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Topological insulators

Topological insulators are time-reversal invariant fermionic systems
that

behave as usual insulators in the bulk (band gap at Fermi energy)
carry robust currents on their edges (“Quantum Spin Hall effect”).

spin down

E
d
g
e

void Bulk

spin up

E
d
g
e

void

Topology: A topological insulator can not be deformed in an ordinary
one, while keeping the gap open and time-reversal invariance.
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Topological insulators

Kane-Mele (2004): 2d time-reversal invariant band insulators can be
classified in two topologically distinct classes.

Earlier results in
Fröhlich et al. (1993) (gauge theory of topological states of matter).

König et al. (2007): Experimental discovery (HgTe/CdTe interfaces).

The classification can be expressed through an index, corresponding
to bulk or to edge properties.

In what sense the two classifications are related?

M. Porta (ETH) Topological insulators 3 / 25



Topological insulators

Kane-Mele (2004): 2d time-reversal invariant band insulators can be
classified in two topologically distinct classes. Earlier results in
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Bulk-edge correspondence
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topological insulator ordinary insulatorinterpolating material

Gap must close somewhere in between ⇒ interface states at Fermi
energy.

Quantum Hall insulators: The number of signed interface states is
related to the difference of Hall conductivities (Chern numbers) of the
two samples.

A similar result is expected to hold for topological insulators. Proof?

We introduce a new Z2 classification for 2d topological insulators,
and prove the bulk-edge correspondence.
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Bulk Hamiltonian

We consider one particle hopping on the lattice Z× Z.

a) Translation invariance in the second direction (it will become the
direction of the edge)

b) Period is assumed to be 1: Sites within a period count as internal
degrees of freedom, together with others (e.g. spin). Their total
number is N

c) Bloch reduction by quasi-momentum k ∈ S1 := R/2πZ.

Bulk Hamiltonian, acting on ψ = (ψ)n∈Z ∈ `2(Z;CN ):

(H(k)ψ)n = A(k)ψn−1 +A(k)∗ψn+1 + Vn(k)ψn

A(k) = hopping matrix (∈ GL(N)) and Vn(k) = local potential.
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Edge Hamiltonian

Consider now one particle hopping on the half-lattice N× Z,
N = {1, 2, . . .}.

a) Translation invariant as before, hence Bloch reduction.

Edge Hamiltonian, acting on ψ ∈ `2(N;CN )

(H](k)ψ)n = A(k)ψn−1 +A(k)∗ψn+1 + V ]
n(k)ψn

where

b) V ]
n(k) = Vn(k) for n ≥ n0

c) Dirichlet boundary conditions are imposed: For n = 1 set ψ0 = 0

σess(H
](k)) ⊆ σess(H(k)), but typically σdisc(H

](k)) 6⊆ σdisc(H(k)).
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Example: Graphene

n2
n1

n1

A

B

~a2

~a1

~a1~a2

~a1 + ~a2

n2

Left: zigzag b.c. Right: armchair b.c.

Electron hopping on the honeycomb lattice.

Armchair:

oval = ψn =

(
ψAn
ψBn

)
, A(k) = −t

(
0 1
eik 0

)
, Vn(k) = −t

(
0 1
1 0

)
Graphene + spin-orbit coupling: Kane-Mele model.
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General assumptions

The Fermi energy lies in a bulk gap: µ /∈ σ(H(k)) for all k ∈ S1.

(fermionic) Time reversal symmetry: there exists an operator
Θ : CN → CN s. t.:

a) Θ is antiunitary
b) Θ2 = −1
c) Θ−1H(k)Θ = H(−k) for all k ∈ S1 (likewise for H](k))
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Consequences

1 σ(H(k)) = σ(H(−k)). Same for H](k).

2 at k = −k, ΘH(k)Θ−1 = H(k) ⇒ eigenvalues are even degenerate
(Kramers degeneracy).

E ∈ R

k ∈ S1

π

−π

0

µ

Bands, Fermi line, edge states
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The edge index

Spectrum of H](k):
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µ

k

symmetric on −π ≤ k ≤ 0

0 π

Bands, Fermi line, edge states

Definition (Edge Index).

I] := parity of number of eigenvalue crossings
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The edge index

Only parity of number of crossings matters.

π k
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Kramers families of matrices

Let ε ∈ GL(N) be the block-diagonal matrix with blocks(
0 −1
1 0

)
Define Θ0 = εC where C = complex conjugation.

Suppose T ∈ GL(N) satisfies

Θ0T = T−1Θ0 .

Then the eigenvalues of T come in pairs λ, λ̄−1 with equal algebraic
multiplicity. In particular, their phases z = λ/|λ| are even degenerate.
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Kramers families of matrices

Definition. A continuous family T (k), 0 ≤ k ≤ π, has the Kramers
property if

Θ0T (0) = T (0)−1Θ0 , Θ0T (π) = T (π)−1Θ0 .

As a result, these families of matrices admit a Z2 classification.
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An index for Kramers families of matrices

Let D = (D(k))0≤k≤π, with D(k) = {phases of eigenvalues of T (k)}.

