Universality in Lie algebras and Chern-Simons theory

Alexander P. Veselov Loughborough University, UK

Math Physics talk, ETH, May 24, 2012

- Vogel's plane
- Vogel's plane
- Casimir operators for simple Lie algebras
- Vogel's plane
- Casimir operators for simple Lie algebras
- Universal formula for Casimir values
- Vogel's plane
- Casimir operators for simple Lie algebras
- Universal formula for Casimir values
- Root systems and second universal formula
- Vogel's plane
- Casimir operators for simple Lie algebras
- Universal formula for Casimir values
- Root systems and second universal formula
- Chern-Simons partition function of S^{3} and Freudenthal-de Vries strange formulae
- Vogel's plane
- Casimir operators for simple Lie algebras
- Universal formula for Casimir values
- Root systems and second universal formula
- Chern-Simons partition function of S^{3} and Freudenthal-de Vries strange formulae

References

R.L. Mkrtchyan, A.N. Sergeev, A.P.V. arXiv:1105.0115
R.L. Mkrtchyan, A.P.V. arXiv:1203.0766

Vogel's plane

Vogel's plane is a quotient \mathbb{P}^{2} / S_{3} of the projective plane with homogeneous coordinates α, β and γ. It is a moduli space of a tensor category, which is meant to be a model of the universal simple Lie algebra [Vogel, 1999].

Vogel's plane

Vogel's plane is a quotient \mathbb{P}^{2} / S_{3} of the projective plane with homogeneous coordinates α, β and γ. It is a moduli space of a tensor category, which is meant to be a model of the universal simple Lie algebra [Vogel, 1999].

Table: Vogel's parameters for simple Lie algebras

Type	Lie algebra	α	β	γ	$t=h^{\vee}$
A_{n}	$\mathfrak{s l}_{n+1}$	-2	2	$(n+1)$	$n+1$
B_{n}	$\mathfrak{s o}_{2 n+1}$	-2	4	$2 n-3$	$2 n-1$
C_{n}	$\mathfrak{s p}_{2 n}$	-2	1	$n+2$	$n+1$
D_{n}	$\mathfrak{s o}_{2 n}$	-2	4	$2 n-4$	$2 n-2$
G_{2}	\mathfrak{g}_{2}	-2	$10 / 3$	$8 / 3$	4
F_{4}	\mathfrak{f}_{4}	-2	5	6	9
E_{6}	\mathfrak{e}_{6}	-2	6	8	12
E_{7}	\mathfrak{e}_{7}	-2	8	12	18
E_{8}	\mathfrak{e}_{8}	-2	12	20	30

Vogel's plane

Vogel's plane is a quotient \mathbb{P}^{2} / S_{3} of the projective plane with homogeneous coordinates α, β and γ. It is a moduli space of a tensor category, which is meant to be a model of the universal simple Lie algebra [Vogel, 1999].

Table: Vogel's parameters for simple Lie algebras

Type	Lie algebra	α	β	γ	$t=h^{\vee}$
A_{n}	$\mathfrak{s l}_{n+1}$	-2	2	$(n+1)$	$n+1$
B_{n}	$\mathfrak{s o}_{2 n+1}$	-2	4	$2 n-3$	$2 n-1$
C_{n}	$\mathfrak{s p}_{2 n}$	-2	1	$n+2$	$n+1$
D_{n}	$\mathfrak{s o}_{2 n}$	-2	4	$2 n-4$	$2 n-2$
G_{2}	\mathfrak{g}_{2}	-2	$10 / 3$	$8 / 3$	4
F_{4}	\mathfrak{f}_{4}	-2	5	6	9
E_{6}	\mathfrak{e}_{6}	-2	6	8	12
E_{7}	\mathfrak{e}_{7}	-2	8	12	18
E_{8}	\mathfrak{e}_{8}	-2	12	20	30

Motivations: Knot theory (Vassiliev invariants, Kontsevich integral), Deligne's study of exceptional Lie algebras

Vogel's map

Universal formulae for dimension

Vogel, 1999:

$$
\operatorname{dim} \mathfrak{g}=\frac{(\alpha-2 t)(\beta-2 t)(\gamma-2 t)}{\alpha \beta \gamma}
$$

