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Vogel’s plane

Vogel’s plane is a quotient P2/S3 of the projective plane with homogeneous
coordinates α, β and γ. It is a moduli space of a tensor category, which is
meant to be a model of the universal simple Lie algebra [Vogel, 1999].

Table: Vogel’s parameters for simple Lie algebras

Type Lie algebra α β γ t = h∨

An sln+1 −2 2 (n + 1) n + 1
Bn so2n+1 −2 4 2n − 3 2n − 1
Cn sp2n −2 1 n + 2 n + 1
Dn so2n −2 4 2n − 4 2n − 2
G2 g2 −2 10/3 8/3 4
F4 f4 −2 5 6 9
E6 e6 −2 6 8 12
E7 e7 −2 8 12 18
E8 e8 −2 12 20 30

Motivations: Knot theory (Vassiliev invariants, Kontsevich integral),
Deligne’s study of exceptional Lie algebras
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Universal formulae for dimension

Vogel, 1999:

dim g =
(α− 2t)(β − 2t)(γ − 2t)

αβγ

In the decomposition

S2g = C⊕ Y (α)⊕ Y (β)⊕ Y (γ)

the Casimir values C2 are respectively 4t − 2α, 4t − 2β, 4t − 2γ (which can be
used as a definition of Vogel’s parameters) and

dim Y2(α) = − (3α− 2 t) (β − 2 t) (γ − 2 t) t (β + t) (γ + t)

α2 (α− β) β (α− γ) γ
.
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Casimir operators

For any simple complex Lie algebra g define the Casimir operators Cp as the
following elements of the centre of the corresponding universal enveloping
algebra Ug as

Cp = gµ1...µpX
µ1 ...Xµp , p = 0, 1, 2, ...

where Xµ are the generators of g,

gµ1...µn = Tr(X̂µ1 ...X̂µn ),

where the trace is taken in the adjoint representation of g and the indices are
lowered using the Cartan-Killing metric

gµν = Tr(X̂µX̂ ν)

Consider the values of Cp on the adjoint representation. We claim that they can
be expressed rationally in the terms of the universal Vogel’s parameters α, β, γ.
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Universal formula for Casimirs

Theorem (MSV, 2011)

The generating function C(z) =
P∞

p=1 Cpz
p has the form

C(z) = z2 96t3 + 168t3z + 6(14t3 + tt2 − t3)z2 + (13t3 + 3tt2 − 4t3)z3

6(2t + αz)(2t + βz)(2t + γz)(2 + z)(1 + z)

where
t2 = α2 + β2 + γ2, t3 = α3 + β3 + γ3.

In particular, the first few Casimirs are

C1 = 0, C2 = 1, C3 = −1

4
, C4 =

3tt2 − t3
16t3

.

Proof uses the results of Okubo (1977) and Landsberg-Manivel (2004).
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Calculations: the quartic Casimir

Cvitanovic: for the orthogonal group SO(n)

C4 =
(n − 2)(n3 − 9n2 + 54n − 104)

8
.

The universal parameters of SO(n) are

α = −2, β = 4, γ = n − 4; t = n − 2

Assume that the numerator is a symmetric polynomial of α, β, γ :

n3 − 9n2 + 54n − 104 = At3 + Btt2 + Ct3,

t2 = α2 + β2 + γ2 = n2 − 8n + 36, t3 = α3 + β3 + γ3 = n3 − 12n2 + 48n − 8.

This gives 4 relations on three constants A,B and C , which in general should
not be consistent.

In our case however we do have a solution: A = 0, B = 3/2, C = −1/2 which
leads to our previous formula.
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Casimir operators and root systems

Let h be Cartan subalgebra of g and h∗ be its dual space. The root system
R ⊂ h∗ of g is defined as the set of non-zero weights of adjoint representation
of g.

On h there is a non-degenerate canonical Cartan-Killing form

< X ,Y >= tr adXadY , X ,Y ∈ h,

where adX : g→ g is defined by adX (Z) = [X ,Z ]. In terms of the roots the
canonical form can be written as

< X ,Y >=
X
α∈R

α(X )α(Y ) = 2
X
α∈R+

α(X )α(Y )

for any choice of positive roots R+ ⊂ R.

Harish-Chandra: the algebra of Casimir operators is isomorphic to the algebra
of shifted symmetric functions on h∗ such that

f (wξ − ρ) = f (ξ − ρ), ξ ∈ h∗, w ∈W

where

ρ =
1

2

X
α∈R+

α.
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Second universal formula for Casimirs

Consider now the Casimir operator Ĉ2k corresponding to the function

Ĉ2k(λ) =
X
α∈R

[< λ+ ρ, α >2k − < ρ, α >2k ],

Theorem (MSV, 2011).
For the adjoint representation with λ = θ being maximal root the generating
function Ĉ(z) =

P
Ĉ2kz

k has the form

Ĉ(z) = −2z
d

dz
ln

(16t2 − (2t − α)2z)(16t2 − (2t − β)2z)(16t2 − (2t − γ)2z)

(16t2 − α2z)(16t2 − β2z)(16t2 − γ2z)
.

Proof is based on Key lemma:

Y
µ∈R+

φ((µ, θ + ρ))

φ((µ, ρ))
=
φ((α− 2t)/2)

φ(α/2)

φ((β − 2t)/2)

φ(β/2)

φ((γ − 2t)/2)

φ(γ/2)

for any even or odd function φ(x) (cf. Landsberg-Manivel).
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Chern-Simons theory

Let M be 3-dimensional manifold, G is a simply connected simple compact Lie
group with Lie algebra g.

