The bulk-edge duality for topological insulators

Marcello Porta

Institute for Theoretical Physics, ETH Zürich

Joint work with Gian Michele Graf

arXiv:1207.5989

Model Hamiltonians

• Edge and bulk indices

 $\bullet\,$ The bulk-edge correspondence for 2d topological insulators

• Conclusions and perspectives

- Topological insulators are time-reversal invariant fermionic systems that
 - behave as usual insulators in the bulk (band gap at Fermi energy)
 - carry robust currents on their edges ("Quantum Spin Hall effect").

- Topological insulators are time-reversal invariant fermionic systems that
 - behave as usual insulators in the bulk (band gap at Fermi energy)
 - carry robust currents on their edges ("Quantum Spin Hall effect").

- Topological insulators are time-reversal invariant fermionic systems that
 - behave as usual insulators in the bulk (band gap at Fermi energy)
 - carry robust currents on their edges ("Quantum Spin Hall effect").

• Topology: A topological insulator can not be deformed in an ordinary one, while keeping the gap open and time-reversal invariance.

• Kane-Mele (2004): 2*d* time-reversal invariant band insulators can be classified in two topologically distinct classes.

• Kane-Mele (2004): 2*d* time-reversal invariant band insulators can be classified in two topologically distinct classes. Earlier results in Fröhlich *et al.* (1993) (gauge theory of topological states of matter).

- Kane-Mele (2004): 2*d* time-reversal invariant band insulators can be classified in two topologically distinct classes. Earlier results in Fröhlich *et al.* (1993) (gauge theory of topological states of matter).
- König et al. (2007): Experimental discovery (HgTe/CdTe interfaces).

- Kane-Mele (2004): 2d time-reversal invariant band insulators can be classified in two topologically distinct classes. Earlier results in Fröhlich *et al.* (1993) (gauge theory of topological states of matter).
- König et al. (2007): Experimental discovery (HgTe/CdTe interfaces).
- The classification can be expressed through an index, corresponding to bulk or to edge properties.

- Kane-Mele (2004): 2d time-reversal invariant band insulators can be classified in two topologically distinct classes. Earlier results in Fröhlich *et al.* (1993) (gauge theory of topological states of matter).
- König et al. (2007): Experimental discovery (HgTe/CdTe interfaces).
- The classification can be expressed through an index, corresponding to bulk or to edge properties.
- In what sense the two classifications are related?

• Gap must close somewhere in between \Rightarrow interface states at Fermi energy.

- Gap must close somewhere in between ⇒ interface states at Fermi energy.
- Quantum Hall insulators: The number of signed interface states is related to the difference of Hall conductivities (Chern numbers) of the two samples.

- Gap must close somewhere in between ⇒ interface states at Fermi energy.
- Quantum Hall insulators: The number of signed interface states is related to the difference of Hall conductivities (Chern numbers) of the two samples.
- A similar result is expected to hold for topological insulators. Proof?

- Gap must close somewhere in between ⇒ interface states at Fermi energy.
- Quantum Hall insulators: The number of signed interface states is related to the difference of Hall conductivities (Chern numbers) of the two samples.
- A similar result is expected to hold for topological insulators. Proof?
- We introduce a new Z₂ classification for 2*d* topological insulators, and prove the bulk-edge correspondence.

• We consider one particle hopping on the lattice $\mathbb{Z} \times \mathbb{Z}$.

- We consider one particle hopping on the lattice $\mathbb{Z} \times \mathbb{Z}$.
 - a) Translation invariance in the second direction (it will become the direction of the edge)

- We consider one particle hopping on the lattice $\mathbb{Z} \times \mathbb{Z}$.
 - a) Translation invariance in the second direction (it will become the direction of the edge)
 - b) Period is assumed to be 1: Sites within a period count as internal degrees of freedom, together with others (*e.g.* spin). Their total number is N

- We consider one particle hopping on the lattice $\mathbb{Z} \times \mathbb{Z}$.
 - a) Translation invariance in the second direction (it will become the direction of the edge)
 - b) Period is assumed to be 1: Sites within a period count as internal degrees of freedom, together with others (*e.g.* spin). Their total number is N
 - c) Bloch reduction by quasi-momentum $k \in S^1 := \mathbb{R}/2\pi\mathbb{Z}$.

