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Moduli Spaces

Definition (very rough)

A Moduli Space is a “space” that parametrizes equivalence
classes of “geometric objects”

Example 1
X a fixed complex manifold
objects = holomorphic vector bundles over X
equivalence = isomorphism of vector bundles

Moduli spaceM = set of isomorphism classes of holomorphic
vector bundles over X
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Moduli Spaces

Example 2
X a fixed projective variety
objects = closed subschemes of X
equivalence = isomorphism of schemes

M = set of isomorphism classes of closed subschemes of X
(this is called the Hilbert scheme)

M is just a set. We would like it to be a space (a manifold, a
variety, a scheme, . . . ), and in some natural way.

(the correct way of doing this is to defineM as a functor and
then try to see if it is representable)

Usually, this is not possible!
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Construction of the Moduli Space of Vector Bundles

Differential geometric construction of the moduli space of vector
bundles on a Kähler manifold.

Notations:

X a complex Kähler manifold
Ar = C∞ complex r -forms over X
Ap,q = C∞ complex (p,q)-forms over X
d : Ar → Ar+1 exterior differential

We write d = d ′ + d ′′, where

d ′ : Ap,q → Ap+1,q, d ′′ : Ap,q → Ap,q+1
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Construction of the Moduli Space of Vector Bundles

E a fixed C∞ complex vector bundle over X
Ar (E) = C∞ complex r -forms over X with values in E
Ap,q(E) = C∞ complex (p,q)-forms over X with values in E
D : A0(E)→ A1(E) a connection on E

We write D = D′ + D′′, where

D′ : A0(E)→ A1,0(E), D′′ : A0(E)→ A0,1(E)

D′′ is C-linear and

D′′(fs) = (d ′′f )s + f D′′(s),

for s ∈ A0(E) and f ∈ A0.
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Construction of the Moduli Space of Vector Bundles

D′′(E) = set of all D′′ as above

It is an infinite-dimensional affine space, modeled on the vector
space A0,1(End E)

H′′(E) := {D′′ ∈ D′′(E) |D′′ ◦ D′′ = 0}

H′′(E) is the set of all holomorphic structures on the C∞ vector
bundle E . But. . .

H′′(E) is not the moduli space of holomorphic vector bundles.
Different holomorphic structures may produce isomorphic
vector bundles
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Construction of the Moduli Space of Vector Bundles

GL(E) acts on H′′(E):

D′′ 7→ f−1 ◦ D′′ ◦ f = D′′ + f−1d ′′f

for any D′′ ∈ H′′(E), f ∈ GL(E).

The moduli space of holomorphic vector bundles is

M = H′′(E)/GL(E)

Problem: This quotient is not a “nice space” (e.g., it is not
Hausdorff)



Moduli Spaces Differential Forms Applications

Construction of the Moduli Space of Vector Bundles

GL(E) acts on H′′(E):

D′′ 7→ f−1 ◦ D′′ ◦ f = D′′ + f−1d ′′f

for any D′′ ∈ H′′(E), f ∈ GL(E).

The moduli space of holomorphic vector bundles is

M = H′′(E)/GL(E)

Problem: This quotient is not a “nice space” (e.g., it is not
Hausdorff)



Moduli Spaces Differential Forms Applications

Construction of the Moduli Space of Vector Bundles

GL(E) acts on H′′(E):

D′′ 7→ f−1 ◦ D′′ ◦ f = D′′ + f−1d ′′f

for any D′′ ∈ H′′(E), f ∈ GL(E).

The moduli space of holomorphic vector bundles is

M = H′′(E)/GL(E)

Problem: This quotient is not a “nice space” (e.g., it is not
Hausdorff)



Moduli Spaces Differential Forms Applications

Construction of the Moduli Space of Vector Bundles

Reason: the set of isomorphism classes of all holomorphic
vector bundles is too large to be parametrized by a nice space

Classical solution: consider only a suitable subset of
vector bundles, the (semi)stable ones Def. of Stability

Another solution: accept to deal with more fancy spaces,
like stacks

In this talk we shall consider the first approach.
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Existence of Moduli Spaces

Typical existence result:

Theorem
A moduli spaceM of (semi)stable holomorphic vector bundles
over X exists.