Universal formulae for dimension

Vogel, 1999:

$$
\operatorname{dim} \mathfrak{g}=\frac{(\alpha-2 t)(\beta-2 t)(\gamma-2 t)}{\alpha \beta \gamma}
$$

In the decomposition

$$
S^{2} \mathfrak{g}=\mathbb{C} \oplus Y(\alpha) \oplus Y(\beta) \oplus Y(\gamma)
$$

the Casimir values C_{2} are respectively $4 t-2 \alpha, 4 t-2 \beta, 4 t-2 \gamma$ (which can be used as a definition of Vogel's parameters) and

$$
\operatorname{dim} Y_{2}(\alpha)=-\frac{(3 \alpha-2 t)(\beta-2 t)(\gamma-2 t) t(\beta+t)(\gamma+t)}{\alpha^{2}(\alpha-\beta) \beta(\alpha-\gamma) \gamma}
$$

Casimir operators

For any simple complex Lie algebra \mathfrak{g} define the Casimir operators C_{p} as the following elements of the centre of the corresponding universal enveloping algebra $U \mathfrak{g}$ as

$$
C_{p}=g_{\mu_{1} \ldots \mu_{p}} X^{\mu_{1}} \ldots X^{\mu_{p}}, p=0,1,2, \ldots
$$

where X^{μ} are the generators of \mathfrak{g},

$$
g^{\mu_{1} \ldots \mu_{n}}=\operatorname{Tr}\left(\hat{X}^{\mu_{1}} \ldots \hat{X}^{\mu_{n}}\right)
$$

where the trace is taken in the adjoint representation of \mathfrak{g} and the indices are lowered using the Cartan-Killing metric

$$
g^{\mu \nu}=\operatorname{Tr}\left(\hat{X}^{\mu} \hat{X}^{\nu}\right)
$$

Casimir operators

For any simple complex Lie algebra \mathfrak{g} define the Casimir operators C_{p} as the following elements of the centre of the corresponding universal enveloping algebra $U \mathfrak{g}$ as

$$
C_{p}=g_{\mu_{1} \ldots \mu_{p}} X^{\mu_{1}} \ldots X^{\mu_{p}}, p=0,1,2, \ldots
$$

where X^{μ} are the generators of \mathfrak{g},

$$
g^{\mu_{1} \ldots \mu_{n}}=\operatorname{Tr}\left(\hat{X}^{\mu_{1}} \ldots \hat{X}^{\mu_{n}}\right)
$$

where the trace is taken in the adjoint representation of \mathfrak{g} and the indices are lowered using the Cartan-Killing metric

$$
g^{\mu \nu}=\operatorname{Tr}\left(\hat{X}^{\mu} \hat{X}^{\nu}\right)
$$

Consider the values of C_{p} on the adjoint representation. We claim that they can be expressed rationally in the terms of the universal Vogel's parameters α, β, γ.

Universal formula for Casimirs

Theorem (MSV, 2011)

The generating function $C(z)=\sum_{p=1}^{\infty} C_{p} z^{p}$ has the form

$$
C(z)=z^{2} \frac{96 t^{3}+168 t^{3} z+6\left(14 t^{3}+t t_{2}-t_{3}\right) z^{2}+\left(13 t^{3}+3 t t_{2}-4 t_{3}\right) z^{3}}{6(2 t+\alpha z)(2 t+\beta z)(2 t+\gamma z)(2+z)(1+z)}
$$

where

$$
t_{2}=\alpha^{2}+\beta^{2}+\gamma^{2}, t_{3}=\alpha^{3}+\beta^{3}+\gamma^{3}
$$

Universal formula for Casimirs

Theorem (MSV, 2011)

The generating function $C(z)=\sum_{p=1}^{\infty} C_{p} z^{p}$ has the form

$$
C(z)=z^{2} \frac{96 t^{3}+168 t^{3} z+6\left(14 t^{3}+t t_{2}-t_{3}\right) z^{2}+\left(13 t^{3}+3 t t_{2}-4 t_{3}\right) z^{3}}{6(2 t+\alpha z)(2 t+\beta z)(2 t+\gamma z)(2+z)(1+z)}
$$

where

$$
t_{2}=\alpha^{2}+\beta^{2}+\gamma^{2}, t_{3}=\alpha^{3}+\beta^{3}+\gamma^{3}
$$