• We consider one particle hopping on the lattice $\mathbb{Z} \times \mathbb{Z}$.

- a) Translation invariance in the second direction (it will become the direction of the edge)
- b) Period is assumed to be 1: Sites within a period count as internal degrees of freedom, together with others (*e.g.* spin). Their total number is N
- c) Bloch reduction by quasi-momentum $k \in S^1 := \mathbb{R}/2\pi\mathbb{Z}$.
- Bulk Hamiltonian, acting on $\psi = (\psi)_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}; \mathbb{C}^N)$:

$$(H(k)\psi)_n = A(k)\psi_{n-1} + A(k)^*\psi_{n+1} + V_n(k)\psi_n$$

A(k) =hopping matrix ($\in GL(N)$) and $V_n(k) =$ local potential.

Edge Hamiltonian

- Consider now one particle hopping on the half-lattice $\mathbb{N} \times \mathbb{Z}$, $\mathbb{N} = \{1, 2, \ldots\}$.
 - a) Translation invariant as before, hence Bloch reduction.

- Consider now one particle hopping on the half-lattice $\mathbb{N} \times \mathbb{Z}$, $\mathbb{N} = \{1, 2, \ldots\}$.
 - a) Translation invariant as before, hence Bloch reduction.
- Edge Hamiltonian, acting on $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$

$$(H^{\sharp}(k)\psi)_{n} = A(k)\psi_{n-1} + A(k)^{*}\psi_{n+1} + V_{n}^{\sharp}(k)\psi_{n}$$

where

b) $V_n^{\sharp}(k) = V_n(k)$ for $n \ge n_0$ c) Dirichlet boundary conditions are imposed: For n = 1 set $\psi_0 = 0$

- Consider now one particle hopping on the half-lattice $\mathbb{N} \times \mathbb{Z}$, $\mathbb{N} = \{1, 2, \ldots\}$.
 - a) Translation invariant as before, hence Bloch reduction.
- Edge Hamiltonian, acting on $\psi \in \ell^2(\mathbb{N}; \mathbb{C}^N)$

$$(H^{\sharp}(k)\psi)_{n} = A(k)\psi_{n-1} + A(k)^{*}\psi_{n+1} + V_{n}^{\sharp}(k)\psi_{n}$$

where

- b) $V_n^{\sharp}(k) = V_n(k)$ for $n \ge n_0$ c) Dirichlet boundary conditions are imposed: For n = 1 set $\psi_0 = 0$
- $\sigma_{ess}(H^{\sharp}(k)) \subseteq \sigma_{ess}(H(k))$, but typically $\sigma_{disc}(H^{\sharp}(k)) \not\subseteq \sigma_{disc}(H(k))$.

Example: Graphene

Electron hopping on the honeycomb lattice.

Example: Graphene

Electron hopping on the honeycomb lattice. Armchair:

$$\mathsf{oval} = \psi_n = \begin{pmatrix} \psi_n^A \\ \psi_n^B \end{pmatrix} \ , \quad A(k) = -t \begin{pmatrix} 0 & 1 \\ e^{ik} & 0 \end{pmatrix} \ , \quad V_n(k) = -t \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Example: Graphene

Electron hopping on the honeycomb lattice. Armchair:

$$\mathsf{oval} = \psi_n = \begin{pmatrix} \psi_n^A \\ \psi_n^B \end{pmatrix} \ , \quad A(k) = -t \begin{pmatrix} 0 & 1 \\ e^{ik} & 0 \end{pmatrix} \ , \quad V_n(k) = -t \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Graphene + spin-orbit coupling: Kane-Mele model.

M. Porta (ETH)

• The Fermi energy lies in a bulk gap: $\mu \notin \sigma(H(k))$ for all $k \in S^1$.

