integrable hamiltonian systems on moduli spaces of sheaves, or related objects (e.g., Higgs bundles).

Construction of closed differential forms on moduli spaces of sheaves

Main tool

X smooth projective variety (or compact Kähler manifold) \mathcal{M} moduli space of stable sheaves on X

We want to construct closed differential forms on $\ensuremath{\mathcal{M}}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Main tool

X smooth projective variety (or compact Kähler manifold) \mathcal{M} moduli space of stable sheaves on X

We want to construct closed differential forms on $\ensuremath{\mathcal{M}}$

Main tool: the Atiyah class

Main tool

X smooth projective variety (or compact Kähler manifold) \mathcal{M} moduli space of stable sheaves on X

We want to construct closed differential forms on $\ensuremath{\mathcal{M}}$

Main tool: the Atiyah class

E holomorphic vector bundle over X. There is a natural exact sequence

$$0 o E \otimes \Omega^1_X o J^1(E) o E o 0,$$

where $J^{1}(E)$ is the bundle of first-order jets of sections of *E*.

Main tool

X smooth projective variety (or compact Kähler manifold) \mathcal{M} moduli space of stable sheaves on X

We want to construct closed differential forms on $\ensuremath{\mathcal{M}}$

Main tool: the Atiyah class

E holomorphic vector bundle over X. There is a natural exact sequence

$$0 o E \otimes \Omega^1_X o J^1(E) o E o 0,$$

where $J^1(E)$ is the bundle of first-order jets of sections of *E*. The corresponding extension class

$$a(E) \in \operatorname{Ext}^1(E, E \otimes \Omega^1_X)$$

is the Atiyah class of E

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Atiyah class

More generally

$$\underbrace{a(E) \circ \cdots \circ a(E)}_{i \text{ times}} \in \operatorname{Ext}^{i}(E, E \otimes (\Omega^{1}_{X})^{\otimes i})$$

The Atiyah class

More generally

$$\underbrace{a(E) \circ \cdots \circ a(E)}_{i \text{ times}} \in \operatorname{Ext}^{i}(E, E \otimes (\Omega_{X}^{1})^{\otimes i})$$

Compose with $(\Omega^1_X)^{\otimes i} \to \Omega^i_X$ to obtain classes $a(E)^i \in \operatorname{Ext}^i(E, E \otimes \Omega^i_X)$

The Atiyah class

More generally

$$\underbrace{a(E)\circ\cdots\circ a(E)}_{i \text{ times}}\in \operatorname{Ext}^{i}(E,E\otimes (\Omega^{1}_{X})^{\otimes i})$$

Compose with $(\Omega^1_X)^{\otimes i} \to \Omega^i_X$ to obtain classes

$$a(E)^i \in \operatorname{Ext}^i(E, E \otimes \Omega^i_X)$$

Then, take the trace

$$\gamma^i(E) = \operatorname{tr}(a(E)^i) \in H^i(X, \Omega^i_X)$$

 $\gamma^{i}(E)$ is a closed (*i*, *i*)-form; up to a scalar factor it coincides with the *i*-th component of the Chern character of *E*.

The construction

Idea

Use the Atiyah class of a *universal family* of sheaves on the moduli space \mathcal{M} to construct closed differential forms on \mathcal{M} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

The construction

Idea

Use the Atiyah class of a *universal family* of sheaves on the moduli space \mathcal{M} to construct closed differential forms on \mathcal{M} .

A universal family of sheaves is a sheaf \mathcal{E} on $X \times \mathcal{M}$, flat over \mathcal{M} , such that

$$\mathcal{E}|_{X\times\{E\}}\cong E,$$

for any $E \in \mathcal{M}$.

The construction

Idea

Use the Atiyah class of a *universal family* of sheaves on the moduli space \mathcal{M} to construct closed differential forms on \mathcal{M} .

A universal family of sheaves is a sheaf \mathcal{E} on $X \times \mathcal{M}$, flat over \mathcal{M} , such that

$$\mathcal{E}|_{X\times \{E\}}\cong E,$$

for any $E \in \mathcal{M}$.

