Momentum map and Reduction in Poisson geometry and deformation quantization

Chiara Esposito

Oberwolfach Mathematical Institute

September 27, 2012

Outline

Momentum map in Poisson geometry Motivations Hamiltonian actions

2 Poisson Reduction

3 Quantization of Hamiltonian action

Approach Quantum actions Quantum Hamiltonian action Quantum reduction Examples

Physics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Phase space with constraints: Poisson manifolds
- Ø Symmetries
- S Conserved quantities: momentum map
- ④ Deformation quantization

$$(C^{\infty}(M), \{ , \}) \longrightarrow (C^{\infty}_{\hbar}(M), [,]_{\star})$$

Poisson action

(ロ)、(型)、(E)、(E)、 E) の(の)

What is a Hamiltonian action in this context?

Ingredients:

- Poisson Lie groups and Lie bialgebras
- Poisson maps

Poisson action

What is a Hamiltonian action in this context?

Ingredients:

- Poisson Lie groups and Lie bialgebras
- Poisson maps

Definition

The action of (G, π_G) on (M, π) is called Poisson action if the map $\Phi : G \times M \to M$ is Poisson, where $G \times M$ is given the product Poisson structure $\pi_G \oplus \pi$

If G carries the zero Poisson structure $\pi_G = 0$, the action is Poisson if and only if it preserves π . When $\pi_G \neq 0$, the structure π is not invariant with respect to the action.

Momentum map

Definition (Lu)

A momentum map for the Poisson action $\Phi: G \times M \to M$ is a map $\mu: M \to G^*$ such that

$$\xi_{M} = \pi^{\sharp}(\boldsymbol{\mu}^{*}(\theta_{\xi}))$$

where θ_{ξ} is the left invariant 1-form on G^* defined by the element $\xi \in \mathfrak{g} = (T_e G^*)^*$ and μ^* is the cotangent lift $T^*G^* \to T^*M$.

A Hamiltonian action is a Poisson action induced by an equivariant momentum map.

Infinitesimal momentum map

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Definition

Let M be a Poisson manifold and G a Poisson Lie group. An infinitesimal momentum map is a morphism of Gerstenhaber algebras

$$\alpha: (\wedge^{\bullet}\mathfrak{g}, \delta, [\,,\,]) \longrightarrow (\Omega^{\bullet}(M), d_{DR}, [\,,\,]_{\pi}).$$

Poisson Reduction

Theorem

Let $\Phi: G \times M \to M$ be a Hamiltonian action with momentum map $\mu: M \to G^*$ and $u \in G^*$ a regular value of μ . The Poisson reduction of (M, G) is the quotient

$$M//G = \mu^{-1}(u)/G_u$$

M//G inherits a Poisson structure from M.

Poisson Reduction

Theorem

Let $\Phi: G \times M \to M$ be a Hamiltonian action with momentum map $\mu: M \to G^*$ and $u \in G^*$ a regular value of μ . The Poisson reduction of (M, G) is the quotient

$$M//G = \mu^{-1}(u)/G_u$$

M//G inherits a Poisson structure from M.

Example

Suppose that $\pi_G = 0$. Then

$$C^{\infty}(M//G) \simeq (C^{\infty}(M)/\mathcal{I})^{G}$$

where $\ensuremath{\mathcal{I}}$ is the ideal generated by the momentum map.

Deformation quantization approach

Poisson manifolds \longrightarrow Kontsevich Theory $M \longrightarrow \mathcal{A}_{\hbar} = C^{\infty}_{\hbar}(M)$ Lie biagebras \longrightarrow Etingof-Kazdhan Theory $\mathfrak{g} \longrightarrow \mathcal{U}_{\hbar}(\mathfrak{g})$

Steps:

- Quantize a Poisson action
- Quantize Momentum map
- Quantize Poisson reduction

Quantum action

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

How can we define a quantum action of $\mathcal{U}_{\hbar}(\mathfrak{g})$ on \mathcal{A}_{\hbar} ?

- Hopf algebra action
- $\hbar \to 0$ Poisson action

Quantum action

How can we define a quantum action of $\mathcal{U}_{\hbar}(\mathfrak{g})$ on \mathcal{A}_{\hbar} ?