In particular, the first few Casimirs are

$$
C_{1}=0, \quad C_{2}=1, \quad C_{3}=-\frac{1}{4}, \quad C_{4}=\frac{3 t t_{2}-t_{3}}{16 t^{3}}
$$

Universal formula for Casimirs

Theorem (MSV, 2011)

The generating function $C(z)=\sum_{p=1}^{\infty} C_{p} z^{p}$ has the form

$$
C(z)=z^{2} \frac{96 t^{3}+168 t^{3} z+6\left(14 t^{3}+t t_{2}-t_{3}\right) z^{2}+\left(13 t^{3}+3 t t_{2}-4 t_{3}\right) z^{3}}{6(2 t+\alpha z)(2 t+\beta z)(2 t+\gamma z)(2+z)(1+z)}
$$

where

$$
t_{2}=\alpha^{2}+\beta^{2}+\gamma^{2}, t_{3}=\alpha^{3}+\beta^{3}+\gamma^{3}
$$

In particular, the first few Casimirs are

$$
C_{1}=0, \quad C_{2}=1, \quad C_{3}=-\frac{1}{4}, \quad C_{4}=\frac{3 t t_{2}-t_{3}}{16 t^{3}}
$$

Proof uses the results of Okubo (1977) and Landsberg-Manivel (2004).

Calculations: the quartic Casimir

Cvitanovic: for the orthogonal group $S O(n)$

$$
C_{4}=\frac{(n-2)\left(n^{3}-9 n^{2}+54 n-104\right)}{8}
$$

Calculations: the quartic Casimir

Cvitanovic: for the orthogonal group $\operatorname{SO}(n)$

$$
C_{4}=\frac{(n-2)\left(n^{3}-9 n^{2}+54 n-104\right)}{8}
$$

The universal parameters of $S O(n)$ are

$$
\alpha=-2, \beta=4, \gamma=n-4 ; t=n-2
$$

Assume that the numerator is a symmetric polynomial of α, β, γ :

$$
\begin{gathered}
n^{3}-9 n^{2}+54 n-104=A t^{3}+B t t_{2}+C t_{3}, \\
t_{2}=\alpha^{2}+\beta^{2}+\gamma^{2}=n^{2}-8 n+36, t_{3}=\alpha^{3}+\beta^{3}+\gamma^{3}=n^{3}-12 n^{2}+48 n-8 .
\end{gathered}
$$

This gives 4 relations on three constants A, B and C, which in general should not be consistent.

Calculations: the quartic Casimir

Cvitanovic: for the orthogonal group $\operatorname{SO}(n)$

$$
C_{4}=\frac{(n-2)\left(n^{3}-9 n^{2}+54 n-104\right)}{8}
$$

The universal parameters of $S O(n)$ are

$$
\alpha=-2, \beta=4, \gamma=n-4 ; t=n-2
$$

Assume that the numerator is a symmetric polynomial of α, β, γ :

$$
\begin{gathered}
n^{3}-9 n^{2}+54 n-104=A t^{3}+B t t_{2}+C t_{3}, \\
t_{2}=\alpha^{2}+\beta^{2}+\gamma^{2}=n^{2}-8 n+36, t_{3}=\alpha^{3}+\beta^{3}+\gamma^{3}=n^{3}-12 n^{2}+48 n-8 .
\end{gathered}
$$

This gives 4 relations on three constants A, B and C, which in general should not be consistent.

In our case however we do have a solution: $A=0, B=3 / 2, C=-1 / 2$ which leads to our previous formula.

Casimir operators and root systems

Let \mathfrak{h} be Cartan subalgebra of \mathfrak{g} and \mathfrak{h}^{*} be its dual space. The root system $R \subset \mathfrak{h}^{*}$ of \mathfrak{g} is defined as the set of non-zero weights of adjoint representation of \mathfrak{g}.

