Joint work (in progress) with Dan Berwick-Evans.

1. Review: Lie algebroids and Q-manifolds

manifolds : algebras :: Q-manifolds : dg algebras

Defn: A *Q*-manifold is a $(\mathbb{Z}/2)$ supermanifold along with a bosonic vector field **n** and a fermionic vector field **q**, such that eigenvalues of **n** are in \mathbb{Z} , $[\mathbf{q}, \mathbf{q}] = 0$, and $[\mathbf{n}, \mathbf{q}] = \mathbf{q}$, plus technical conditions. **n**, **q** generate (left) action by Lie supergroup $\mathbb{R}^{\times} \ltimes \mathbb{R}^{0|1}$.

n-eigenvalue = *cohomological degree*.

If X is a Q-manifold, $\mathscr{C}^{\infty}(X)$ is \mathbb{Z} -graded (by **n**) and **q** makes it a dg algebra. Define $H^{\bullet}(X) = H^{\bullet}(X, \mathbf{q}) = H^{\bullet}(\mathscr{C}^{\infty}(X), \mathbf{q})$.

Eg: If X is a manifold, spec($\Omega^{\bullet}_{dR}(X)$, d) is Q-manifold.

Defn: A morphism $f : X \to Y$ of Q-manifolds is a *quasi-isomorphism* if $H^{\bullet}(f)$ is an isomorphism. $f : X \leftrightarrow Y : g$ are *quasi-inverse* if $H^{\bullet}(f \circ g) = id_{H^{\bullet}(Y)}$ and $H^{\bullet}(g \circ f) = id_{H^{\bullet}(X)}$.

Eg: <u>Aut</u>($\mathbb{R}^{0|1}$) = $\mathbb{R}^{\times} \ltimes \mathbb{R}^{0|1} \Rightarrow \mathbb{R}^{0|1}$ is Q-manifold. $\emptyset \to \mathbb{R}^{0|1}$ is quasi-isomorphism but not quasi-invertible.

Lie algebras : groups :: Lie algebroids : groupoids

Defn: A *Lie algebroid* is a vector bundle $A \rightarrow X$, a Lie algebra structure over \mathbb{R} on $\Gamma(A)$, and a vector bundle morphism $\rho : A \rightarrow TX$, such that the *Leibniz rule* holds:

$$[a, fb] = f[a, b] + \rho(a)[f] b, \quad a, b \in \Gamma(A), f \in \mathscr{C}^{\infty}$$

Eg: Bundles of Lie algebras. Lie algebra actions: $\mathfrak{g} \curvearrowright X$ $\rightsquigarrow A = \mathfrak{g} \times X$. Integrable distibutions.

Defn (Beilinson–Bernstein): A module of A is (roughly) a vector bundle $V \rightarrow X$ and a Lie algebra action $\Gamma(A) \curvearrowright \Gamma(V)$, with a Leiniz rule. (Better: Use quasicon sheaves.)

Eg: Trivial line $\mathscr{C}^{\infty} \to X$ is *A*-module. $A \to X$ is (usually) not an *A*-module (no "adjoint action").

Defn: The *coarse quotient* $X/A = \text{spec}(A-\text{invariant functions on } X) = \text{spec}(\text{Hom}_{A-\text{mod}}(\mathscr{C}^{\infty}, \mathscr{C}^{\infty}))$. The *derived quotient* X//A is what you get when you replace Hom with its right-derived functor. It is some sort of dg space, defined only up to quasi-inverse.

Fact: X//A can be presented by a Q-manifold, with underlying supermanifold $\Box A =$ the "parity-reverse total space" (make the fibers fermionic). (Idea: Chevalley-Eilenberg complex.) $A \rightarrow \Box A$ is full faithful functor {Lie algebroids} \rightarrow {Q-manifolds}.

This is a version of Quillen's theory relating CDGAs to DGLAs, and is a version of Koszul duality.

Eg: $X_{dR} = \Pi T X = \operatorname{spec}(\Omega^{\bullet}(X))$ presents X//TX. d \Leftrightarrow canonical vector field on TX.

2. What should be an integral on X//A?

Eg: $G = \text{compact Lie group, } X = \text{compact manifold,} G \cap X$. Then expect $\int_{X/G} = \frac{1}{\text{Vol} G} \int_X$. So a "measure" on X/G is a ratio: G-invariant measure on X / Haar measure on G (=ad-invariant measure on g).

Fact (Weinstein): If $A \to X$ is a Lie algebroid, then the line $\bigwedge^{\operatorname{rank} A} A \otimes \bigwedge^{\dim X} \mathsf{T}^* = \frac{\bigwedge^{\dim X} \mathsf{T}^*}{\bigwedge^{\operatorname{rank} A} A^*}$ is an *A*-module.

Defn (Weinstein): A *measure* on a Lie algebroid $A \rightarrow X$ is an *A*-invariant global section of $\bigwedge^{\operatorname{rank} A} A \otimes \bigwedge^{\dim X} \mathsf{T}^*$.