It is a complex space, usually not compact and singular.

It can be compactified by adding suitable equivalence classes
of sheaves (that are not locally free)

Remark
Usually, moduli spaces of (semi)stable sheaves on X carry
information about the variety X itself.
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Local Structure

Local Structure of Moduli Spaces
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Deformations of vector bundles

Study infinitesimal deformations of bundles.

An infinitesimal deformation of a vector bundle E ∈M is a
tangent vector toM at the point E

• •
E0 Et

dEt
dt |t=0

M

How do we make sense of dEt
dt ?
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Deformations of vector bundles

Cover X by open subsets Ui , such that Et |Ui is trivial

Et |Ui
∼= Ui × Cr

On Ui ∩ Uj we get a transition function

gij : Ui ∩ Uj → GL(r)

Et is equivalent to the family {gij(t)} of transition functions.

Then
dEt

dt
≈
{dgij

dt

}
ij
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Deformations of vector bundles

Transition functions {gij(t)} satisfy cocycle relations

gjk (t) gij(t) = gik (t), on Ui ∩ Uj ∩ Uk

It follows that {dgij

dt

∣∣∣
t=0

}
ij

is a Čech cocycle representing a cohomology class in
H1(X ,End E)

Theorem
There is a natural identification (Kodaira–Spencer map)

TEM∼= H1(X ,End E)
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Obstructions

Question: can a first-order deformation Eε of E be extended to
higher orders?

•
E

Eε

Answer: in general, NO. There are “obstructions”

Theorem

All obstructions to deforming E lie in H2(X ,End E)

Corollary

If H2(X ,End E) = 0 then all obstructions vanish. As a
consequence, E is a non-singular point ofM
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Kuranishi’s Theory

General results:

M can be smooth at E even if H2(X ,End E) 6= 0

Obstructions actually lie in H2(X ,End0 E), where End0 E is
the sub-bundle of trace-free endomorphisms of E .
If E is a singular point ofM, a small neighborhood of E in
M is homeomorphic to a subset of H1(X ,End E), which is
the zero locus of a quadratic polynomial map (Kuranishi
map).
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Moduli Spaces of More General Sheaves

In many situations, working only with locally free sheaves
(vector bundles) is not enough.

There are notions of stability for more general sheaves
(coherent torsion-free, or even torsion sheaves).
There exist moduli spaces of (semi)stable sheaves on a
projective variety. In general, they are (quasi)projective
schemes.
Technical point: if E is not locally free, all cohomology
groups H i(X ,End E) must be replaced by Exti(E ,E)
(Ext i is the i-th derived functor of the Hom-functor)



Moduli Spaces Differential Forms Applications

Moduli Spaces of More General Sheaves

In many situations, working only with locally free sheaves
(vector bundles) is not enough.

There are notions of stability for more general sheaves
(coherent torsion-free, or even torsion sheaves).

There exist moduli spaces of (semi)stable sheaves on a
projective variety. In general, they are (quasi)projective
schemes.
Technical point: if E is not locally free, all cohomology
groups H i(X ,End E) must be replaced by Exti(E ,E)
(Ext i is the i-th derived functor of the Hom-functor)



Moduli Spaces Differential Forms Applications

Moduli Spaces of More General Sheaves

In many situations, working only with locally free sheaves
(vector bundles) is not enough.

There are notions of stability for more general sheaves
(coherent torsion-free, or even torsion sheaves).
There exist moduli spaces of (semi)stable sheaves on a
projective variety. In general, they are (quasi)projective
schemes.

Technical point: if E is not locally free, all cohomology
groups H i(X ,End E) must be replaced by Exti(E ,E)
(Ext i is the i-th derived functor of the Hom-functor)



Moduli Spaces Differential Forms Applications

Moduli Spaces of More General Sheaves

In many situations, working only with locally free sheaves
(vector bundles) is not enough.