- Hopf algebra action
- $\hbar \rightarrow 0$ Poisson action

Definition

The quantum action is the linear map

$$\Phi_{\hbar}: \mathcal{U}_{\hbar}(\mathfrak{g}) \rightarrow \mathit{End} \ \mathcal{A}_{\hbar}: \xi \mapsto \Phi_{\hbar}(\xi)(f)$$

such that

- Hopf algebra action
- 2 Algebra homomorphism

Quantum Hamiltonian action

- Quantum momentum map which, as in the classical case, factorizes the quantum action
- 2) $\hbar \rightarrow 0$ classical momentum map

Non commutative forms

The non-commutative analogue of the de Rham complex is $(\Omega(\mathcal{A}_{\hbar}), d)$ with the universal derivation

$$d:\mathcal{A}_{\hbar}
ightarrow\Omega(\mathcal{A}_{\hbar})$$

Quantum momentum map

The map

$$adb \longmapsto a[b,\cdot]_*$$

induces a non commutative product on $\Omega(\mathcal{A}_{\hbar})$ and natural morphism of differential graded algebras

$$\Omega^1(\mathcal{A}_{\hbar}) \longrightarrow C^1(\mathcal{A}_{\hbar}, \mathcal{A}_{\hbar})$$

This induces a first definition of the momentum map.

Quantum momentum map

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

A quantum momentum map is defined to be a linear map

$$oldsymbol{\mu}_{\hbar}:\mathcal{U}_{\hbar}(\mathfrak{g})
ightarrow\Omega(\mathcal{A}_{\hbar}):arepsilon\mapsto\sum_{i}\mathsf{a}_{arepsilon}^{i}db_{arepsilon}^{i}.$$

such that

$$\Phi_{\hbar}(\xi) = rac{1}{\hbar} \sum_{i} a^{i}_{\xi} \left[b^{i}_{\xi}, \cdot
ight]_{\star}$$

is a quantized action.

Extension

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Definition

A quantum momentum map is defined to be a linear map

$$\mu_{\hbar}: \mathcal{T}(\mathcal{U}_{\hbar}(\mathfrak{g})[1]) \to \Omega^{\bullet}(\mathcal{A}_{\hbar}): \xi_1 \otimes \cdots \otimes \xi_n \mapsto a_1 db_1 \otimes \cdots \otimes a_n db_n$$

such that

$$\Phi_{\hbar}(\xi_1 \otimes \cdots \otimes \xi_n)(f_1, \ldots, f_n) = \frac{1}{\hbar^n} a_1[b_1, f_1] \ldots a_n[b_n, f_n]$$

Quantum Reduction

Definition

Le \mathcal{I}_{\hbar} be the left ideal of \mathcal{A}_{\hbar} generated by $\boldsymbol{\mu}_{\hbar}$. The action of $\mathcal{U}_{\hbar}(\mathfrak{g})$ descends to an action on $\mathcal{A}_{\hbar}/\mathcal{I}_{\hbar}$ and we define the reduced algebra by

$$\mathcal{A}^{\mathit{red}}_{\hbar} = (\mathcal{A}_{\hbar}/\mathcal{I}_{\hbar})^{\mathcal{U}_{\hbar}(\mathfrak{g})}$$

Hopf algebra action condition

Assume that ξ acts by

$$\Phi_{\hbar}(\xi) = rac{1}{\hbar} a[b,\cdot \]$$

for some $a, b \in C^{\infty}_{\hbar}(M)$. Note that $a \neq 0$ as soon as ξ is not killed by the cocycle δ .

Hopf algebra action $\implies \Phi_{\hbar}(\eta) = \frac{1}{\hbar}a[a^{-1}, \cdot]$

$$\Delta_{\hbar}(\xi) = \xi \otimes 1 - \hbar \eta \otimes \xi + 1 \otimes \xi$$

 $\Delta_{\hbar}(\eta) = \eta \otimes 1 - \hbar \eta \otimes \eta + 1 \otimes \eta$

Algebra homomorphism condition

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

We calculate the bracket of generators to get the deformed algebra structure of g:

$$\begin{split} \left[\Phi_{\hbar}(\xi), \Phi_{\hbar}(\eta) \right] f &= \frac{1}{\hbar^2} (a[b, a[a^{-1}, f]] - a[a^{-1}, a[b, f]]) \\ &= a[b, a][a^{-1}, f] + a^2[[b, a^{-1}], f]. \end{split}$$

Imposing that Φ_{\hbar} is a Lie algebra homomorphism we obtain different algebra structures that we discuss case by case.