Assume a universal family \mathcal{E} exists. Then

$$\textit{a}(\mathcal{E}) \in \mathsf{Ext}^1_{X \times \mathcal{M}}(\mathcal{E}, \mathcal{E} \otimes \Omega^1_{X \times \mathcal{M}})$$

We obtain classes

$$\gamma^{i}(\mathcal{E}) \in H^{i}(X imes \mathcal{M}, \Omega^{i}_{X imes \mathcal{M}})$$

The construction

Use the Künneth decomposition

$$H^{n}(X \times \mathcal{M}, \Omega^{n}_{X \times \mathcal{M}}) \cong \bigoplus_{i,j=0}^{n} H^{i}(X, \Omega^{j}_{X}) \otimes H^{n-i}(\mathcal{M}, \Omega^{n-j}_{\mathcal{M}})$$

The construction

Use the Künneth decomposition

$$H^{n}(X \times \mathcal{M}, \Omega^{n}_{X \times \mathcal{M}}) \cong \bigoplus_{i,j=0}^{n} H^{i}(X, \Omega^{j}_{X}) \otimes H^{n-i}(\mathcal{M}, \Omega^{n-j}_{\mathcal{M}})$$

and write

$$\gamma^{n}(\mathcal{E}) = \sum_{i,j} \gamma^{n}_{i,j}(\mathcal{E}),$$

where

$$\gamma_{i,j}^{n}(\mathcal{E}) \in H^{i}(X, \Omega_{X}^{j}) \otimes H^{n-i}(\mathcal{M}, \Omega_{\mathcal{M}}^{n-j}).$$

うりつ 単語 スポッスポッス型 くう

The construction

Now consider Serre duality

$$H^{i}(X, \Omega_{X}^{j}) \cong H^{n-i}(X, \Omega_{X}^{n-j})^{*}$$

and the map

$$H^{n-i}(X, \Omega_X^{n-j})^* \to H^{k+i-n}(\mathcal{M}, \Omega_{\mathcal{M}}^{k+j-n})$$

induced by

$$\gamma_{n-i,n-j}^k \in \mathcal{H}^{n-i}(\mathcal{X},\Omega_{\mathcal{X}}^{n-j}) \otimes \mathcal{H}^{k+i-n}(\mathcal{M},\Omega_{\mathcal{M}}^{k+j-n})$$

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

The construction

Now consider Serre duality

$$H^{i}(X, \Omega_{X}^{j}) \cong H^{n-i}(X, \Omega_{X}^{n-j})^{*}$$

and the map

$$H^{n-i}(X, \Omega_X^{n-j})^* \to H^{k+i-n}(\mathcal{M}, \Omega_{\mathcal{M}}^{k+j-n})$$

induced by

$$\gamma_{n-i,n-j}^k \in H^{n-i}(X,\Omega_X^{n-j}) \otimes H^{k+i-n}(\mathcal{M},\Omega_\mathcal{M}^{k+j-n})$$

By composition we obtain a map

$$f: H^{i}(X, \Omega^{j}_{X}) \to H^{k+i-n}(\mathcal{M}, \Omega^{k+j-n}_{\mathcal{M}})$$

The construction

In particular, for k = n - i, we obtain a map

$$f: H^{i}(X, \Omega^{j}_{X}) \to H^{0}(\mathcal{M}, \Omega^{j-i}_{\mathcal{M}})$$

▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

The construction

In particular, for k = n - i, we obtain a map

$$f: H^{i}(X, \Omega^{j}_{X}) \to H^{0}(\mathcal{M}, \Omega^{j-i}_{\mathcal{M}})$$

It follows that we can construct holomorphic forms on \mathcal{M} by starting with elements in $H^i(X, \Omega^j_X)$, for any $j \ge i \ge 0$.

Explicit construction

The construction

In particular, for k = n - i, we obtain a map

$$f: H^{i}(X, \Omega^{j}_{X}) \to H^{0}(\mathcal{M}, \Omega^{j-i}_{\mathcal{M}})$$

It follows that we can construct holomorphic forms on \mathcal{M} by starting with elements in $H^i(X, \Omega^j_X)$, for any $j \ge i \ge 0$.

Explicit construction

Finally, the closedness of the differential forms constructed in this way follows easily from the fact that the classes $\gamma^n(\mathcal{E})$, and all their components $\gamma_{i,j}^n(\mathcal{E})$, are *d*-closed (this is essentially a restatement of the fact that the Chern classes of a vector bundle are represented by closed differential forms).

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Technical problem

This is a nice construction but, unfortunately, there is a technical problem.

Technical problem

This is a nice construction but, unfortunately, there is a technical problem.

Problem

A universal family ${\mathcal E}$ on a moduli space of sheaves ${\mathcal M}$ usually does not exist!

Technical problem

This is a nice construction but, unfortunately, there is a technical problem.

Problem

A universal family ${\mathcal E}$ on a moduli space of sheaves ${\mathcal M}$ usually does not exist!

More precisely: universal families exist only locally on \mathcal{M} (for the usual complex analytic topology, not for the Zariski topology).

Technical problem

This is a nice construction but, unfortunately, there is a technical problem.

Problem

A universal family ${\mathcal E}$ on a moduli space of sheaves ${\mathcal M}$ usually does not exist!

