Singular foliations and their holonomy

lakovos Androulidakis

Department of Mathematics, University of Athens

Joint work with M. Zambon (Univ. Autónoma Madrid - ICMAT) and G. Skandalis (Paris 7 Denis Diderot)

Zürich, December 2012

Summary

Introduction

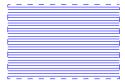
- Regular Foliations
- Holonomy groupoid
- Reeb stability

2 Singular foliations

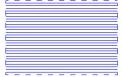
- What is a singular foliation?
- Holonomy groupoid
- Essential isotropy
- Holonomy map

1 Linearization

Partition to connected submanifolds. Local picture:



Partition to connected submanifolds. Local picture:



In other words: There is an open cover of M by foliation charts of the form $\Omega = U \times T$, where $U \subseteq \mathbb{R}^p$ and $T \subseteq \mathbb{R}^q$.

T is the transverse direction and U is the longitudinal or leafwise direction.

Partition to connected submanifolds. Local picture:

In other words: There is an open cover of M by foliation charts of the form $\Omega = U \times T$, where $U \subseteq \mathbb{R}^p$ and $T \subseteq \mathbb{R}^q$.

T is the transverse direction and U is the longitudinal or leafwise direction.

The change of charts is of the form f(u, t) = (g(u, t), h(t)).

Partition to connected submanifolds. Local picture:

In other words: There is an open cover of M by foliation charts of the form $\Omega = U \times T$, where $U \subseteq \mathbb{R}^p$ and $T \subseteq \mathbb{R}^q$.

T is the transverse direction and U is the longitudinal or leafwise direction.

The change of charts is of the form f(u, t) = (g(u, t), h(t)).

Viewpoint 2:

Frobenius theorem

Consider the unique $C^{\infty}(M)$ -module \mathfrak{F} of vector fields tangent to leaves.

 $\label{eq:Fact: Fact: Fact:$

We wish to put a smooth structure on the equivalence relation

$$\{(x,y)\in M^2: L_x=L_y\}$$

What is the dimension of this manifold?

We wish to put a smooth structure on the equivalence relation

$$\{(x,y)\in M^2: L_x=L_y\}$$

What is the dimension of this manifold?

p + q degrees of freedom for x; then p degrees of freedom for y.

We wish to put a smooth structure on the equivalence relation

$$\{(x,y)\in M^2: L_x=L_y\}$$

What is the dimension of this manifold?

p + q degrees of freedom for x; then p degrees of freedom for y.

A neighborhood of (x, x') where $x \in W = U \times T$ and $x' \in W' = U' \times T'$ should be of the form $U \times U' \times T$: we need an identification of T with T'. (Here T, T' are local transversals.)

We wish to put a smooth structure on the equivalence relation

$$\{(x,y)\in M^2: L_x=L_y\}$$

What is the dimension of this manifold?

p + q degrees of freedom for x; then p degrees of freedom for y.

A neighborhood of (x, x') where $x \in W = U \times T$ and $x' \in W' = U' \times T'$ should be of the form $U \times U' \times T$: we need an identification of T with T'. (Here T, T' are local transversals.)

Definition

A holonomy of (M, \mathcal{F}) is a diffeomorphism $h: T \to T'$ such that t, h(t) are in the same leaf for all $t \in T.$

Examples of holonomies

- Take $W = U \times T$. Then id_T is a holonomy.
- If h is a holonomy, h^{-1} is a holonomy.
- The composition of holonomies is a holonomy. (Holonomies form a pseudogroup.)

Examples of holonomies

- Take $W = U \times T$. Then id_T is a holonomy.
- If h is a holonomy, h^{-1} is a holonomy.
- The composition of holonomies is a holonomy. (Holonomies form a pseudogroup.)
- If $W = U \times T$ and $W' = U' \times T'$, in their intersection u' = g(u, t) and t' = h(t) by definition of the chart changes. The map $h = h_{W',W}$ is a holonomy.

Examples of holonomies

- Take $W = U \times T$. Then id_T is a holonomy.
- If h is a holonomy, h^{-1} is a holonomy.
- The composition of holonomies is a holonomy. (Holonomies form a pseudogroup.)
- If $W = U \times T$ and $W' = U' \times T'$, in their intersection u' = g(u, t) and t' = h(t) by definition of the chart changes. The map $h = h_{W',W}$ is a holonomy.
- Let $\gamma:[0,1]\to M$ be a smooth path in a leaf. Cover γ by foliation charts $W_i=U_i\times\mathsf{T}_i(1\leqslant i\leqslant n).$ Consider the composition

$$h(\gamma) = h_{W_n, W_{n-1}} \circ \ldots \circ h_{W_2, W_1}$$

Definition

The holonomy of the path γ is the germ of $h(\gamma)$.

Fact: Path holonomy depends only on the homotopy class of the path!

I. Androulidakis (Athens)

The holonomy groupoid

Definition

The holonomy groupoid is $H(F) = \{(x, y, h(\gamma))\}$ where γ is a path in a leaf joining x to y.