Two dimensions: [a, b] = 0

Consider the Lie bialgebra $\mathfrak{g} = \mathbb{R}^2$ with generators ξ, η and a deformation quantization $C^{\infty}_{\hbar}(M)$ of a Poisson manifold M.

Algebra homomorphism $\Longrightarrow \mathcal{U}_{\hbar}(\mathbb{R}^2)$ generated by $[\xi, \eta] = 0$

deformation quantization of

Abelian Lie bialgebra $\mathfrak{g}=\mathbb{R}^2$ with cobracket

$$\delta(\xi) = -rac{1}{2}\eta \wedge \xi$$

 $\delta(\eta) = 0$

Two dimensions: [a, b] = 0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Classical action

$$\Phi(\xi) = a_0\{b_0, \cdot\}$$

$$\Phi(\eta) = a_0\{a_0^{-1}, \cdot\}.$$

Quantum reduction

$$(C^{\infty}_{\hbar}(M)/\mathcal{I}_{\hbar})^{\mathcal{U}_{\hbar}(\mathbb{R}^{2})} = \{a = \lambda, b = \mu\}^{\mathcal{U}_{\hbar}(\mathbb{R}^{2})}$$

Quantization of the Poisson reduced algebra

$$(C^{\infty}(M)/\mathcal{I})^{\mathbb{R}^2} = \{a_0 = \lambda, b_0 = \mu\}^{\mathbb{R}^2}$$

Three dimensions: $\mathfrak{su}(2)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Consider $a, b, c \in C^{\infty}_{\hbar}(M)$ satisfying

$$egin{aligned} aba^{-1} &= e^{2\hbar}b\ aca^{-1} &= e^{-2\hbar}c\ [b,c] &= rac{\hbar^2}{e^{-\hbar}-e^\hbar}a^{-2}-(1-e^{2\hbar})cb \end{aligned}$$

and the generators ξ,η,ζ acting respectively by

$$egin{aligned} \Phi_{\hbar}(\xi)f &= rac{1}{\hbar}a[b,f] \ \Phi_{\hbar}(\eta)f &= rac{1}{\hbar}[c,f]a \ \Phi_{\hbar}(\zeta)f &= afa^{-1}. \end{aligned}$$

Three dimensions: $\mathfrak{su}(2)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Lie algebra homomorphism

$$\begin{split} \zeta \xi \zeta^{-1} &= e^{2\hbar} \xi \\ \zeta \eta \zeta^{-1} &= e^{-2\hbar} \eta \\ [\xi, \eta] &= \frac{\zeta^{-1} - \zeta}{e^{-\hbar} - e^{\hbar}} \end{split}$$

Output Description
Output Description

$$egin{aligned} \Delta_\hbar(\zeta) &= \zeta\otimes\zeta\ \Delta_\hbar(\xi) &= \xi\otimes 1+\zeta\otimes\xi\ \Delta_\hbar(\eta) &= 1\otimes\eta+\eta\otimes\zeta^{-1}. \end{aligned}$$

Three dimensions: $\mathfrak{su}(2)$

Let

$$\Lambda = a^{-2} - e^{\hbar} rac{(1-e^{2\hbar})^2}{\hbar^2} cb$$

The ideal \mathcal{I}_{\hbar} generated by Λ in \mathcal{A}_{\hbar} is $\mathcal{U}_{\hbar}(\mathfrak{su}(2))$ -invariant, and

$$(C^{\infty}_{\hbar}(M)/\mathcal{I}_{\hbar})^{\mathcal{U}_{\hbar}(\mathfrak{su}(2))}$$

is the deformation quantization of the Poisson reduction

M//SU(2)

corresponding to the symplectic leaf $a_0^{-2} - 4b_0c_0 = 0$ in $SU(2)^* = SB(2, (C))$.

Lifting to symplectic groupoids

② Classification