More precisely: universal families exist only locally on \mathcal{M} (for the usual complex analytic topology, not for the Zariski topology).

Choose a suitable open covering $\mathcal{U} = (U_i)_i$ of \mathcal{M} , and local universal families \mathcal{E}_i over $X \times U_i$.

Technical problem

This is a nice construction but, unfortunately, there is a technical problem.

Problem

A universal family ${\mathcal E}$ on a moduli space of sheaves ${\mathcal M}$ usually does not exist!

More precisely: universal families exist only locally on \mathcal{M} (for the usual complex analytic topology, not for the Zariski topology).

Choose a suitable open covering $\mathcal{U} = (U_i)_i$ of \mathcal{M} , and local universal families \mathcal{E}_i over $X \times U_i$.

Over $X \times (U_i \cap U_j)$ we have two universal families, \mathcal{E}_i and \mathcal{E}_j . In general, they are not isomorphic (that's why we cannot glue them to obtain a global universal family).

▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

Technical problem

What is true is that

$$\mathcal{E}_j \cong \mathcal{E}_i \otimes q^* L$$
,

for some line bundle *L* over $U_i \cap U_j$ (*q* is the projection $X \times (U_i \cap U_j) \rightarrow U_i \cap U_j$).

▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

Technical problem

What is true is that

$$\mathcal{E}_{j} \cong \mathcal{E}_{i} \otimes q^{*}L,$$

for some line bundle *L* over $U_i \cap U_j$ (*q* is the projection $X \times (U_i \cap U_j) \rightarrow U_i \cap U_j$). It follows that

$$a(\mathcal{E}_j) = a(\mathcal{E}_i) \otimes id_{q^*L} + id_{\mathcal{E}_i} \otimes a(q^*L).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Technical problem

What is true is that

$$\mathcal{E}_{j}\cong \mathcal{E}_{i}\otimes q^{*}L,$$

for some line bundle *L* over $U_i \cap U_j$ (*q* is the projection $X \times (U_i \cap U_j) \rightarrow U_i \cap U_j$). It follows that

$$a(\mathcal{E}_j) = a(\mathcal{E}_i) \otimes id_{q^*L} + id_{\mathcal{E}_i} \otimes a(q^*L).$$

But not everything is lost!

Technical problem

What is true is that

$$\mathcal{E}_{j} \cong \mathcal{E}_{i} \otimes q^{*}L,$$

for some line bundle *L* over $U_i \cap U_j$ (*q* is the projection $X \times (U_i \cap U_j) \rightarrow U_i \cap U_j$). It follows that

$$a(\mathcal{E}_j) = a(\mathcal{E}_i) \otimes id_{q^*L} + id_{\mathcal{E}_i} \otimes a(q^*L).$$

But not everything is lost! On $U_i \cap U_j$ we have:

$$\underline{End}(\mathcal{E}_j) = \mathcal{E}_j^* \otimes \mathcal{E}_j$$

= $(\mathcal{E}_i \otimes q^* L)^* \otimes (\mathcal{E}_i \otimes q^* L)$
= $\mathcal{E}_i^* \otimes \mathcal{E}_i$
= $\underline{End}(\mathcal{E}_i)$

▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

Technical problem

This means that, even if we cannot glue together the sheaves \mathcal{E}_i , we can glue the sheaves $\underline{End}(\mathcal{E}_i)$.

Technical problem

This means that, even if we cannot glue together the sheaves \mathcal{E}_i , we can glue the sheaves $\underline{End}(\mathcal{E}_i)$.

Hence, the sheaf $\underline{End}(\mathcal{E})$ is well-defined even if there is no universal family \mathcal{E} (the same is true for the Ext-groups).

Technical problem

This means that, even if we cannot glue together the sheaves \mathcal{E}_i , we can glue the sheaves $\underline{End}(\mathcal{E}_i)$.

Hence, the sheaf $\underline{End}(\mathcal{E})$ is well-defined even if there is no universal family \mathcal{E} (the same is true for the Ext-groups).

There is still no global Atiyah class

$$\textit{a}(\mathcal{E}) \in \mathsf{Ext}^1(\mathcal{E}, \mathcal{E} \otimes \Omega^1_{X \times \mathcal{M}})$$

because the classes $a(\mathcal{E}_i)$ do not coincide on the intersections $U_i \cap U_i$.

Technical problem

Reason

The usual Atiyah class is not the *right* object to consider in a relative situation.

Technical problem

Reason

The usual Atiyah class is not the *right* object to consider in a relative situation.

Let $p: X \times \mathcal{M} \to X$ and $q: X \times \mathcal{M} \to \mathcal{M}$ be the projections. Let \underline{Ext}_q^i denote the *i*-th relative Ext-sheaf (the *i*-th derived functor of q_* <u>Hom</u>)

Technical problem

Reason

The usual Atiyah class is not the *right* object to consider in a relative situation.