D π0

M. Porta (ETH) Topological insulators 14 / 25



An index for Kramers families of matrices

Let D = (D(k))0≤k≤π, with D(k) = {phases of eigenvalues of T (k)}.

D D̃π0

D̃ brings the final points of D back to the starting ones.

w(D) := (2π)−1
∑

turning angles. D#D̃ has winding number

N (D#D̃) = w(D) + w(D̃)

D̃ is not unique, but w(D̃1)− w(D̃2) ∈ 2Z.

I(D) := (−1)N (D#D̃) is a well-defined index for D.
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An index for Kramers families of matrices

D

The index I(D) can be equivalently expressed as:

I(D) = parity of number of crossings of fiducial line

M. Porta (ETH) Topological insulators 16 / 25



Towards the bulk index

Let z ∈ C and consider

(H(k)− z)ψ = 0

As a second order difference equation it has 2N solutions
ψ = (ψn)n∈Z, ψn ∈ CN .

Let z /∈ σ(H(k)). Then

Ez,k := {ψ | ψn → 0 as n→ +∞}

has dimension N . Moreover, ΘEz,k = Ez̄,−k.
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The bulk index

Imz

Re z

k

π

−π

T

0

µ

Torus T, bands, Fermi line µ.

Vector bundle E with base T 3 (z, k), fibers Ez,k and involution Θ.

The bundles (E,T,Θ) can be classified by an index I(E).

Definition (Bulk index).
I := I(E)
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Main Result

Theorem (Bulk-edge correspondence).

I] = I

Bulk and edge descriptions agree.

I = −1: topological insulator. I = 1: trivial insulator.
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Time reversal invariant bundles

ϕ1

ϕ2

(0, π)

(0, 0)

(π,−π)

T
ϕ

−ϕ
(π, 0)

T 3 ϕ = (ϕ1, ϕ2)

Time-reversal invariant points (ϕ = −ϕ) at
ϕ = (0, 0), (π, 0), (0, π), (π, π)

ΘEϕ = E−ϕ

Frame bundle F (E) has fibers F (E)ϕ 3 v = (v1, . . . , vN ) consisting
of bases v of Eϕ.
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Classification of time reversal invariant bundles

Consider the cut torus:

cu
t

ϕ1

ϕ2

(0, π)

Lemma. On the cut torus the frame
bundle admits a section
ϕ 7→ v(ϕ) ∈ F (E)ϕ which is time-reversal
invariant:

v(−ϕ) = (Θv(ϕ))ε

with ε the block diagonal matrix with
blocks

(
0 −1
1 0

)
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Classification of time reversal invariant bundles

Consider the cut torus:

−+

cu
t

ϕ1

ϕ2

Lemma. On the cut torus the frame
bundle admits a section
ϕ 7→ v(ϕ) ∈ F (E)ϕ which is time-reversal
invariant:

v(−ϕ) = (Θv(ϕ))ε (1)

with ε the block diagonal matrix with
blocks

(
0 −1
1 0

)
Transition matrix T (ϕ2) ∈ GL(N)

v+(ϕ2) = v−(ϕ2)T (ϕ2) , (ϕ2 ∈ S1)

Eq. (1) implies a relation between T (ϕ2) and T (−ϕ2):

Θ0T (ϕ2) = T−1(−ϕ2)Θ0 (Θ0 = εC)
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Classification of time reversal invariant bundles

Θ0T (ϕ2) = T−1(−ϕ2)Θ0 (0 ≤ ϕ ≤ π)

T (ϕ) has the Kramers property (at ϕ = 0, π the eigenvalues come in
pairs λ, λ̄−1 with equal multiplicities).

We can attach a Z2 index I(T ) to the transition matrix, and define

I(E) := I(T )

It remains to prove that the bulk index I = I(E) is equal to I].
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Sketch of the proof of the bulk-edge correspondence

Im z

Re z

k

π

−π

T

0

µ

Fermi line
edge states
torus

ψ, ψ] solutions (bulk, edge) at z, k decaying at n→ +∞
Bijective map ψ 7→ ψ], so that ψn = ψ]

n (n > n0)

∃ψ 6= 0 | ψ]
n=0 = 0⇔ z ∈ σ(H](k))

There is a section of the frame bundle F (E), global on T, except at edge
eigenvalue crossings
Cut the torus along the Fermi line; let T (k) be the transition matrix
There T (k) = IN , except near eigenvalue crossings
As k traverses one of them, T (k) has eigenvalues 1 (multiplicity N − 1) and
λ(k) making one turn of S1

Hence indices are equal.
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Further results and final remarks

Further results:

In the doubly periodic case, the bulk index reduces to an index for the
Bloch bundle (with the Brillouin zone as base space)

Interpretation of the link between bulk and edge through scattering
theory (Levinson theorem).

Perspectives:

3d topological insulators (how many invariants?)

No periodicity (e.g. disordered case)

QFT/effective actions approach (so to consider interactions)
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