Casimir operators and root systems

Let \mathfrak{h} be Cartan subalgebra of \mathfrak{g} and \mathfrak{h}^{*} be its dual space. The root system $R \subset \mathfrak{h}^{*}$ of \mathfrak{g} is defined as the set of non-zero weights of adjoint representation of \mathfrak{g}.

On \mathfrak{h} there is a non-degenerate canonical Cartan-Killing form

$$
<X, Y>=\operatorname{tr}^{2 a d_{X} a d_{Y}, \quad X, Y \in \mathfrak{h}, ~}
$$

where $\operatorname{ad} x: \mathfrak{g} \rightarrow \mathfrak{g}$ is defined by $\operatorname{ad}_{X}(Z)=[X, Z]$. In terms of the roots the canonical form can be written as

$$
<X, Y>=\sum_{\alpha \in R} \alpha(X) \alpha(Y)=2 \sum_{\alpha \in R_{+}} \alpha(X) \alpha(Y)
$$

for any choice of positive roots $R_{+} \subset R$.

Casimir operators and root systems

Let \mathfrak{h} be Cartan subalgebra of \mathfrak{g} and \mathfrak{h}^{*} be its dual space. The root system $R \subset \mathfrak{h}^{*}$ of \mathfrak{g} is defined as the set of non-zero weights of adjoint representation of \mathfrak{g}.

On \mathfrak{h} there is a non-degenerate canonical Cartan-Killing form

$$
<X, Y>=\operatorname{tr} a d_{X} a d_{Y}, \quad X, Y \in \mathfrak{h}
$$

where $\operatorname{ad}_{X}: \mathfrak{g} \rightarrow \mathfrak{g}$ is defined by $\operatorname{ad}_{X}(Z)=[X, Z]$. In terms of the roots the canonical form can be written as

$$
<X, Y>=\sum_{\alpha \in R} \alpha(X) \alpha(Y)=2 \sum_{\alpha \in R_{+}} \alpha(X) \alpha(Y)
$$

for any choice of positive roots $R_{+} \subset R$.
Harish-Chandra: the algebra of Casimir operators is isomorphic to the algebra of shifted symmetric functions on \mathfrak{h}^{*} such that

$$
f(w \xi-\rho)=f(\xi-\rho), \xi \in \mathfrak{h}^{*}, w \in W
$$

where

$$
\rho=\frac{1}{2} \sum_{\alpha \in R_{+}} \alpha
$$

Second universal formula for Casimirs

Consider now the Casimir operator $\hat{C}_{2 k}$ corresponding to the function

$$
\hat{C}_{2 k}(\lambda)=\sum_{\alpha \in R}\left[<\lambda+\rho, \alpha>^{2 k}-<\rho, \alpha>^{2 k}\right]
$$

Second universal formula for Casimirs

Consider now the Casimir operator $\hat{C}_{2 k}$ corresponding to the function

$$
\hat{C}_{2 k}(\lambda)=\sum_{\alpha \in R}\left[<\lambda+\rho, \alpha>^{2 k}-<\rho, \alpha>^{2 k}\right]
$$

Theorem (MSV, 2011).

For the adjoint representation with $\lambda=\theta$ being maximal root the generating function $\hat{C}(z)=\sum \hat{C}_{2 k} z^{k}$ has the form

$$
\hat{C}(z)=-2 z \frac{d}{d z} \ln \frac{\left(16 t^{2}-(2 t-\alpha)^{2} z\right)\left(16 t^{2}-(2 t-\beta)^{2} z\right)\left(16 t^{2}-(2 t-\gamma)^{2} z\right)}{\left(16 t^{2}-\alpha^{2} z\right)\left(16 t^{2}-\beta^{2} z\right)\left(16 t^{2}-\gamma^{2} z\right)}
$$

Second universal formula for Casimirs

Consider now the Casimir operator $\hat{C}_{2 k}$ corresponding to the function

$$
\hat{C}_{2 k}(\lambda)=\sum_{\alpha \in R}\left[<\lambda+\rho, \alpha>^{2 k}-<\rho, \alpha>^{2 k}\right]
$$

Theorem (MSV, 2011).