• Manifold structure. If $W = U \times T$ and $W' = U' \times T'$ are charts and $h: T \to T'$ path-holonomy, get chart

$$\Omega_h = U' \times U \times T$$

• Groupoid structure. t(x, y, h) = x, s(x, y, h) = y and $(x, y, h)(y, z, k) = (x, z, h \circ k)$.

The holonomy groupoid

Definition

The holonomy groupoid is $H(F) = \{(x, y, h(\gamma))\}$ where γ is a path in a leaf joining x to y.

• Manifold structure. If $W = U \times T$ and $W' = U' \times T'$ are charts and $h: T \to T'$ path-holonomy, get chart

$$\Omega_{h} = U' \times U \times T$$

• Groupoid structure. t(x, y, h) = x, s(x, y, h) = y and $(x, y, h)(y, z, k) = (x, z, h \circ k)$.

H(F) is a Lie groupoid. Its Lie algebroid is F. Its orbits are the leaves. H(F) is the smallest possible smooth groupoid over \mathcal{F} .

Holonomy revisited

Starting from the projective module of vector fields \mathcal{F} the notion of holonomy in the regular case is:

• Pick a path $\gamma:[0,1]\to L$ and $S_{\gamma(0)},S_{\gamma(1)}$ small transversals of L.

Holonomy revisited

Starting from the projective module of vector fields \mathcal{F} the notion of holonomy in the regular case is:

- Pick a path $\gamma:[0,1]\to L$ and $S_{\gamma(0)},S_{\gamma(1)}$ small transversals of L.
- Path holonomy is (germ of) a local diffeomorphism $S_{\gamma(0)} \rightarrow S_{\gamma(1)}$ obtained by "sliding along γ in nearby leaves".

Holonomy revisited

Starting from the projective module of vector fields \mathcal{F} the notion of holonomy in the regular case is:

- Pick a path $\gamma:[0,1]\to L$ and $S_{\gamma(0)},S_{\gamma(1)}$ small transversals of L.
- Path holonomy is (germ of) a local diffeomorphism $S_{\gamma(0)} \to S_{\gamma(1)}$ obtained by "sliding along γ in nearby leaves".
- Namely: The vector field $X \in \mathcal{F}$ whose flow at $\gamma(0)$ is γ is unique. Now flow X at other points of $S_{\gamma(0)}$ until time 1.

Holonomy revisited

Starting from the projective module of vector fields \mathcal{F} the notion of holonomy in the regular case is:

- Pick a path $\gamma:[0,1]\to L$ and $S_{\gamma(0)},S_{\gamma(1)}$ small transversals of L.
- Path holonomy is (germ of) a local diffeomorphism $S_{\gamma(0)} \to S_{\gamma(1)}$ obtained by "sliding along γ in nearby leaves".
- Namely: The vector field X ∈ 𝔅 whose flow at γ(0) is γ is unique. Now flow X at other points of S_{γ(0)} until time 1.

• H(F) = {paths in leaves}/{holonomy of paths}

Holonomy revisited

Starting from the projective module of vector fields \mathcal{F} the notion of holonomy in the regular case is:

- Pick a path $\gamma:[0,1]\to L$ and $S_{\gamma(0)},S_{\gamma(1)}$ small transversals of L.
- Path holonomy is (germ of) a local diffeomorphism $S_{\gamma(0)} \to S_{\gamma(1)}$ obtained by "sliding along γ in nearby leaves".
- Namely: The vector field $X \in \mathcal{F}$ whose flow at $\gamma(0)$ is γ is unique. Now flow X at other points of $S_{\gamma(0)}$ until time 1.

• H(F) = {paths in leaves}/{holonomy of paths}

Fact: Path holonomy depends only on the homotopy class of γ ; get a map

 $h: \pi_1(L, x) \to Diff(S_x; S_x)$

Its image is H_x^{x} . It's called the holonomy group of F.

Holonomy revisited

Starting from the projective module of vector fields \mathcal{F} the notion of holonomy in the regular case is:

- Pick a path $\gamma:[0,1]\to L$ and $S_{\gamma(0)},S_{\gamma(1)}$ small transversals of L.
- Path holonomy is (germ of) a local diffeomorphism $S_{\gamma(0)} \to S_{\gamma(1)}$ obtained by "sliding along γ in nearby leaves".
- Namely: The vector field $X \in \mathcal{F}$ whose flow at $\gamma(0)$ is γ is unique. Now flow X at other points of $S_{\gamma(0)}$ until time 1.

• H(F) = {paths in leaves}/{holonomy of paths}

Fact: Path holonomy depends only on the homotopy class of γ ; get a map

 $h: \pi_1(L, x) \to Diff(S_x; S_x)$

Its image is H_x^x . It's called the holonomy group of F.