Chern-Simons action is

S(A) =
κ

4π

Z
M

Tr

„
A ∧ dA +

2

3
A ∧ A ∧ A

«
,

where A is g-valued 1-form on M and Tr denotes some invariant bilinear form
on a simple Lie algebra g.

The universal Chern-Simons theory depends on 4 parameters α, β, γ, κ defined
up to a common multiple, where α, β, γ are Vogel’s parameters. In fact it is
more convenient to replace κ by

δ = κ+ t = κ+ α + β + γ.
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Chern-Simons partition function of S3

The Chern-Simons partition function

Z(M) =

Z
DAexp

„
ik

4π

Z
M

Tr

„
A ∧ dA +

2

3
A ∧ A ∧ A

««
in the case of sphere M = S3 is known explicitly (Witten).

Let h be Cartan subalgebra of the Lie algebra g, r be its rank, Q ⊂ h∗, Q∨ ⊂ h

be the root and coroot lattices and (, ) be the minimal invariant bilinear form
on g, then

Z = Z(S3) = Vol(Q∨)−1(k + h∨)−r/2
Y
µ∈R+

2 sin
π(µ, ρ)

(k + h∨)
.

For an arbitrary invariant form we have

Z = Z(S3) = Vol(Q∨)−1δ−r/2
Y
µ∈R+

2 sin
π(µ, ρ)

δ
.
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Splitting the partition function

Rewrite Z as the product Z = Z1Z2, where

Z1 = Vol(Q∨)−1δ−r/2
Y
µ∈R+

2π(µ, ρ)

δ

and

Z2 =
Y
µ∈R+

sin
π(µ, ρ)

δ
/
π(µ, ρ)

δ
.

The first factor (non-perturbatve part) has a clear geometric meaning (Ooguri,
Vafa):

Z1 =
(2πδ−1/2)dim g

Vol(G)
,

where Vol(G) is the volume of the corresponding compact simply connected
group G .
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Perturbative part

Consider the corresponding free energy F2 = − ln Z2. Using

sinπx = πx
∞Y
n=1

(1− (
x

n
)2)

we have

ln
sinπx

πx
=
∞X
n=1

ln(1− (
x

n
)2) =

∞X
n=1

∞X
m=1

1

m

x2m

n2m
=
∞X

m=1

ζ(2m)

m
x2m,

where ζ(z) is the Riemann zeta-function.

Thus the perturbative part of free energy is

F2 =
∞X

m=1

ζ(2m)

m

X
µ∈R+

„
(µ, ρ)

δ

«2m

.

To show its universality we should express the sums
P
µ∈R(µ, ρ)2m in terms of

Vogel’s parameters.
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Weyl formula and universality

Consider the exponential generating function of pk =
P
µ∈R(µ, ρ)k :

F (x) =
∞X

k=1

pk

k!
xk =

X
µ∈R

(ex(µ,ρ) − 1).

Theorem (MV, 2012).

F (x) =
sinh(x α−2t

4
)

sinh( xα
4

)

sinh(x β−2t
4

)

sinh(x β
4

)

sinh(x γ−2t
4

)

sinh(x γ
4

)
− (α− 2t)(β − 2t)(γ − 2t)

αβγ

Idea of the proof: use Weyl’s character formula for the adjoint representation

χθ(xρ) =
Y
µ∈R+

sinh(x(µ, θ + ρ)/2)

sinh(x(µ, ρ)/2)

and Key lemma.
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F (x) =
sinh(x α−2t

4
)

sinh( xα
4

)

sinh(x β−2t
4

)

sinh(x β
4

)

sinh(x γ−2t
4

)

sinh(x γ
4

)
− (α− 2t)(β − 2t)(γ − 2t)

αβγ

Idea of the proof: use Weyl’s character formula for the adjoint representation

χθ(xρ) =
Y
µ∈R+

sinh(x(µ, θ + ρ)/2)

sinh(x(µ, ρ)/2)

and Key lemma.
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Corollary: Freudenthal-de Vries strange formulae

Expanding the previous formula in x we have in the leading orderX
µ∈R+

(µ, ρ)2 =
t2

12
dim g,

which is a homogeneous form of the Freudenthal-de Vries strange formula

< ρ, ρ >=
1

24
dim g.

In the next orders we haveX
µ∈R+

(µ, ρ)4 =
t(18t3 − 3tt2 + t3)

480
dim g,

where t2 = α2 + β2 + γ2, t3 = α3 + β3 + γ3, andX
µ∈R+

(µ, ρ)6 =
t(396t5 − 157t3t2 + 15tt2

2 + 39t2t3 − 5t2t3)

16128
dim g.
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More universal formulae in Chern-Simons theory

Expectation value of the unknotted Wilson loop C in S3

< W (C) >=
1

Z

Z
dAe iS(A)W (C), W (C) = TrP(exp

Z
Aµdxµ)

with Aµ taken in adjoint representation of g can be given as

< W (C) >=
sin(π(α−2t)

2δ
)

sin(πα
2δ

)

sin(π(β−2t)
2δ

)

sin(πβ
2δ

)

sin(π(γ−2t)
2δ

)

sin(πγ
2δ

)
.

Central charge c can be expressed universally as

c =
κ(α− 2t)(β − 2t)(γ − 2t)

αβγ(κ+ α + β + γ)
=

(δ − t)(α− 2t)(β − 2t)(γ − 2t)

αβγδ
.

Proof is based on explicit formulae given by Witten.
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Some open questions

What are the universal formulae for the symmetrised choice
(Gelfand) of the Casimir values ?

Which characteristics of simple Lie (super)algebras can be
expressed in terms of universal Vogel’s parameters ?

Which sectors of Chern-Simons theory are universal ? In particular,
is the volume of G a universal quantity ?

What does this all mean for other values of parameters?
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