Let $p: X \times \mathcal{M} \to X$ and $q: X \times \mathcal{M} \to \mathcal{M}$ be the projections. Let \underline{Ext}_q^i denote the *i*-th relative Ext-sheaf (the *i*-th derived functor of q_* <u>Hom</u>)

There is a natural map

$$\mathsf{Ext}^1_{X imes\mathcal{M}}(\mathcal{E},\mathcal{E}\otimes\Omega^1_{X imes\mathcal{M}}) o H^0(\mathcal{M},\underline{\mathit{Ext}}^1_q(\mathcal{E},\mathcal{E}\otimes\Omega^1_{X imes\mathcal{M}}))\ a\mapsto \widetilde{a}$$

▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

The solution

If $a(\mathcal{E})$ is the Atiyah class of a universal family \mathcal{E} , we define

$$ilde{a}(\mathcal{E})\in H^0(\mathcal{M}, \underline{\textit{Ext}}^1_q(\mathcal{E}, \mathcal{E}\otimes \Omega^1_{X imes \mathcal{M}}))$$

to be the image of $a(\mathcal{E})$ via the previous map: $\tilde{a}(\mathcal{E})$ is the local Atiyah class of the family \mathcal{E} .

The solution

If $a(\mathcal{E})$ is the Atiyah class of a universal family \mathcal{E} , we define

$$\tilde{a}(\mathcal{E}) \in H^0(\mathcal{M}, \underline{\textit{Ext}}^1_q(\mathcal{E}, \mathcal{E} \otimes \Omega^1_{X \times \mathcal{M}}))$$

to be the image of $a(\mathcal{E})$ via the previous map: $\tilde{a}(\mathcal{E})$ is the local Atiyah class of the family \mathcal{E} .

The importance of the local Atiyah class is due to the following result:

Lemma

If
$$\mathcal{E}_j \cong \mathcal{E}_i \otimes q^*L$$
, then $a(\mathcal{E}_j) \neq a(\mathcal{E}_i)$ but $\tilde{a}(\mathcal{E}_j) = \tilde{a}(\mathcal{E}_i)$.

The solution

Corollary

Even if a global universal family ${\mathcal E}$ does not exist on ${\mathcal M},$ the local Atiyah class

$$\tilde{a}(\mathcal{E}) \in H^0(\mathcal{M}, \underline{\textit{Ext}}_q^1(\mathcal{E}, \mathcal{E} \otimes \Omega^1_{X imes \mathcal{M}}))$$

is well defined (it is obtained by gluing the sections $\tilde{a}(\mathcal{E}_i)$, where \mathcal{E}_i are local universal families).

The solution

Corollary

Even if a global universal family ${\mathcal E}$ does not exist on ${\mathcal M},$ the local Atiyah class

$$\tilde{a}(\mathcal{E}) \in H^0(\mathcal{M}, \underline{\textit{Ext}}^1_q(\mathcal{E}, \mathcal{E} \otimes \Omega^1_{X \times \mathcal{M}}))$$

is well defined (it is obtained by gluing the sections $\tilde{a}(\mathcal{E}_i)$, where \mathcal{E}_i are local universal families).

Now our original construction works, with only minor modifications!

The solution

Example:

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The solution

Example:

1. Original construction:

$$\gamma^{i}(\mathcal{E}) = \operatorname{tr}(\boldsymbol{a}(\mathcal{E})^{i}) \in H^{i}(\boldsymbol{X} \times \mathcal{M}, \Omega^{i}_{\boldsymbol{X} \times \mathcal{M}})$$

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

The solution

Example:

1. Original construction:

$$\gamma^{i}(\mathcal{E}) = \mathsf{tr}(\boldsymbol{a}(\mathcal{E})^{i}) \in \boldsymbol{H}^{i}(\boldsymbol{X} \times \mathcal{M}, \boldsymbol{\Omega}^{i}_{\boldsymbol{X} \times \mathcal{M}})$$

2. Modified version:

$$ilde{\gamma}^i(\mathcal{E}) = {
m tr}(ilde{a}(\mathcal{E})^i) \in H^0(\mathcal{M}, {\it R}^i q_*(\Omega^i_{X imes \mathcal{M}}))$$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

The solution

Example:

1. Original construction:

$$\gamma^{i}(\mathcal{E}) = \mathsf{tr}(\boldsymbol{a}(\mathcal{E})^{i}) \in \boldsymbol{H}^{i}(\boldsymbol{X} \times \mathcal{M}, \boldsymbol{\Omega}^{i}_{\boldsymbol{X} \times \mathcal{M}})$$

2. Modified version:

$$ilde{\gamma}^i(\mathcal{E}) = \operatorname{tr}(ilde{a}(\mathcal{E})^i) \in H^0(\mathcal{M}, R^i q_*(\Omega^i_{X imes \mathcal{M}}))$$

Then use the analogue of Künneth decomposition for the sheaf $R^i q_*(\Omega^i_{X \times \mathcal{M}})$ to write

$$\tilde{\gamma}^n(\mathcal{E}) = \sum_{i,j} \tilde{\gamma}^n_{i,j}(\mathcal{E})$$

etc.