For the adjoint representation with $\lambda=\theta$ being maximal root the generating function $\hat{C}(z)=\sum \hat{C}_{2 k} z^{k}$ has the form

$$
\hat{C}(z)=-2 z \frac{d}{d z} \ln \frac{\left(16 t^{2}-(2 t-\alpha)^{2} z\right)\left(16 t^{2}-(2 t-\beta)^{2} z\right)\left(16 t^{2}-(2 t-\gamma)^{2} z\right)}{\left(16 t^{2}-\alpha^{2} z\right)\left(16 t^{2}-\beta^{2} z\right)\left(16 t^{2}-\gamma^{2} z\right)}
$$

Proof is based on Key lemma:

$$
\prod_{\mu \in R_{+}} \frac{\phi((\mu, \theta+\rho))}{\phi((\mu, \rho))}=\frac{\phi((\alpha-2 t) / 2)}{\phi(\alpha / 2)} \frac{\phi((\beta-2 t) / 2)}{\phi(\beta / 2)} \frac{\phi((\gamma-2 t) / 2)}{\phi(\gamma / 2)}
$$

for any even or odd function $\phi(x)$ (cf. Landsberg-Manivel).

Chern-Simons theory

Let M be 3-dimensional manifold, G is a simply connected simple compact Lie group with Lie algebra \mathfrak{g}.

Chern-Simons theory

Let M be 3-dimensional manifold, G is a simply connected simple compact Lie group with Lie algebra \mathfrak{g}.

Chern-Simons action is

$$
S(A)=\frac{\kappa}{4 \pi} \int_{M} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

where A is \mathfrak{g}-valued 1-form on M and Tr denotes some invariant bilinear form on a simple Lie algebra \mathfrak{g}.

Chern-Simons theory

Let M be 3-dimensional manifold, G is a simply connected simple compact Lie group with Lie algebra \mathfrak{g}.

Chern-Simons action is

$$
S(A)=\frac{\kappa}{4 \pi} \int_{M} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

where A is \mathfrak{g}-valued 1-form on M and Tr denotes some invariant bilinear form on a simple Lie algebra \mathfrak{g}.

The universal Chern-Simons theory depends on 4 parameters $\alpha, \beta, \gamma, \kappa$ defined up to a common multiple, where α, β, γ are Vogel's parameters. In fact it is more convenient to replace κ by

$$
\delta=\kappa+t=\kappa+\alpha+\beta+\gamma
$$

Chern-Simons partition function of S^{3}

The Chern-Simons partition function

$$
Z(M)=\int D A \exp \left(\frac{i k}{4 \pi} \int_{M} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right)
$$

in the case of sphere $M=S^{3}$ is known explicitly (Witten).

Chern-Simons partition function of S^{3}

The Chern-Simons partition function

$$
Z(M)=\int D A \exp \left(\frac{i k}{4 \pi} \int_{M} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right)
$$

in the case of sphere $M=S^{3}$ is known explicitly (Witten).
Let \mathfrak{h} be Cartan subalgebra of the Lie algebra \mathfrak{g}, r be its rank, $Q \subset \mathfrak{h}^{*}, Q^{\vee} \subset \mathfrak{h}$ be the root and coroot lattices and (,) be the minimal invariant bilinear form on \mathfrak{g}, then

$$
Z=Z\left(S^{3}\right)=\operatorname{Vol}\left(Q^{\vee}\right)^{-1}\left(k+h^{\vee}\right)^{-r / 2} \prod_{\mu \in R_{+}} 2 \sin \frac{\pi(\mu, \rho)}{\left(k+h^{\vee}\right)}
$$

Chern-Simons partition function of S^{3}

The Chern-Simons partition function

$$
Z(M)=\int D A \exp \left(\frac{i k}{4 \pi} \int_{M} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right)
$$

in the case of sphere $M=S^{3}$ is known explicitly (Witten).
Let \mathfrak{h} be Cartan subalgebra of the Lie algebra \mathfrak{g}, r be its rank, $Q \subset \mathfrak{h}^{*}, Q^{\vee} \subset \mathfrak{h}$ be the root and coroot lattices and (,) be the minimal invariant bilinear form on \mathfrak{g}, then

$$
Z=Z\left(S^{3}\right)=\operatorname{Vol}\left(Q^{\vee}\right)^{-1}\left(k+h^{\vee}\right)^{-r / 2} \prod_{\mu \in R_{+}} 2 \sin \frac{\pi(\mu, \rho)}{\left(k+h^{\vee}\right)}
$$

