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Introduction Regular Foliations

1.1 Definition: Foliation (regular)
Viewpoint 1:

Partition to connected submanifolds. Local picture:

In other words: There is an open cover of M by foliation charts of the
form Ω = U× T , where U ⊆ Rp and T ⊆ Rq.

T is the transverse direction and U is the longitudinal or leafwise direction.

The change of charts is of the form f(u, t) = (g(u, t),h(t)).

Viewpoint 2:

Frobenius theorem

Consider the unique C∞(M)-module F of vector fields tangent to leaves.

Fact: F = C∞
c (M, F) and [F,F] ⊆ F.
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Introduction Holonomy groupoid

Holonomy groupoid of a regular foliation

Holonomy

We wish to put a smooth structure on the equivalence relation

{(x,y) ∈M2 : Lx = Ly}

What is the dimension of this manifold?

p+ q degrees of freedom for x; then p degrees of freedom for y.

A neighborhood of (x, x ′) where x ∈W = U× T and x ′ ∈W ′ = U ′ × T ′
should be of the form U×U ′ × T : we need an identification of T with T ′.
(Here T , T ′ are local transversals.)

Definition

A holonomy of (M,F) is a diffeomorphism h : T → T ′ such that t,h(t) are
in the same leaf for all t ∈ T .
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Introduction Holonomy groupoid

Examples of holonomies

Take W = U× T . Then idT is a holonomy.

If h is a holonomy, h−1 is a holonomy.

The composition of holonomies is a holonomy. (Holonomies form a
pseudogroup.)

If W = U× T and W ′ = U ′ × T ′, in their intersection u ′ = g(u, t) and
t ′ = h(t) by definition of the chart changes. The map h = hW ′,W is a
holonomy.

Let γ : [0, 1]→M be a smooth path in a leaf.
Cover γ by foliation charts Wi = Ui × Ti(1 6 i 6 n). Consider the
composition

h(γ) = hWn,Wn−1 ◦ . . . ◦ hW2,W1

Definition

The holonomy of the path γ is the germ of h(γ).

Fact: Path holonomy depends only on the homotopy class of the path!
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Introduction Holonomy groupoid

The holonomy groupoid

Definition

The holonomy groupoid is H(F) = {(x,y,h(γ))} where γ is a path in a leaf
joining x to y.

Manifold structure. If W = U× T and W ′ = U ′ × T ′ are charts and
h : T → T ′ path-holonomy, get chart

Ωh = U ′ ×U× T

Groupoid structure. t(x,y,h) = x, s(x,y,h) = y and
(x,y,h)(y, z,k) = (x, z,h ◦ k).

H(F) is a Lie groupoid. Its Lie algebroid is F. Its orbits are the leaves.

H(F) is the smallest possible smooth groupoid over F.
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Introduction Holonomy groupoid

Holonomy revisited
Starting from the projective module of vector fields F the notion of
holonomy in the regular case is:

Pick a path γ : [0, 1]→ L and Sγ(0),Sγ(1) small transversals of L.

Path holonomy is (germ of) a local diffeomorphism Sγ(0) → Sγ(1)
obtained by ”sliding along γ in nearby leaves”.

Namely: The vector field X ∈ F whose flow at γ(0) is γ is unique.
Now flow X at other points of Sγ(0) until time 1.

H(F) = {paths in leaves}/{holonomy of paths}

Fact: Path holonomy depends only on the homotopy class of γ; get a map

h : π1(L, x)→ Diff(Sx;Sx)

Its image is Hxx. It’s called the holonomy group of F.

Linearizes to a representation

dh : π1(L, x)→ GL(NxL)
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Introduction Holonomy groupoid

Path holonomy in the singular case fails!

Orbits of the rotations action in R2: F = span < x∂y − y∂x >.

Take γ the constant path at the origin.

A transversal S0 is just an open neighborhood of the origin in R2.

Realize γ either by integrating the zero vector field or x∂y − y∂x at the
origin. We get completely different diffeomorphisms of S0!

Here F is projective as well!

But there are lots of non-projective examples... Think of a vector field X
whose interior of {x ∈M : X(x) = 0} is non-empty...

Holonomy map cannot be defined on π1(L) in the singular case... What
about the holonomy groupoid?

Debord showed that a projective F always has a smooth holonomy
groupoid.
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Introduction Reeb stability

Stability for regular foliations
Local Reeb stability theorem

If L is a compact embedded leaf and Hxx is finite then nearby L the foliation
F is isomorphic to its linearization.

Namely, around L the manifold looks like

L̃× Rq

π1(L)

π1(L) acts diagonally by deck transformations and linearized holonomy.

This is equal to
Hx ×NxL

Hxx

The action of Hxx on NxL is the one that integrates the Bott connection

∇ : F→ CDO(N), (X, 〈Y〉)→ 〈[X, Y]〉
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Singular foliations

The singular case

What is the notion of holonomy in the singular case?

Is there any sense in which the holonomy groupoid of a singular
foliation is smooth?

When is a singular foliation isomorphic to its linearization?
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Singular foliations What is a singular foliation?