- The Fermi energy lies in a bulk gap: $\mu \notin \sigma(H(k))$ for all $k \in S^1$.
- (fermionic) Time reversal symmetry: there exists an operator $\Theta : \mathbb{C}^N \to \mathbb{C}^N$ s. t.:

- The Fermi energy lies in a bulk gap: $\mu \notin \sigma(H(k))$ for all $k \in S^1$.
- (fermionic) Time reversal symmetry: there exists an operator $\Theta : \mathbb{C}^N \to \mathbb{C}^N$ s. t.:
 - a) Θ is antiunitary

- The Fermi energy lies in a bulk gap: $\mu \notin \sigma(H(k))$ for all $k \in S^1$.
- (fermionic) Time reversal symmetry: there exists an operator $\Theta : \mathbb{C}^N \to \mathbb{C}^N$ s. t.:
 - a) Θ is antiunitary b) $\Theta^2 = -1$

- The Fermi energy lies in a bulk gap: $\mu \notin \sigma(H(k))$ for all $k \in S^1$.
- (fermionic) Time reversal symmetry: there exists an operator $\Theta : \mathbb{C}^N \to \mathbb{C}^N$ s. t.:

a)
$$\Theta$$
 is antiunitary
b) $\Theta^2 = -1$
c) $\Theta^{-1}H(k)\Theta = H(-k)$ for all $k \in S^1$ (likewise for $H^{\sharp}(k)$)

•
$$\sigma(H(k)) = \sigma(H(-k))$$
. Same for $H^{\sharp}(k)$.

Consequences

•
$$\sigma(H(k)) = \sigma(H(-k))$$
. Same for $H^{\sharp}(k)$.

② at k = -k, $\Theta H(k)\Theta^{-1} = H(k) \Rightarrow$ eigenvalues are even degenerate (Kramers degeneracy).

Consequences

•
$$\sigma(H(k)) = \sigma(H(-k))$$
. Same for $H^{\sharp}(k)$.

 at k = −k, ΘH(k)Θ⁻¹ = H(k) ⇒ eigenvalues are even degenerate (Kramers degeneracy).

The edge index

Spectrum of $H^{\sharp}(k)$:

symmetric on $-\pi \leq k \leq 0$

Bands, Fermi line, edge states

The edge index

Spectrum of $H^{\sharp}(k)$:

symmetric on $-\pi \leq k \leq 0$

Bands, Fermi line, edge states

• **Definition** (Edge Index).

 $\mathcal{I}^{\sharp} := \mathsf{parity} \text{ of number of eigenvalue crossings}$

• Let $\varepsilon \in \operatorname{GL}(N)$ be the block-diagonal matrix with blocks

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Define $\Theta_0 = \varepsilon C$ where C = complex conjugation.

• Let $\varepsilon \in \operatorname{GL}(N)$ be the block-diagonal matrix with blocks

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Define $\Theta_0 = \varepsilon C$ where C = complex conjugation.

• Suppose $T \in GL(N)$ satisfies

$$\Theta_0 T = T^{-1} \Theta_0 \; .$$

Then the eigenvalues of T come in pairs λ , $\bar{\lambda}^{-1}$ with equal algebraic multiplicity. In particular, their phases $z = \lambda/|\lambda|$ are even degenerate.

• **Definition.** A continuous family T(k), $0 \le k \le \pi$, has the Kramers property if

$$\Theta_0 T(0) = T(0)^{-1} \Theta_0$$
, $\Theta_0 T(\pi) = T(\pi)^{-1} \Theta_0$.

• As a result, these families of matrices admit a \mathbb{Z}_2 classification.

• Let $D = (D(k))_{0 \le k \le \pi}$, with $D(k) = \{$ phases of eigenvalues of $T(k) \}$.

• Let $D = (D(k))_{0 \le k \le \pi}$, with $D(k) = \{$ phases of eigenvalues of $T(k) \}$.

• \tilde{D} brings the final points of D back to the starting ones.

• Let $D = (D(k))_{0 \le k \le \pi}$, with $D(k) = \{$ phases of eigenvalues of $T(k) \}$.