There are notions of stability for more general sheaves
(coherent torsion-free, or even torsion sheaves).
There exist moduli spaces of (semi)stable sheaves on a
projective variety. In general, they are (quasi)projective
schemes.
Technical point: if E is not locally free, all cohomology
groups H i(X ,End E) must be replaced by Exti(E ,E)
(Ext i is the i-th derived functor of the Hom-functor)



Moduli Spaces Differential Forms Applications

Tangent Space and Obstructions

Local theory of these more general moduli spaces is analogous
to the one for vector bundles:

Tangent space: TEM∼= Ext1(E ,E)

Obstruction space: Ext2(E ,E)

More precisely: there is a trace map

tr : Ext2(E ,E)→ H2(X ,OX )

and all obstructions to deforming E lie in the kernel of this
map, denoted by Ext20(E ,E)
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Differential Forms onM

Differential Forms onM
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Symplectic Structures onM

Example: (Mukai, 1984)

X smooth projective surface with trivial canonical bundle:
Ω2

X
∼= OX

(X is a K3 or abelian surface, it has a holomorphic symplectic
structure)

M moduli space of stable sheaves on X .

Theorem
M is non-singular.
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Symplectic Structures onM

Proof:

Let E ∈M. The obstructions to the smoothness ofM at E lie
in the trace-free part of Ext2(E ,E).
By Serre duality and stability of E we have

Ext2(E ,E)∗ ∼= Ext0(E ,E ⊗ ωX ) ∼= Hom(E ,E) ∼= C.

The trace-free part is 0, hence there are no obstructions.
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Symplectic Structures onM

Using smoothness ofM and the Kodaira-Spencer isomorphism
TEM∼= Ext1(E ,E), define a map

τ : TM× TM→OM

for any E ∈M, τE is given by composing

Ext1(E ,E)× Ext1(E ,E)→ Ext2(E ,E)

Ext2(E ,E)→ H2(X ,OX ) = H2(X , ωX ) ∼= C
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Symplectic Structures onM

Theorem (Mukai)
The maps τE , ∀E ∈M, define a non-degenerate 2-form

τ : TM× TM→OM

This 2-form is d-closed, hence it is a holomorphic symplectic
structure onM.

(Actually, the closedness of the 2-form onM was not proved in
the original paper by Mukai)
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Applications and generalizations

1. Construction of new examples of irreducible symplectic
manifolds (moduli spaces of sheaves, or Hilbert schemes of
points of a K3 surface)

2. Construction of algebro-geometric analogues of Donaldson’s
polynomial invariants (O’Grady, et al.)

3. Construction of Poisson structures on moduli spaces of
sheaves on a Poisson surface: by choosing a Poisson structure
on a surface X we can construct, in a natural way, a Poisson
structure on the moduli spaceM.

4. Construction of algebraically completely integrable
hamiltonian systems on moduli spaces of sheaves, or related
objects (e.g., Higgs bundles).
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Differential forms

Construction of closed differential forms
on moduli spaces of sheaves
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Main tool

X smooth projective variety (or compact Kähler manifold)
M moduli space of stable sheaves on X

We want to construct closed differential forms onM

Main tool: the Atiyah class

E holomorphic vector bundle over X . There is a natural exact
sequence

0→ E ⊗ Ω1
X → J1(E)→ E → 0,

where J1(E) is the bundle of first-order jets of sections of E .
The corresponding extension class

a(E) ∈ Ext1(E ,E ⊗ Ω1
X )

is the Atiyah class of E
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The Atiyah class

More generally

a(E) ◦ · · · ◦ a(E)︸ ︷︷ ︸
i times

∈ Exti(E ,E ⊗ (Ω1
X )⊗i)

Compose with (Ω1
X )⊗i → Ωi

X to obtain classes

a(E)i ∈ Exti(E ,E ⊗ Ωi
X )

Then, take the trace

γ i(E) = tr(a(E)i) ∈ H i(X ,Ωi
X )

γ i(E) is a closed (i , i)-form; up to a scalar factor it coincides
with the i-th component of the Chern character of E .