Stefan-Sussmann foliations

Definition (Stefan, Sussmann, A-Skandalis)

A (singular) foliation is a finitely generated sub-module F of C∞
c (M; TM),

stable under brackets.

No longer projective. Fiber Fx = F/IxF: upper semi-continuous dimension.

One may still define leaves (Stefan-Sussmann).

Let L be a leaf and x ∈ L. There is a short exact sequence of vector spaces

0→ gx → Fx
evx→ TxL→ 0

where evx is evaluation at x. Get a transitive Lie algebroid

AL = ∪x∈LFx, with ΓAL = F/ILF

”Regular” leaves = leaves of maximal dimension.

On regular leaves gx = 0.
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Singular foliations What is a singular foliation?

Examples

Actually: Different foliations may yield same partition to leaves

1 R foliated by 3 leaves: (−∞, 0), {0}, (0,+∞).

F generated by xn ∂∂x . Different module F for every n.

g0 = R in every case.

2 If G acts linearly on a vector space V and F is the image of the
infinitesimal action, then g0 = Lie(G).

3 R2 foliated by 2 leaves: {0} and R2 \ {0}.

No obvious best choice. F given by the action of a Lie group

GL(2,R),SL(2,R),C∗

Extra difficulty: Keep track of the choice of F!
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Singular foliations Holonomy groupoid

Bi-submersions
Need a stable way to keep track of (path) holomies associated with a
particular choice of F.

Answer: Bi-submersions. Think of them as covers of open subsets of the
holonomy groupoid H(F). Explicitly:

Let X1, . . . ,Xn local generators of F.
Let U ⊆M× Rn a neighborhood where the map

t : U→M, t(y, ξ) = exp(
n∑
i−1

ξiXi)(y)

is defined.
Put s : U→M the projection. The triple (U, t, s) is a path holonomy
bi-submersion.

Indeed (U, t, s) keeps track of path holonomies near the identity:

bisections of (U, t, s)  path holonomies
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Singular foliations Holonomy groupoid

Bi-submersions
Need a stable way to keep track of (path) holomies associated with a
particular choice of F.

Answer: Bi-submersions. Think of them as covers of open subsets of the
holonomy groupoid H(F). Explicitly:

Let X1, . . . ,Xn local generators of F.
Let U ⊆M× Rn a neighborhood where the map

t : U→M, t(y, ξ) = exp(
n∑
i−1

ξiXi)(y)

is defined.
Put s : U→M the projection. The triple (U, t, s) is a path holonomy
bi-submersion.

Indeed (U, t, s) keeps track of path holonomies near the identity:

bisections of (U, t, s)  path holonomies

I. Androulidakis (Athens) Singular foliations and their holonomy Zürich, December 2012 13 / 24
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Singular foliations Holonomy groupoid

Passing to germs

Cover M with a family {(Ui, ti, si)}i∈I. Let U be the family of all finite
products of {(Ui, ti, si)}i∈I and of their inverses.

Holonomy groupoid (A-Skandalis)

The holonomy groupoid is

H(F) =
∐
U∈U

U/ ∼

where U 3 u ∼ u ′ ∈ U ′ iff there is a morphism of bi-submersions f : U→ U ′

(defined near u) such that f(u) = u ′.

H(F) is a topological groupoid over M, usually not smooth.
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Singular foliations Holonomy groupoid

Examples

1 (Almost) regular case: H(F) usual holonomy groupoid.

2 Action of S1 on R2 by rotations: H is the transformation groupoid
M× S1.

3 F = ρ(AG): H(F) is a quotient of G.

4 F =< X > s.t. X has non-periodic integral curves around ∂{X = 0}:

H(F) = H(X)|{X 6=0} ∪ Int{X = 0} ∪ (R× ∂{X = 0})

5 action of SL(2,R) on R2:

H(F) = (R2 \ {0})2 ∪ SL(2,R)× {0}

topology: Let x ∈ R2 \ {0}. Then ( xn , xn) ∈ H(F) converges to every g
in stabilizer group of x... namely to every point of R!
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Singular foliations Essential isotropy

Integrating AL
All the previous examples have smooth s-fibers! Is this always the case?

Equivalently, is AL always integrable?

To answer this, let Gx the connected and simply connected Lie group
integrating gx. Near the identity, consider the map

ε̃x : Gx → Uxx, expgx(

n∑
i=1

ξi[Xi]) 7→ exp(

n∑
i=1

ξiYi)

where Yi ∈ C∞(U; kerds) are vertical lifts of the Xis.

Composing with ] : Uxx → Hxx we get a morphism

εx : Gx → Hxx

ker εx is the essential isotropy group of the leaf Lx.

Theorem (A-Zambon)

The transitive Lie groupoid HL is smooth and integrates AL if and only if
the essential isotropy group of L is discrete.
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Singular foliations Essential isotropy

Integrating AL
All the previous examples have smooth s-fibers! Is this always the case?

Equivalently, is AL always integrable?