For an arbitrary invariant form we have

$$
Z=Z\left(S^{3}\right)=\operatorname{Vol}\left(Q^{\vee}\right)^{-1} \delta^{-r / 2} \prod_{\mu \in R_{+}} 2 \sin \frac{\pi(\mu, \rho)}{\delta}
$$

Splitting the partition function

Rewrite Z as the product $Z=Z_{1} Z_{2}$, where

$$
Z_{1}=\operatorname{Vol}\left(Q^{\vee}\right)^{-1} \delta^{-r / 2} \prod_{\mu \in R_{+}} \frac{2 \pi(\mu, \rho)}{\delta}
$$

and

$$
Z_{2}=\prod_{\mu \in R_{+}} \sin \frac{\pi(\mu, \rho)}{\delta} / \frac{\pi(\mu, \rho)}{\delta}
$$

Splitting the partition function

Rewrite Z as the product $Z=Z_{1} Z_{2}$, where

$$
Z_{1}=\operatorname{Vol}\left(Q^{\vee}\right)^{-1} \delta^{-r / 2} \prod_{\mu \in R_{+}} \frac{2 \pi(\mu, \rho)}{\delta}
$$

and

$$
Z_{2}=\prod_{\mu \in R_{+}} \sin \frac{\pi(\mu, \rho)}{\delta} / \frac{\pi(\mu, \rho)}{\delta}
$$

The first factor (non-perturbatve part) has a clear geometric meaning (Ooguri, Vafa):

$$
Z_{1}=\frac{\left(2 \pi \delta^{-1 / 2}\right)^{\operatorname{dimg}}}{\operatorname{Vol}(G)}
$$

where $\operatorname{Vol}(G)$ is the volume of the corresponding compact simply connected group G.

Perturbative part

Consider the corresponding free energy $F_{2}=-\ln Z_{2}$. Using

$$
\sin \pi x=\pi x \prod_{n=1}^{\infty}\left(1-\left(\frac{x}{n}\right)^{2}\right)
$$

we have

$$
\ln \frac{\sin \pi x}{\pi x}=\sum_{n=1}^{\infty} \ln \left(1-\left(\frac{x}{n}\right)^{2}\right)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{m} \frac{x^{2 m}}{n^{2 m}}=\sum_{m=1}^{\infty} \frac{\zeta(2 m)}{m} x^{2 m}
$$

where $\zeta(z)$ is the Riemann zeta-function.

Perturbative part

Consider the corresponding free energy $F_{2}=-\ln Z_{2}$. Using

$$
\sin \pi x=\pi x \prod_{n=1}^{\infty}\left(1-\left(\frac{x}{n}\right)^{2}\right)
$$

we have

$$
\ln \frac{\sin \pi x}{\pi x}=\sum_{n=1}^{\infty} \ln \left(1-\left(\frac{x}{n}\right)^{2}\right)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{m} \frac{x^{2 m}}{n^{2 m}}=\sum_{m=1}^{\infty} \frac{\zeta(2 m)}{m} x^{2 m},
$$

where $\zeta(z)$ is the Riemann zeta-function.
Thus the perturbative part of free energy is

$$
F_{2}=\sum_{m=1}^{\infty} \frac{\zeta(2 m)}{m} \sum_{\mu \in R_{+}}\left(\frac{(\mu, \rho)}{\delta}\right)^{2 m} .
$$

To show its universality we should express the sums $\sum_{\mu \in R}(\mu, \rho)^{2 m}$ in terms of Vogel's parameters.