• \tilde{D} brings the final points of D back to the starting ones.

•
$$w(D) := (2\pi)^{-1} \sum \text{turning angles.}$$

• Let $D = (D(k))_{0 \le k \le \pi}$, with $D(k) = \{$ phases of eigenvalues of $T(k) \}$.

 $\bullet~D$ brings the final points of D back to the starting ones.

• $w(D) := (2\pi)^{-1} \sum$ turning angles. $D \# \tilde{D}$ has winding number $\mathcal{N}(D \# \tilde{D}) = w(D) + w(\tilde{D})$

 \tilde{D} is not unique, but $w(\tilde{D}_1) - w(\tilde{D}_2) \in 2\mathbb{Z}$.

• Let $D = (D(k))_{0 \le k \le \pi}$, with $D(k) = \{$ phases of eigenvalues of $T(k) \}$.

• D brings the final points of D back to the starting ones.

• $w(D) := (2\pi)^{-1} \sum \text{turning angles. } D \# \tilde{D} \text{ has winding number}$

$$\mathcal{N}(D \# D) = w(D) + w(D)$$

 \tilde{D} is not unique, but $w(\tilde{D}_1) - w(\tilde{D}_2) \in 2\mathbb{Z}$. • $\mathcal{I}(D) := (-1)^{\mathcal{N}(D \# \tilde{D})}$ is a well-defined index for D.

The index $\mathcal{I}(D)$ can be equivalently expressed as:

 $\mathcal{I}(D) = parity of number of crossings of fiducial line$

• Let $z \in \mathbb{C}$ and consider

$$(H(k) - z)\psi = 0$$

• Let $z \in \mathbb{C}$ and consider

$$(H(k) - z)\psi = 0$$

• As a second order difference equation it has 2N solutions $\psi = (\psi_n)_{n \in \mathbb{Z}}, \ \psi_n \in \mathbb{C}^N.$

• Let $z \in \mathbb{C}$ and consider

$$(H(k) - z)\psi = 0$$

- As a second order difference equation it has 2N solutions $\psi = (\psi_n)_{n \in \mathbb{Z}}, \ \psi_n \in \mathbb{C}^N.$
- Let $z \notin \sigma(H(k))$. Then

$$E_{z,k} := \{ \psi \mid \psi_n \to 0 \text{ as } n \to +\infty \}$$

has dimension N. Moreover, $\Theta E_{z,k} = E_{\overline{z},-k}$.

The bulk index

• Vector bundle E with base $\mathbb{T} \ni (z,k)$, fibers $E_{z,k}$ and involution Θ .

The bulk index

• Vector bundle E with base $\mathbb{T} \ni (z,k)$, fibers $E_{z,k}$ and involution Θ .

• The bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E)$.

The bulk index

- Vector bundle E with base $\mathbb{T} \ni (z,k)$, fibers $E_{z,k}$ and involution Θ .
- The bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E)$.
- Definition (Bulk index).

$$\mathcal{I} := \mathcal{I}(E)$$

Theorem (Bulk-edge correspondence).

$$\mathcal{I}^{\sharp}=\mathcal{I}$$

Theorem (Bulk-edge correspondence).

$$\mathcal{I}^{\sharp} = \mathcal{I}$$

• Bulk and edge descriptions agree.

Theorem (Bulk-edge correspondence).

$$\mathcal{I}^{\sharp} = \mathcal{I}$$

- Bulk and edge descriptions agree.
- $\mathcal{I} = -1$: topological insulator. $\mathcal{I} = 1$: trivial insulator.

Time reversal invariant bundles

•
$$\mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$$

• Time-reversal invariant points ($\varphi = -\varphi$) at $\varphi = (0,0), (\pi,0), (0,\pi), (\pi,\pi)$

• $\Theta E_{\varphi} = E_{-\varphi}$

Time reversal invariant bundles

•
$$\mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$$

• Time-reversal invariant points ($\varphi = -\varphi$) at $\varphi = (0,0), (\pi,0), (0,\pi), (\pi,\pi)$

- $\Theta E_{\varphi} = E_{-\varphi}$
- Frame bundle F(E) has fibers F(E)_φ ∋ v = (v₁,...,v_N) consisting of bases v of E_φ.