To answer this, let Gx the connected and simply connected Lie group
integrating gx. Near the identity, consider the map

ε̃x : Gx → Uxx, expgx(

n∑
i=1

ξi[Xi]) 7→ exp(

n∑
i=1

ξiYi)

where Yi ∈ C∞(U; kerds) are vertical lifts of the Xis.

Composing with ] : Uxx → Hxx we get a morphism

εx : Gx → Hxx

ker εx is the essential isotropy group of the leaf Lx.

Theorem (A-Zambon)

The transitive Lie groupoid HL is smooth and integrates AL if and only if
the essential isotropy group of L is discrete.

I. Androulidakis (Athens) Singular foliations and their holonomy Zürich, December 2012 16 / 24
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Singular foliations Essential isotropy

Relation with monodromy
Lemma (A-Zambon)

If ker εx is discrete then it lies in ZGx

Crainic and Fernandes showed that when AL is integrable then there is an
s-simply connected Lie groupoid Γ with AΓ = AL.

The C-F obstruction is the ”monodromy group” Nx(AL) = ker(Gx → Γxx )

induced by gx → AL.

Integrating Id : AL → AL provides a morphism Γxx → Hxx and ε factors as

Gx → Γxx → Hxx

whence
Nx(AL) ⊂ ker ε

We do not yet know how the isotropy and monodromy groups are related
in general...
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Singular foliations Essential isotropy

A discreteness criterion

Essential isotropy is very hard to compute. However, we were able to show
the following:

Let Sx be a slice to a leaf Lx (at x). There is a ”splitting theorem” for F,
namely Sx is naturally endowed with a ”transversal” foliation FSx .

Theorem (A-Zambon)

Assume that for any time-dependent vector field {Xt}t∈[0,1] ∈ IxFSx there
exists a vector field Z ′ ∈ IxFSx and a neighborhood S ′ of x in Sx such that
exp(Z) |Z ′ is the time-1 flow of {Xt}t∈[0,1].

Guess: This condition is satisfied whenever F is closed as a Frechet
space...

(This rules out the extremely singular cases...)
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Singular foliations Holonomy map

The holonomy map
Let (M,F) a singular foliation, L a leaf, x,y ∈ L and Sx,Sy slices of L at
x,y respectively.

Theorem (A-Zambon)

There is a well defined map

Φyx : Hyx →
GermAutF(Sx,Sy)

exp(IxF) |Sx
,h 7→ 〈τ〉

where τ is defined as

pick any bi-submersion (U, t, s) and u ∈ U with [u] = h

pick any section b : Sx → U of s through u such that (t ◦ b)Sx ⊆ Sy
and define τ = t ◦ b : Sx → Sy.

It defines a morphism of groupoids

Φ : H→ ∪x,y
GermAutF(Sx,Sy)

exp(IxF) |Sx
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Singular foliations Holonomy map

Holonomy map and the Bott connection
Conjecture: Φ is injective.
(Proven at points x where F vanishes and for regular foliations.)

If F is regular then exp(IxF) |Sx= {Id}, so we recover the usual holonomy
map.

Let L be a leaf with discrete essential isotropy.

1 The derivative of τ gives

ΨL : HL → Iso(NL,NL)

Lie groupoid representation of HL on NL;

2 Differentiating ΨL gives

∇L,⊥ : AL → Der(NL)

It is the Bott conection...

All this justifies the terminology ”holonomy groupoid”!
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Linearization

Linearization

Vector field on M tangent to L  
Vector field Ylin on NL, defined as follows:

Ylin acts on the fibrewise constant functions as Y |L
Ylin acts on C∞

lin(NL) ≡ IL/I2L as Ylin[f] = [Y(f)].

The linearization of F at L is the foliation Flin on NL generated by {Ylin :

Y ∈ F}.

Lemma

Let L be an embedded leaf such that ker ε is discrete. Then the linearized
foliation Flin is the foliation induced by the Lie groupoid action ΨL of HL
on NL.
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The linearization of F at L is the foliation Flin on NL generated by {Ylin :

Y ∈ F}.

Lemma

Let L be an embedded leaf such that ker ε is discrete. Then the linearized
foliation Flin is the foliation induced by the Lie groupoid action ΨL of HL
on NL.
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Linearization

We say F is linearizable at L if there is a diffeomorphism mapping F to Flin.

Remark: When F〈X〉 with X vanishing at L = {x}, linearizability of F
means:

There is a diffeomorphism taking X to fXlin for a non-vanishing function f.

This is a weaker condition than the linearizability of the vector field X!
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Linearization

Question: When is a singular foliation isomorphic to its linearization?

We don’t know yet, but:

Proposition (A-Zambon)

Let Lx embedded leaf with discrete essential isotropy. Assume Hxx compact.

The following are equivalent:

1 F is linearizable about L

2 there exists a tubular neighborhood U of L and a (Hausdorff) Lie
groupoid G→ U, proper at x, inducing the foliation F |U.

In that case:

- G can be chosen to be the transformation groupoid of the action ΨL of
HL on NL.

- (U,F |U) admits the structure of a singular Riemannian foliation.
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Linearization
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