Moduli Spaces Differential Forms Applications

The Atiyah class

More generally

a(E) ◦ · · · ◦ a(E)︸ ︷︷ ︸
i times

∈ Exti(E ,E ⊗ (Ω1
X )⊗i)

Compose with (Ω1
X )⊗i → Ωi

X to obtain classes

a(E)i ∈ Exti(E ,E ⊗ Ωi
X )

Then, take the trace

γ i(E) = tr(a(E)i) ∈ H i(X ,Ωi
X )

γ i(E) is a closed (i , i)-form; up to a scalar factor it coincides
with the i-th component of the Chern character of E .



Moduli Spaces Differential Forms Applications

The Atiyah class

More generally

a(E) ◦ · · · ◦ a(E)︸ ︷︷ ︸
i times

∈ Exti(E ,E ⊗ (Ω1
X )⊗i)

Compose with (Ω1
X )⊗i → Ωi

X to obtain classes

a(E)i ∈ Exti(E ,E ⊗ Ωi
X )

Then, take the trace

γ i(E) = tr(a(E)i) ∈ H i(X ,Ωi
X )

γ i(E) is a closed (i , i)-form; up to a scalar factor it coincides
with the i-th component of the Chern character of E .



Moduli Spaces Differential Forms Applications

The construction

Idea
Use the Atiyah class of a universal family of sheaves on the
moduli spaceM to construct closed differential forms onM.

A universal family of sheaves is a sheaf E on X ×M, flat over
M, such that

E|X×{E} ∼= E ,

for any E ∈M.
Assume a universal family E exists. Then

a(E) ∈ Ext1X×M(E , E ⊗ Ω1
X×M)

We obtain classes

γ i(E) ∈ H i(X ×M,Ωi
X×M)
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The construction

Use the Künneth decomposition

Hn(X ×M,Ωn
X×M) ∼=

n⊕
i,j=0

H i(X ,Ωj
X )⊗ Hn−i(M,Ωn−j

M )

and write
γn(E) =

∑
i,j

γn
i,j(E),

where
γn

i,j(E) ∈ H i(X ,Ωj
X )⊗ Hn−i(M,Ωn−j

M ).
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The construction

Now consider Serre duality

H i(X ,Ωj
X ) ∼= Hn−i(X ,Ωn−j

X )∗

and the map

Hn−i(X ,Ωn−j
X )∗ → Hk+i−n(M,Ωk+j−n

M )

induced by

γk
n−i,n−j ∈ Hn−i(X ,Ωn−j

X )⊗ Hk+i−n(M,Ωk+j−n
M )

By composition we obtain a map

f : H i(X ,Ωj
X )→ Hk+i−n(M,Ωk+j−n

M )
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The construction

In particular, for k = n − i , we obtain a map

f : H i(X ,Ωj
X )→ H0(M,Ωj−i

M )

It follows that we can construct holomorphic forms onM by
starting with elements in H i(X ,Ωj

X ), for any j ≥ i ≥ 0.
Explicit construction

Finally, the closedness of the differential forms constructed in
this way follows easily from the fact that the classes γn(E), and
all their components γn

i,j(E), are d-closed (this is essentially a
restatement of the fact that the Chern classes of a vector
bundle are represented by closed differential forms).
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Technical problem

This is a nice construction but, unfortunately, there is a
technical problem.

Problem
A universal family E on a moduli space of sheavesM usually
does not exist!

More precisely: universal families exist only locally onM (for
the usual complex analytic topology, not for the Zariski
topology).

Choose a suitable open covering U = (Ui)i ofM, and local
universal families Ei over X × Ui .
Over X × (Ui ∩ Uj) we have two universal families, Ei and Ej .
In general, they are not isomorphic (that’s why we cannot glue
them to obtain a global universal family).
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Technical problem

What is true is that
Ej
∼= Ei ⊗ q∗L,

for some line bundle L over Ui ∩ Uj (q is the projection
X × (Ui ∩ Uj)→ Ui ∩ Uj ).

It follows that

a(Ej) = a(Ei)⊗ idq∗L + idEi ⊗ a(q∗L).