Applications

Mukai's construction

1. We recover the original construction of holomorphic symplectic structures on moduli spaces of sheaves on symplectic surfaces (Mukai, 1984).
Mukai's construction

1. We recover the original construction of holomorphic symplectic structures on moduli spaces of sheaves on symplectic surfaces (Mukai, 1984).

2. We also recover a construction of holomorphic symplectic structures on moduli spaces of sheaves on a holomorphic symplectic manifold of dimension > 2 (Kobayashi, 1986).

Symplectic structures

3. In some cases it is possible to construct holomorphic symplectic structures on moduli spaces of sheaves on X, when X does not possess any non-zero holomorphic 2-form (some examples due to Kuznetsov and Markushevich, 2007).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Symplectic structures

3. In some cases it is possible to construct holomorphic symplectic structures on moduli spaces of sheaves on X, when X does not possess any non-zero holomorphic 2-form (some examples due to Kuznetsov and Markushevich, 2007).

Idea: choose a suitable *i* such that $H^i(X, \Omega_X^{i+2}) \neq 0$ and use the map

$$H^{i}(X, \Omega^{i+2}_{X}) \to H^{0}(\mathcal{M}, \Omega^{2}_{\mathcal{M}}).$$

Usually, the hard part is to prove that the resulting 2-form on $\ensuremath{\mathcal{M}}$ is non-degenerate.

4. *X* smooth 3-fold, K3-fibration over \mathbb{P}^1 :

$$\pi: X \to \mathbb{P}^1$$

such that $X_t = \pi^{-1}(t)$ is a K3 surface, $\forall t \in \mathbb{P}^1$.

4. *X* smooth 3-fold, K3-fibration over \mathbb{P}^1 :

$$\pi: X \to \mathbb{P}^1$$

such that $X_t = \pi^{-1}(t)$ is a K3 surface, $\forall t \in \mathbb{P}^1$.

 \mathcal{M} moduli space of stable sheaves on X, supported on the fibers of π .

4. *X* smooth 3-fold, K3-fibration over \mathbb{P}^1 :

$$\pi: X \to \mathbb{P}^1$$

such that $X_t = \pi^{-1}(t)$ is a K3 surface, $\forall t \in \mathbb{P}^1$.

 \mathcal{M} moduli space of stable sheaves on X, supported on the fibers of π . Then \mathcal{M} is a fibration over \mathbb{P}^1 and, for any $t \in \mathbb{P}^1$, \mathcal{M}_t is a moduli space of sheaves over X_t .

4. *X* smooth 3-fold, K3-fibration over \mathbb{P}^1 :

$$\pi: X \to \mathbb{P}^1$$

such that $X_t = \pi^{-1}(t)$ is a K3 surface, $\forall t \in \mathbb{P}^1$.

 \mathcal{M} moduli space of stable sheaves on X, supported on the fibers of π . Then \mathcal{M} is a fibration over \mathbb{P}^1 and, for any $t \in \mathbb{P}^1$, \mathcal{M}_t is a moduli space of sheaves over X_t . Fix moduli data so that dim $\mathcal{M} = 3$.

4. *X* smooth 3-fold, K3-fibration over \mathbb{P}^1 :

$$\pi: X
ightarrow \mathbb{P}^1$$

such that $X_t = \pi^{-1}(t)$ is a K3 surface, $orall t \in \mathbb{P}^1$.

 \mathcal{M} moduli space of stable sheaves on X, supported on the fibers of π . Then \mathcal{M} is a fibration over \mathbb{P}^1 and, for any $t \in \mathbb{P}^1$, \mathcal{M}_t is a moduli space of sheaves over X_t . Fix moduli data so that dim $\mathcal{M} = 3$. In this situation it is possible to construct a non-degenerate holomorphic 3-form on \mathcal{M} . It follows that \mathcal{M} is a Calabi-Yau 3-fold.

4. *X* smooth 3-fold, K3-fibration over \mathbb{P}^1 :

$$\pi: X \to \mathbb{P}^1$$

such that $X_t = \pi^{-1}(t)$ is a K3 surface, $\forall t \in \mathbb{P}^1$.