Fact: A measure on $A \rightarrow X$ determines a **q**-invariant Berezinian measure on $\sqcap A$.

But it is defective:

- 1. Not **n**-invariant: cohomological degree = $\operatorname{rank} A$. So integrates all functions on X/A to 0.
- Want to study ∫ exp(¹/_ħs) in limit as ħ → 0 by localizing near critical points of s ∈ C[∞](X/A). Even if s has unique nondegenerate critical point in smooth part of X/A, critical points of s extended (**q**-invariantly) to ⊓A comprise a (rank A| rank A)-dimensional sub-supermanifold of ⊓A. Unacceptable in infinite dimensions.
- 2'. Integrals of **q**-invariant functions on $\sqcap A$, if they were not zero, never converge absolutely.

3. The BRST argument: solving defects 2 and 2'

Becchi-Rouet-Stora 1974-6, Tyutin 1975.

Suppose we have Q-manifold $(B, \mathbf{n}, \mathbf{q})$ presenting X//A, with a **q**-invariant **n**-invariant Berezinian measure μ "encoding" the chosen Lie algebroid measure. Suppose $\mathscr{C}^{\infty}(B)$ includes functions in cohomological degree= -1.

We choose an action $s \in \mathscr{C}^{\infty}(B)$ with $\mathbf{q}s = \mathbf{n}s = 0$ (i.e. $s \in \mathrm{H}^{0}(B) = \mathscr{C}^{\infty}(X/A)$). We want $\int_{B} \exp(s) \mu$.

Arbitrarily choose $f \in \mathscr{C}^{\infty}(B)$ with $\mathbf{n}f = (-1)f$.

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}\lambda} \int_{B} \exp(s + \lambda \mathbf{q}f) \,\mu &= \int_{B} \frac{\mathrm{d}}{\mathrm{d}\lambda} \,\exp(s + \lambda \mathbf{q}f) \,\mu \\ &= \int_{B} \exp(s + \lambda \mathbf{q}f) \,(\mathbf{q}f) \,\mu \\ &= \int_{B} \mathcal{L}_{\mathbf{q}} \big(\exp(s + \lambda \mathbf{q}f) \,\mu \big) \quad \text{by } \mathbf{q}\text{-invariance of } s, \mu \\ &= 0 \quad \text{by Stoke's theorem.} \end{aligned}$$

(Last line requires conditions "at ∞ ".)

It often happens that even if s has large critical locus and $\int \exp(s)\mu$ fails to converge absolutely, nevertheless can find f so that $s + \mathbf{q}f$ has isolated critical points and $\int \exp(s + \mathbf{q}f)\mu$ converges absolutely.

Defn: $s_{GF} = s + \mathbf{q}f$ is the gauge-fixed action.

4. The FP construction: solving defect 1

Faddeev-Popov 1967.

Fact: $X \mapsto X_{dR} = (\sqcap TX, \mathbf{q} = d)$ is right-adjoint to "forget \mathbf{q} " : {Q-manifolds} $\rightarrow \{\mathbb{Z}$ -graded manifolds}.

Defn (Mackenzie): $f : Y \to X$ is submersion of \mathbb{Z} -graded manifolds, $\sqcap A$ is Q-manifold, $\sqcap A \to X$ is map of \mathbb{Z} -graded manifolds. The *Q*-pullback (double pullback, Lie algebroid pullback) of $\sqcap A$ along f is the pullback $B = Y_{dR} \times_{X_{dR}} \sqcap A$ in {Q-manifolds}:

Locally, $Y = F \times X \Rightarrow Y_{dR} = F_{dR} \times X_{dR} \Rightarrow B = F_{dR} \times \Pi A$.

Fact: If $\sqcap A \to X$ does come from Lie algebroid and Y is classical, then B comes from Lie algebroid over Y.

Fact (Mackenzie, García-Saz–Mehta): If $Y \rightarrow X$ is vector bundle, then so is $B \rightarrow \sqcap A$ ("Type 1 VBLA").

Fact (—, DBE): If $Y \to X$ is (\mathbb{Z} -graded) vector bundle, then $B \to \pi A$ has quasi-inverse the zero section.

Cor: $\sqcap A$ presents $X//A \Rightarrow$ so does B.

 $TF \rightarrow F$ has canonical Lie algebroid measure $\Rightarrow \Box TF$ has canonical Berezinian $\Rightarrow B$ has product measure = canonical on $F_{dR} \times \mu$ on A.

Given Lie algebroid $A \to X$ with measure, denote by $\pi^{-1}A$ the supermanifold πA with opposite **n**. Let $Y \to X$ be a graded vector bundle locally isomorphic to $\pi^{-1}A \to X$. Then the **q**-invariant Berezinian measure on *B* is also **n**-invariant.

A choice $(Y, f \in \mathscr{C}^{\infty}(B)$ in coh degree = -1) is a gauge-fixing of $\int_{X//A} \exp(s)$.