Weyl formula and universality

Consider the exponential generating function of $p_{k}=\sum_{\mu \in R}(\mu, \rho)^{k}$:

$$
F(x)=\sum_{k=1}^{\infty} \frac{p_{k}}{k!} x^{k}=\sum_{\mu \in R}\left(e^{x(\mu, \rho)}-1\right) .
$$

Weyl formula and universality

Consider the exponential generating function of $p_{k}=\sum_{\mu \in R}(\mu, \rho)^{k}$:

$$
F(x)=\sum_{k=1}^{\infty} \frac{p_{k}}{k!} x^{k}=\sum_{\mu \in R}\left(e^{x(\mu, \rho)}-1\right) .
$$

Theorem (MV, 2012).

$$
F(x)=\frac{\sinh \left(x \frac{\alpha-2 t}{4}\right)}{\sinh \left(\frac{x \alpha}{4}\right)} \frac{\sinh \left(x \frac{\beta-2 t}{4}\right)}{\sinh \left(x \frac{\beta}{4}\right)} \frac{\sinh \left(x \frac{\gamma-2 t}{4}\right)}{\sinh \left(x \frac{\gamma}{4}\right)}-\frac{(\alpha-2 t)(\beta-2 t)(\gamma-2 t)}{\alpha \beta \gamma}
$$

Weyl formula and universality

Consider the exponential generating function of $p_{k}=\sum_{\mu \in R}(\mu, \rho)^{k}$:

$$
F(x)=\sum_{k=1}^{\infty} \frac{p_{k}}{k!} x^{k}=\sum_{\mu \in R}\left(e^{x(\mu, \rho)}-1\right) .
$$

Theorem (MV, 2012).

$$
F(x)=\frac{\sinh \left(x \frac{\alpha-2 t}{4}\right)}{\sinh \left(\frac{x \alpha}{4}\right)} \frac{\sinh \left(x \frac{\beta-2 t}{4}\right)}{\sinh \left(x \frac{\beta}{4}\right)} \frac{\sinh \left(x \frac{\gamma-2 t}{4}\right)}{\sinh \left(x \frac{\gamma}{4}\right)}-\frac{(\alpha-2 t)(\beta-2 t)(\gamma-2 t)}{\alpha \beta \gamma}
$$

Idea of the proof: use Weyl's character formula for the adjoint representation

$$
\chi_{\theta}(x \rho)=\prod_{\mu \in R_{+}} \frac{\sinh (x(\mu, \theta+\rho) / 2)}{\sinh (x(\mu, \rho) / 2)}
$$

and Key lemma.

Corollary: Freudenthal-de Vries strange formulae

Expanding the previous formula in x we have in the leading order

$$
\sum_{\mu \in R_{+}}(\mu, \rho)^{2}=\frac{t^{2}}{12} \operatorname{dim} \mathfrak{g}
$$

which is a homogeneous form of the Freudenthal-de Vries strange formula

$$
<\rho, \rho>=\frac{1}{24} \operatorname{dim} \mathfrak{g} .
$$

Corollary: Freudenthal-de Vries strange formulae

Expanding the previous formula in x we have in the leading order

$$
\sum_{\mu \in R_{+}}(\mu, \rho)^{2}=\frac{t^{2}}{12} \operatorname{dim} \mathfrak{g}
$$

which is a homogeneous form of the Freudenthal-de Vries strange formula

$$
<\rho, \rho>=\frac{1}{24} \operatorname{dim} \mathfrak{g} .
$$

In the next orders we have

$$
\sum_{\mu \in R_{+}}(\mu, \rho)^{4}=\frac{t\left(18 t^{3}-3 t t_{2}+t_{3}\right)}{480} \operatorname{dim} \mathfrak{g}
$$

where $t_{2}=\alpha^{2}+\beta^{2}+\gamma^{2}, t_{3}=\alpha^{3}+\beta^{3}+\gamma^{3}$, and

$$
\sum_{\mu \in R_{+}}(\mu, \rho)^{6}=\frac{t\left(396 t^{5}-157 t^{3} t_{2}+15 t t_{2}^{2}+39 t^{2} t_{3}-5 t_{2} t_{3}\right)}{16128} \operatorname{dim} \mathfrak{g}
$$