M. Porta (ETH)

Consider the cut torus:

Consider the cut torus:

Lemma. On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

$$v(-\varphi) = (\Theta v(\varphi))\varepsilon$$

with ε the block diagonal matrix with blocks $\left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right)$

Consider the cut torus:

Lemma. On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

$$v(-\varphi) = (\Theta v(\varphi))\varepsilon$$
 (1)

with ε the block diagonal matrix with blocks $\left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right)$

Transition matrix $T(\varphi_2) \in \operatorname{GL}(N)$

$$v_+(\varphi_2) = v_-(\varphi_2)T(\varphi_2)$$
, $(\varphi_2 \in S^1)$

Consider the cut torus:

Lemma. On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

$$v(-\varphi) = (\Theta v(\varphi))\varepsilon$$
 (1)

with ε the block diagonal matrix with blocks $\left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right)$

Transition matrix $T(\varphi_2) \in \operatorname{GL}(N)$

$$v_+(\varphi_2) = v_-(\varphi_2)T(\varphi_2)$$
, $(\varphi_2 \in S^1)$

Eq. (1) implies a relation between $T(\varphi_2)$ and $T(-\varphi_2)$:

$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0 \qquad (\Theta_0 = \varepsilon C)$$

$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0 \qquad (0 \le \varphi \le \pi)$$

T(φ) has the Kramers property (at φ = 0, π the eigenvalues come in pairs λ, λ
⁻¹ with equal multiplicities).

$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0 \qquad (0 \le \varphi \le \pi)$$

- T(φ) has the Kramers property (at φ = 0, π the eigenvalues come in pairs λ, λ
 ⁻¹ with equal multiplicities).
- We can attach a \mathbb{Z}_2 index $\mathcal{I}(T)$ to the transition matrix, and define

$$\mathcal{I}(E) := \mathcal{I}(T)$$

$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0 \qquad (0 \le \varphi \le \pi)$$

- T(φ) has the Kramers property (at φ = 0, π the eigenvalues come in pairs λ, λ
 ⁻¹ with equal multiplicities).
- We can attach a \mathbb{Z}_2 index $\mathcal{I}(T)$ to the transition matrix, and define

$$\mathcal{I}(E) := \mathcal{I}(T)$$

• It remains to prove that the bulk index $\mathcal{I} = \mathcal{I}(E)$ is equal to \mathcal{I}^{\sharp} .

Sketch of the proof of the bulk-edge correspondence

- ψ , ψ^{\sharp} solutions (bulk, edge) at z,k decaying at $n \to +\infty$
- Bijective map $\psi \mapsto \psi^{\sharp}$, so that $\psi_n = \psi_n^{\sharp} \ (n > n_0)$

•
$$\exists \psi \neq 0 \mid \psi_{n=0}^{\sharp} = 0 \Leftrightarrow z \in \sigma(H^{\sharp}(k))$$

- There is a section of the frame bundle F(E), global on \mathbb{T} , except at edge eigenvalue crossings
- Cut the torus along the Fermi line; let T(k) be the transition matrix
- There $T(k) = \mathbb{I}_N$, except near eigenvalue crossings
- As k traverses one of them, T(k) has eigenvalues 1 (multiplicity N-1) and $\lambda(k)$ making one turn of S^1
- Hence indices are equal.

Further results and final remarks

Further results:

- In the doubly periodic case, the bulk index reduces to an index for the Bloch bundle (with the Brillouin zone as base space)
- Interpretation of the link between bulk and edge through scattering theory (*Levinson theorem*).

Further results:

- In the doubly periodic case, the bulk index reduces to an index for the Bloch bundle (with the Brillouin zone as base space)
- Interpretation of the link between bulk and edge through scattering theory (*Levinson theorem*).

Perspectives:

- 3d topological insulators (how many invariants?)
- No periodicity (*e.g.* disordered case)
- QFT/effective actions approach (so to consider interactions)