Defn: The Faddeev–Popov gauge-fixing presents X//A as the Q-pullback of $\sqcap A \to X$ along $\sqcap^{-1}A^* \to X$.

A section $f \in \Gamma(A)$ determines $f \in \mathscr{C}^{\infty}(\Pi^{-1}A^*)$ in cohomological degree = -1. The critical locus of $s_{GF} = s + \mathbf{q}f$ is the intersection (in X) of the critical locus of s with the zero locus of f. Formally (does not converge absolutely, and probably should include $\sqrt{-1}$):

$$\int_{B} \exp(s_{\rm GF}) = \int_{X} \exp(s) \times \delta(f) \times \text{Jacobi.}$$

5. Vol(X//TX) and Chern–Gauss–Bonnet

X//TX is some sort of "zero-dimensional stack", and so should have "counting measure". $Vol(X//TX) = \int e^0$ for this measure. $TX \rightarrow X$ does have its canonical Lie algebroid measure. We gauge fix this integral.

Let X = compact manifold. Choose $Y = \pi^{-1}TX$. Then $B = Y_{dR} = \pi T(\pi^{-1}TX)$. There is canonical map $B \rightarrow$

 $(\Pi T \oplus \Pi^{-1}T)X$; fiber is affine modeled on TX.

How to find $f \in \mathscr{C}^{\infty}(B)$ in coh degree = -1? *B* has another vector field $\bar{\mathbf{q}} = \text{de Rham d on } \Pi^{-1}TX$, satisfying $[\mathbf{n}, \bar{\mathbf{q}}] = -\bar{\mathbf{q}}$. So $\bar{\mathbf{q}}(f)$ is in coh degree = -1 if *f* in coh degree = 0.

Choose (positive-definite) metric g on X. It defines a pairing $\sqcap T \otimes \sqcap^{-1}T \to \mathscr{C}^{\infty}$, and hence a function " $\frac{1}{2}g(x)\psi\bar{\psi}$ " on $(\sqcap T \oplus \sqcap^{-1}T)X$, which pulls back to B. One calculates:

$$\frac{1}{2}\mathbf{q}\bar{\mathbf{q}}(g(x)\psi\bar{\psi}) = -\frac{1}{2}g(x)b^2 + (\star)\psi\bar{\psi}b + (\star)\psi\bar{\psi}\psi\bar{\psi}$$

b is affine coordinate on the fiber of $B \to (\Pi T \oplus \Pi^{-1}T)X$, and (*)s depend on derivatives of *g*.

Thus fiber integral $\int \exp(s_{\text{GF}}) db$ converges absolutely. Gaussian integrals are easy, and

$$\int_{B} \exp(s_{\rm GF}) = \int_{(\mathsf{nT} \oplus \mathsf{n}^{-1}\mathsf{T})X} \exp(R\psi \bar{\psi} \psi \bar{\psi}) \sqrt{g}$$

R = Riemann curvature 4-tensor. Integrating out the odd fibers gives:

$$=\int_X \operatorname{Pf}(R).$$

Alternately, try to use Faddeev–Popov style gauge fixing. Any $\alpha \in \Omega^1(X)$ defines coh-degree = -1 function " $\alpha(x)\overline{\psi}$ " on *B*. One calculates:

$$\mathbf{q}(\alpha(x)\bar{\psi}) = \alpha(x)b + \partial\alpha(x)\psi\bar{\psi}$$

Formally $\int_B \exp(\mathbf{q}(\alpha(x)\overline{\psi}))$ counts zeros of α (via delta function argument).

This integral does not converge absolutely, but

$$\int_{B} \exp(\hbar \mathbf{q} \bar{\mathbf{q}}(g(x)\psi\bar{\psi}) + \mathbf{q}(\alpha(x)\bar{\psi}))$$

converges absolutely for $\hbar > 0$. In $\hbar \to 0$ limit, \int localizes at zeros of α . If zeros of α are nondegenerate,

$$\int_{B} \exp(s_{\rm GF}) = \sum_{\alpha(x)=0} \operatorname{sign}(\partial \alpha)$$

Thus we've proved:

Fact (Chern–Gauss–Bonnet):

$$\operatorname{Vol}(X//\operatorname{T} X) = \int_X \operatorname{Pf}(R) = \sum_{\alpha(x)=0} \operatorname{sign}(\partial \alpha).$$

Credit where it's due: above calculations (when $\alpha = dh$ for h a Morse function, whence $\partial \alpha = hess(h)$) entirely due to DBE in his thesis. http://math.berkeley.edu/~devans/CGB_Draft.pdf

Heuristic argument: X//TX, hence Vol(X//TX), is a homotopy invariant. Vol(pt//Tpt) = 1. Properties of integrals: inclusion/exclusion formula for unions and multiplicative for fiber bundles. $\Rightarrow Vol(X//TX) =$ Euler characteristic of X. \Box