But not everything is lost!
On Ui ∩ Uj we have:

End(Ej) = E∗j ⊗ Ej

= (Ei ⊗ q∗L)∗ ⊗ (Ei ⊗ q∗L)

= E∗i ⊗ Ei

= End(Ei)
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Technical problem

This means that, even if we cannot glue together the sheaves
Ei , we can glue the sheaves End(Ei).

Hence, the sheaf End(E) is well-defined even if there is no
universal family E (the same is true for the Ext-groups).

There is still no global Atiyah class

a(E) ∈ Ext1(E , E ⊗ Ω1
X×M)

because the classes a(Ei) do not coincide on the intersections
Ui ∩ Uj .
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Technical problem

Reason
The usual Atiyah class is not the right object to consider in a
relative situation.

Let p : X ×M→ X and q : X ×M→M be the projections.
Let Extiq denote the i-th relative Ext-sheaf (the i-th derived
functor of q∗Hom)

There is a natural map

Ext1X×M(E , E ⊗ Ω1
X×M)→ H0(M,Ext1q(E , E ⊗ Ω1

X×M))

a 7→ ã
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The solution

If a(E) is the Atiyah class of a universal family E , we define

ã(E) ∈ H0(M,Ext1q(E , E ⊗ Ω1
X×M))

to be the image of a(E) via the previous map: ã(E) is the local
Atiyah class of the family E .

The importance of the local Atiyah class is due to the following
result:

Lemma
If Ej
∼= Ei ⊗ q∗L, then a(Ej) 6= a(Ei) but ã(Ej) = ã(Ei).
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The solution

Corollary
Even if a global universal family E does not exist onM, the
local Atiyah class

ã(E) ∈ H0(M,Ext1q(E , E ⊗ Ω1
X×M))

is well defined (it is obtained by gluing the sections ã(Ei), where
Ei are local universal families).

Now our original construction works, with only minor
modifications!
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The solution

Example:

1. Original construction:

γ i(E) = tr(a(E)i) ∈ H i(X ×M,Ωi
X×M)

2. Modified version:

γ̃ i(E) = tr(ã(E)i) ∈ H0(M,R iq∗(Ωi
X×M))

Then use the analogue of Künneth decomposition for the sheaf
R iq∗(Ωi

X×M) to write

γ̃n(E) =
∑
i,j

γ̃n
i,j(E)

etc.
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Mukai’s construction

1. We recover the original construction of holomorphic
symplectic structures on moduli spaces of sheaves on
symplectic surfaces (Mukai, 1984).

2. We also recover a construction of holomorphic symplectic
structures on moduli spaces of sheaves on a holomorphic
symplectic manifold of dimension > 2 (Kobayashi, 1986).
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Symplectic structures

3. In some cases it is possible to construct holomorphic
symplectic structures on moduli spaces of sheaves on X , when
X does not possess any non-zero holomorphic 2-form (some
examples due to Kuznetsov and Markushevich, 2007).

Idea: choose a suitable i such that H i(X ,Ωi+2
X ) 6= 0 and use the

map
H i(X ,Ωi+2

X )→ H0(M,Ω2
M).

Usually, the hard part is to prove that the resulting 2-form onM
is non-degenerate.
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K3 fibrations

4. X smooth 3-fold, K3-fibration over P1:

π : X → P1

such that Xt = π−1(t) is a K3 surface, ∀t ∈ P1.

M moduli space of stable sheaves on X , supported on the
fibers of π. ThenM is a fibration over P1 and, for any t ∈ P1,
Mt is a moduli space of sheaves over Xt . Fix moduli data so
that dimM = 3. In this situation it is possible to construct a
non-degenerate holomorphic 3-form onM. It follows thatM is
a Calabi-Yau 3-fold.
The proof that the 3-form is non-degenerate uses the fact that
Mt is a moduli space of sheaves over a K3 surface, and the
Mukai 2-form onMt is non-degenerate (results by Thomas,
Bridgeland, Maciocia).
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that dimM = 3. In this situation it is possible to construct a
non-degenerate holomorphic 3-form onM. It follows thatM is
a Calabi-Yau 3-fold.