 \mathcal{M} moduli space of stable sheaves on X, supported on the fibers of π . Then \mathcal{M} is a fibration over \mathbb{P}^1 and, for any $t \in \mathbb{P}^1$, \mathcal{M}_t is a moduli space of sheaves over X_t . Fix moduli data so that dim $\mathcal{M} = 3$. In this situation it is possible to construct a non-degenerate holomorphic 3-form on \mathcal{M} . It follows that \mathcal{M} is a Calabi-Yau 3-fold.

The proof that the 3-form is non-degenerate uses the fact that \mathcal{M}_t is a moduli space of sheaves over a K3 surface, and the Mukai 2-form on \mathcal{M}_t is non-degenerate (results by Thomas, Bridgeland, Maciocia).

Calabi-Yau n-folds

Open problem: *X* be (some kind of) Calabi-Yau *n*-fold (maybe a K3 fibration?), \mathcal{M} be (some kind of) moduli space of sheaves over *X*.

Calabi-Yau n-folds

Open problem: *X* be (some kind of) Calabi-Yau *n*-fold (maybe a K3 fibration?), \mathcal{M} be (some kind of) moduli space of sheaves over *X*.

Then: *X* has a canonical non-degenerate *n*-form implies \mathcal{M} has a (canonical) *n*-form.

Calabi-Yau n-folds

Open problem: *X* be (some kind of) Calabi-Yau *n*-fold (maybe a K3 fibration?), \mathcal{M} be (some kind of) moduli space of sheaves over *X*.

Then: *X* has a canonical non-degenerate *n*-form implies \mathcal{M} has a (canonical) *n*-form.

Find conditions ensuring that the resulting *n*-form on \mathcal{M} is 'non-degenerate' (this is certainly not true, in general).

Calabi-Yau n-folds

Open problem: *X* be (some kind of) Calabi-Yau *n*-fold (maybe a K3 fibration?), \mathcal{M} be (some kind of) moduli space of sheaves over *X*.

Then: *X* has a canonical non-degenerate *n*-form implies \mathcal{M} has a (canonical) *n*-form.

Find conditions ensuring that the resulting *n*-form on \mathcal{M} is 'non-degenerate' (this is certainly not true, in general).

This construction may lead to interesting examples of multisymplectic manifolds

Calabi-Yau n-folds

Open problem: *X* be (some kind of) Calabi-Yau *n*-fold (maybe a K3 fibration?), \mathcal{M} be (some kind of) moduli space of sheaves over *X*.

Then: *X* has a canonical non-degenerate *n*-form implies \mathcal{M} has a (canonical) *n*-form.

Find conditions ensuring that the resulting *n*-form on \mathcal{M} is 'non-degenerate' (this is certainly not true, in general).

This construction may lead to interesting examples of multisymplectic manifolds

If we choose moduli data so that \mathcal{M} has (a component of) dimension *n*, is \mathcal{M} (or some component of it) another Calabi-Yau manifold?

Calabi-Yau n-folds

Open problem: *X* be (some kind of) Calabi-Yau *n*-fold (maybe a K3 fibration?), \mathcal{M} be (some kind of) moduli space of sheaves over *X*.

Then: *X* has a canonical non-degenerate *n*-form implies \mathcal{M} has a (canonical) *n*-form.

Find conditions ensuring that the resulting *n*-form on \mathcal{M} is 'non-degenerate' (this is certainly not true, in general).

This construction may lead to interesting examples of multisymplectic manifolds

If we choose moduli data so that \mathcal{M} has (a component of) dimension *n*, is \mathcal{M} (or some component of it) another Calabi-Yau manifold? True if n = 2 (Mukai). In this case both *X* and a component of \mathcal{M} are K3 surfaces.

Hilbert schemes of points

5. *X* smooth projective variety (of dimension *n*). $X^{[d]} = \text{Hilb}^{d}(X)$ Hilbert scheme parametrizing 0-dimensional subschemes of *X* of length *d* (i.e., *d* points on *X*, not necessarily distinct).

Hilbert schemes of points

5. X smooth projective variety (of dimension *n*). $X^{[d]} = \text{Hilb}^d(X)$ Hilbert scheme parametrizing 0-dimensional subschemes of X of length d (i.e., d points on X, not necessarily distinct).

If
$$Z \in X^{[d]}, Z = \{P_1, \dots, P_d\}, P_i \neq P_j$$
, then

$$T_Z X^{[d]} = \bigoplus_{i=1}^d T_{P_i} X$$

When the *d* points are not distinct, things become more complicated.

5. X smooth projective variety (of dimension *n*). $X^{[d]} = \text{Hilb}^d(X)$ Hilbert scheme parametrizing 0-dimensional subschemes of X of length d (i.e., d points on X, not necessarily distinct).