More universal formulae in Chern-Simons theory

Expectation value of the unknotted Wilson loop C in S^{3}

$$
<W(C)>=\frac{1}{Z} \int d A e^{i S(A)} W(C), \quad W(C)=\operatorname{Tr} P\left(\exp \int A_{\mu} d x^{\mu}\right)
$$

with A_{μ} taken in adjoint representation of \mathfrak{g} can be given as

$$
<W(C)>=\frac{\sin \left(\frac{\pi(\alpha-2 t)}{2 \delta}\right)}{\sin \left(\frac{\pi \alpha}{2 \delta}\right)} \frac{\sin \left(\frac{\pi(\beta-2 t)}{2 \delta}\right)}{\sin \left(\frac{\pi \beta}{2 \delta}\right)} \frac{\sin \left(\frac{\pi(\gamma-2 t)}{2 \delta}\right)}{\sin \left(\frac{\pi \gamma}{2 \delta}\right)} .
$$

More universal formulae in Chern-Simons theory

Expectation value of the unknotted Wilson loop C in S^{3}

$$
<W(C)>=\frac{1}{Z} \int d A e^{i S(A)} W(C), \quad W(C)=\operatorname{Tr} P\left(\exp \int A_{\mu} d x^{\mu}\right)
$$

with A_{μ} taken in adjoint representation of \mathfrak{g} can be given as

$$
<W(C)>=\frac{\sin \left(\frac{\pi(\alpha-2 t)}{2 \delta}\right)}{\sin \left(\frac{\pi \alpha}{2 \delta}\right)} \frac{\sin \left(\frac{\pi(\beta-2 t)}{2 \delta}\right)}{\sin \left(\frac{\pi \beta}{2 \delta}\right)} \frac{\sin \left(\frac{\pi(\gamma-2 t)}{2 \delta}\right)}{\sin \left(\frac{\pi \gamma}{2 \delta}\right)} .
$$

Central charge c can be expressed universally as

$$
c=\frac{\kappa(\alpha-2 t)(\beta-2 t)(\gamma-2 t)}{\alpha \beta \gamma(\kappa+\alpha+\beta+\gamma)}=\frac{(\delta-t)(\alpha-2 t)(\beta-2 t)(\gamma-2 t)}{\alpha \beta \gamma \delta} .
$$

More universal formulae in Chern-Simons theory

Expectation value of the unknotted Wilson loop C in S^{3}

$$
<W(C)>=\frac{1}{Z} \int d A e^{i S(A)} W(C), \quad W(C)=\operatorname{Tr} P\left(\exp \int A_{\mu} d x^{\mu}\right)
$$

with A_{μ} taken in adjoint representation of \mathfrak{g} can be given as

$$
<W(C)>=\frac{\sin \left(\frac{\pi(\alpha-2 t)}{2 \delta}\right)}{\sin \left(\frac{\pi \alpha}{2 \delta}\right)} \frac{\sin \left(\frac{\pi(\beta-2 t)}{2 \delta}\right)}{\sin \left(\frac{\pi \beta}{2 \delta}\right)} \frac{\sin \left(\frac{\pi(\gamma-2 t)}{2 \delta}\right)}{\sin \left(\frac{\pi \gamma}{2 \delta}\right)} .
$$

Central charge c can be expressed universally as

$$
c=\frac{\kappa(\alpha-2 t)(\beta-2 t)(\gamma-2 t)}{\alpha \beta \gamma(\kappa+\alpha+\beta+\gamma)}=\frac{(\delta-t)(\alpha-2 t)(\beta-2 t)(\gamma-2 t)}{\alpha \beta \gamma \delta}
$$

Proof is based on explicit formulae given by Witten.

Some open questions

What are the universal formulae for the symmetrised choice (Gelfand) of the Casimir values ?

Some open questions

What are the universal formulae for the symmetrised choice (Gelfand) of the Casimir values ?

Which characteristics of simple Lie (super)algebras can be expressed in terms of universal Vogel's parameters ?

Some open questions

What are the universal formulae for the symmetrised choice (Gelfand) of the Casimir values ?

Which characteristics of simple Lie (super)algebras can be expressed in terms of universal Vogel's parameters ?

Which sectors of Chern-Simons theory are universal ? In particular, is the volume of G a universal quantity ?

Some open questions

What are the universal formulae for the symmetrised choice (Gelfand) of the Casimir values ?

Which characteristics of simple Lie (super)algebras can be expressed in terms of universal Vogel's parameters ?

Which sectors of Chern-Simons theory are universal ? In particular, is the volume of G a universal quantity ?

What does this all mean for other values of parameters?

Vogel's map