The proof that the 3-form is non-degenerate uses the fact that
Mt is a moduli space of sheaves over a K3 surface, and the
Mukai 2-form onMt is non-degenerate (results by Thomas,
Bridgeland, Maciocia).
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Calabi-Yau n-folds

Open problem: X be (some kind of) Calabi-Yau n-fold (maybe
a K3 fibration?),M be (some kind of) moduli space of sheaves
over X .

Then: X has a canonical non-degenerate n-form impliesM
has a (canonical) n-form.

Find conditions ensuring that the resulting n-form onM is
‘non-degenerate’ (this is certainly not true, in general).

This construction may lead to interesting examples of
multisymplectic manifolds

If we choose moduli data so thatM has (a component of)
dimension n, isM (or some component of it) another
Calabi-Yau manifold?
True if n = 2 (Mukai). In this case both X and a component of
M are K3 surfaces.
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Hilbert schemes of points

5. X smooth projective variety (of dimension n).
X [d ] = Hilbd (X ) Hilbert scheme parametrizing 0-dimensional
subschemes of X of length d (i.e., d points on X , not
necessarily distinct).

If Z ∈ X [d ], Z = {P1, . . . ,Pd}, Pi 6= Pj , then

TZ X [d ] =
d⊕

i=1

TPi X

When the d points are not distinct, things become more
complicated.
Let U ⊂ X [d ] be the open subset parametrizing d-tuples of
distinct points of X . Any differential form σ on X defines a
corresponding differential form σ̃ on U.
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Hilbert schemes of points

The Hilbert scheme X [d ] can be thought of as a moduli space
of sheaves on X .

Z ∈ X [d ], Z is a 0-dimensional subscheme of X , let IZ be the
corresponding sheaf of ideals.

Then X [d ] = moduli space of ideal sheaves IZ (sheaves of
ideals of colength d of OX ).

Using our construction of differential forms on moduli spaces of
sheaves, we can construct a differential form on X [d ], starting
with a differential form σ on X .

(If X is a K3 surface, X [d ] is an example of an irreducible
symplectic manifold)
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Thank you!



Appendix

Stability of Vector Bundles

Stability and semistability:

X = compact Kähler manifold of dimension n
g = Kähler metric on X
Φ = associated Kähler form (Φ =

√
−1
∑

gij dz i ∧ dz̄ j )
E = holomorphic vector bundle over X
c1(E) = first Chern class of E (it is represented by a closed
(1,1)-form on X )

Define the degree of E :

deg(E) =

∫
X

c1(E) ∧ Φn−1

Define the slope of E :

µ(E) =
deg(E)

rk(E)
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Appendix

Definition of Stability

Remark
Similar definitions can be given for a torsion-free sheaf of
OX -modules (such a sheaf is locally free on a dense open
subset of X , the locus where it is not locally free has
codimension ≥ 2)

Definition
E is stable (resp. semistable) if, for every coherent torsion-free
subsheaf F ⊂ E , with 0 < rk F < rk E ,

µ(F ) < µ(E) (resp. µ(F ) ≤ µ(E))

(This is “Mumford–Takemoto” or “slope” stability. There is a
more general notion called “Gieseker” stability)

Return
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Appendix

Explicit construction

Given σ ∈ H i(X ,Ωi+p
X ) we can give an alternative, more explicit,

construction of a p-form ω onM.

For any E ∈M, ωE is a map

ωE : TEM× · · · × TEM→ C

We can define ωE as the composition of the following maps:
Ext1(E ,E)× · · · × Ext1(E ,E)→ Extp(E ,E) (Yoneda
composition)
tr : Extp(E ,E)→ Hp(X ,OX ) (trace)

Hp(X ,OX )→ H i+p(X ,Ωi+p
X ) (cup-product with σ)

H i+p(X ,Ωi+p
X )→ Hn(X ,Ωn

X ) ∼= C (cup-product with
c1(E)n−i−p)

Return
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