If
$$Z \in X^{[d]}, Z = \{P_1, \dots, P_d\}, P_i \neq P_j$$
, then

$$T_Z X^{[d]} = \bigoplus_{i=1}^d T_{P_i} X$$

When the *d* points are not distinct, things become more complicated.

Let $U \subset X^{[d]}$ be the open subset parametrizing *d*-tuples of distinct points of *X*. Any differential form σ on *X* defines a corresponding differential form $\tilde{\sigma}$ on *U*.

The Hilbert scheme $X^{[d]}$ can be thought of as a moduli space of sheaves on *X*.

The Hilbert scheme $X^{[d]}$ can be thought of as a moduli space of sheaves on *X*.

 $Z \in X^{[d]}$, Z is a 0-dimensional subscheme of X, let \mathcal{I}_Z be the corresponding sheaf of ideals.

Hilbert schemes of points

The Hilbert scheme $X^{[d]}$ can be thought of as a moduli space of sheaves on *X*.

 $Z \in X^{[d]}$, Z is a 0-dimensional subscheme of X, let \mathcal{I}_Z be the corresponding sheaf of ideals.

Then $X^{[d]}$ = moduli space of ideal sheaves \mathcal{I}_Z (sheaves of ideals of colength *d* of \mathcal{O}_X).

The Hilbert scheme $X^{[d]}$ can be thought of as a moduli space of sheaves on *X*.

 $Z \in X^{[d]}$, Z is a 0-dimensional subscheme of X, let \mathcal{I}_Z be the corresponding sheaf of ideals.

Then $X^{[d]}$ = moduli space of ideal sheaves \mathcal{I}_Z (sheaves of ideals of colength *d* of \mathcal{O}_X).

Using our construction of differential forms on moduli spaces of sheaves, we can construct a differential form on $X^{[d]}$, starting with a differential form σ on X.

(If X is a K3 surface, $X^{[d]}$ is an example of an irreducible symplectic manifold)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you!

Stability of Vector Bundles

Stability and semistability:

Stability of Vector Bundles

Stability and semistability:

- X = compact Kähler manifold of dimension n
- $g = K \ddot{a}h ler metric on X$
- Φ = associated Kähler form ($\Phi = \sqrt{-1} \sum g_{ij} dz^i \wedge d\bar{z}^j$)
- E = holomorphic vector bundle over X

 $c_1(E)$ = first Chern class of E (it is represented by a closed (1, 1)-form on X)

Stability of Vector Bundles

Stability and semistability:

- X = compact Kähler manifold of dimension n
- $g = K \ddot{a}h ler metric on X$
- Φ = associated Kähler form ($\Phi = \sqrt{-1} \sum g_{ij} dz^i \wedge d\bar{z}^j$)
- E = holomorphic vector bundle over X

 $c_1(E)$ = first Chern class of E (it is represented by a closed (1, 1)-form on X)

Define the degree of *E*:

$$\deg(E) = \int_X c_1(E) \wedge \Phi^{n-1}$$

Define the slope of *E*:

$$\mu(E) = rac{\deg(E)}{\operatorname{rk}(E)}$$

Definition of Stability

Remark

Similar definitions can be given for a torsion-free sheaf of \mathcal{O}_X -modules (such a sheaf is locally free on a dense open subset of *X*, the locus where it is not locally free has codimension ≥ 2)

Definition of Stability

Remark

Similar definitions can be given for a torsion-free sheaf of \mathcal{O}_X -modules (such a sheaf is locally free on a dense open subset of *X*, the locus where it is not locally free has codimension ≥ 2)

Definition

E is stable (resp. semistable) if, for every coherent torsion-free subsheaf $F \subset E$, with 0 < rk F < rk E,

 $\mu(F) < \mu(E)$ (resp. $\mu(F) \le \mu(E)$)

◆□ → ◆□ → ◆目 → ▲目 → ◆○ ◆

Definition of Stability

Remark

Similar definitions can be given for a torsion-free sheaf of \mathcal{O}_X -modules (such a sheaf is locally free on a dense open subset of *X*, the locus where it is not locally free has codimension ≥ 2)

Definition

E is stable (resp. semistable) if, for every coherent torsion-free subsheaf $F \subset E$, with 0 < rk F < rk E,

 $\mu(F) < \mu(E)$ (resp. $\mu(F) \le \mu(E)$)

< ロ > < 同 > < 三 > < 三 > 三 = < の < ○</p>

(This is "Mumford–Takemoto" or "slope" stability. There is a more general notion called "Gieseker" stability)

Given $\sigma \in H^{i}(X, \Omega_{X}^{i+p})$ we can give an alternative, more explicit, construction of a *p*-form ω on \mathcal{M} .

Given $\sigma \in H^i(X, \Omega_X^{i+\rho})$ we can give an alternative, more explicit, construction of a *p*-form ω on \mathcal{M} . For any $E \in \mathcal{M}, \omega_E$ is a map

 $\omega_{\boldsymbol{E}}: T_{\boldsymbol{E}}\mathcal{M} \times \cdots \times T_{\boldsymbol{E}}\mathcal{M} \to \mathbb{C}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Given $\sigma \in H^i(X, \Omega_X^{i+p})$ we can give an alternative, more explicit, construction of a *p*-form ω on \mathcal{M} . For any $E \in \mathcal{M}, \omega_E$ is a map

$$\omega_{\boldsymbol{E}}: T_{\boldsymbol{E}}\mathcal{M} \times \cdots \times T_{\boldsymbol{E}}\mathcal{M} \to \mathbb{C}$$

We can define ω_E as the composition of the following maps:

Given $\sigma \in H^i(X, \Omega_X^{i+\rho})$ we can give an alternative, more explicit, construction of a *p*-form ω on \mathcal{M} . For any $E \in \mathcal{M}, \omega_E$ is a map

$$\omega_{\boldsymbol{E}}: T_{\boldsymbol{E}}\mathcal{M} \times \cdots \times T_{\boldsymbol{E}}\mathcal{M} \to \mathbb{C}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We can define ω_E as the composition of the following maps:

• $\operatorname{Ext}^{1}(E, E) \times \cdots \times \operatorname{Ext}^{1}(E, E) \to \operatorname{Ext}^{p}(E, E)$ (Yoneda composition)

Given $\sigma \in H^i(X, \Omega_X^{i+\rho})$ we can give an alternative, more explicit, construction of a *p*-form ω on \mathcal{M} . For any $E \in \mathcal{M}, \omega_E$ is a map

$$\omega_{\boldsymbol{E}}: T_{\boldsymbol{E}}\mathcal{M} \times \cdots \times T_{\boldsymbol{E}}\mathcal{M} \to \mathbb{C}$$

We can define ω_E as the composition of the following maps:

- $\operatorname{Ext}^{1}(E, E) \times \cdots \times \operatorname{Ext}^{1}(E, E) \to \operatorname{Ext}^{p}(E, E)$ (Yoneda composition)
- tr : $\mathsf{Ext}^p(E, E) \to H^p(X, \mathcal{O}_X)$ (trace)

Given $\sigma \in H^i(X, \Omega_X^{i+\rho})$ we can give an alternative, more explicit, construction of a *p*-form ω on \mathcal{M} . For any $E \in \mathcal{M}, \omega_E$ is a map

$$\omega_{\boldsymbol{E}}: T_{\boldsymbol{E}}\mathcal{M} \times \cdots \times T_{\boldsymbol{E}}\mathcal{M} \to \mathbb{C}$$

We can define ω_E as the composition of the following maps:

- $\operatorname{Ext}^{1}(E, E) \times \cdots \times \operatorname{Ext}^{1}(E, E) \to \operatorname{Ext}^{p}(E, E)$ (Yoneda composition)
- tr : $\mathsf{Ext}^{p}(E, E) \to H^{p}(X, \mathcal{O}_{X})$ (trace)
- $H^{p}(X, \mathcal{O}_{X}) \rightarrow H^{i+p}(X, \Omega_{X}^{i+p})$ (cup-product with σ)

Given $\sigma \in H^i(X, \Omega_X^{i+p})$ we can give an alternative, more explicit, construction of a *p*-form ω on \mathcal{M} . For any $E \in \mathcal{M}, \omega_E$ is a map

$$\omega_{\boldsymbol{E}}: T_{\boldsymbol{E}}\mathcal{M} \times \cdots \times T_{\boldsymbol{E}}\mathcal{M} \to \mathbb{C}$$

We can define ω_E as the composition of the following maps:

- $\operatorname{Ext}^{1}(E, E) \times \cdots \times \operatorname{Ext}^{1}(E, E) \to \operatorname{Ext}^{p}(E, E)$ (Yoneda composition)
- tr : $\mathsf{Ext}^{\rho}(E, E) \to H^{\rho}(X, \mathcal{O}_X)$ (trace)
- $H^{p}(X, \mathcal{O}_{X}) \rightarrow H^{i+p}(X, \Omega_{X}^{i+p})$ (cup-product with σ)
- $H^{i+\rho}(X, \Omega_X^{i+\rho}) \to H^n(X, \Omega_X^n) \cong \mathbb{C}$ (cup-product with $c_1(E)^{n-i-\rho}$)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・