Linearizes to a representation

$$dh: \pi_1(L, x) \to GL(N_xL)$$

Orbits of the rotations action in \mathbb{R}^2 : $\mathfrak{F} = span < x \mathfrak{d}_y - y \mathfrak{d}_x >$.

Orbits of the rotations action in \mathbb{R}^2 : $\mathfrak{F} = span < x \vartheta_y - y \vartheta_x >$.

- Take γ the constant path at the origin.
- A transversal S_0 is just an open neighborhood of the origin in $\mathbb{R}^2.$

Orbits of the rotations action in \mathbb{R}^2 : $\mathfrak{F} = span < x \mathfrak{d}_y - y \mathfrak{d}_x >$.

- Take γ the constant path at the origin.
- A transversal S_0 is just an open neighborhood of the origin in \mathbb{R}^2 .

Realize γ either by integrating the zero vector field or $x\partial_y - y\partial_x$ at the origin. We get completely different diffeomorphisms of S_0 !

Orbits of the rotations action in \mathbb{R}^2 : $\mathfrak{F} = span < x \mathfrak{d}_y - y \mathfrak{d}_x >$.

- Take γ the constant path at the origin.
- A transversal S_0 is just an open neighborhood of the origin in \mathbb{R}^2 .

Realize γ either by integrating the zero vector field or $x\partial_y - y\partial_x$ at the origin. We get completely different diffeomorphisms of S_0 !

Here \mathcal{F} is projective as well!

Orbits of the rotations action in \mathbb{R}^2 : $\mathfrak{F} = span < x \mathfrak{d}_y - y \mathfrak{d}_x >$.

- Take γ the constant path at the origin.
- A transversal S_0 is just an open neighborhood of the origin in \mathbb{R}^2 .

Realize γ either by integrating the zero vector field or $x\partial_y - y\partial_x$ at the origin. We get completely different diffeomorphisms of S₀!

Here \mathcal{F} is projective as well!

But there are lots of non-projective examples... Think of a vector field X whose interior of $\{x \in M : X(x) = 0\}$ is non-empty...

Orbits of the rotations action in \mathbb{R}^2 : $\mathfrak{F} = span < x \mathfrak{d}_y - y \mathfrak{d}_x >$.

- Take γ the constant path at the origin.
- A transversal S_0 is just an open neighborhood of the origin in \mathbb{R}^2 .

Realize γ either by integrating the zero vector field or $x\partial_y - y\partial_x$ at the origin. We get completely different diffeomorphisms of S_0 !

Here \mathcal{F} is projective as well!

But there are lots of non-projective examples... Think of a vector field X whose interior of $\{x \in M : X(x) = 0\}$ is non-empty...

Holonomy map cannot be defined on $\pi_1(L)$ in the singular case... What about the holonomy groupoid?

Orbits of the rotations action in \mathbb{R}^2 : $\mathfrak{F} = span < x \mathfrak{d}_y - y \mathfrak{d}_x >$.

- Take γ the constant path at the origin.
- A transversal S_0 is just an open neighborhood of the origin in \mathbb{R}^2 .

Realize γ either by integrating the zero vector field or $x\partial_y - y\partial_x$ at the origin. We get completely different diffeomorphisms of S_0 !

Here \mathcal{F} is projective as well!

But there are lots of non-projective examples... Think of a vector field X whose interior of $\{x \in M : X(x) = 0\}$ is non-empty...

Holonomy map cannot be defined on $\pi_1(L)$ in the singular case... What about the holonomy groupoid?

Debord showed that a projective $\ensuremath{\mathfrak{F}}$ always has a smooth holonomy groupoid.

Stability for regular foliations

Local Reeb stability theorem

If L is a compact embedded leaf and H_x^x is finite then nearby L the foliation F is isomorphic to its linearization.

Stability for regular foliations

Local Reeb stability theorem

If L is a compact embedded leaf and $H^x_{\rm x}$ is finite then nearby L the foliation F is isomorphic to its linearization.

Namely, around L the manifold looks like

$\frac{\widetilde{L}\times \mathbb{R}^q}{\pi_1(L)}$

 $\pi_1(L)$ acts diagonally by deck transformations and linearized holonomy.

Stability for regular foliations

Local Reeb stability theorem

If L is a compact embedded leaf and H^x_{χ} is finite then nearby L the foliation F is isomorphic to its linearization.

Namely, around L the manifold looks like

 $\frac{\widetilde{L}\times \mathbb{R}^q}{\pi_1(L)}$

 $\pi_1(L)$ acts diagonally by deck transformations and linearized holonomy. This is equal to

$$\frac{H_x \times N_x L}{H_x^x}$$

The action of H_x^x on N_xL is the one that integrates the Bott connection

 $abla : F \to CDO(N), \quad (X, \langle Y \rangle) \to \langle [X, Y] \rangle$

The singular case

- What is the notion of holonomy in the singular case?
- Is there any sense in which the holonomy groupoid of a singular foliation is smooth?
- When is a singular foliation isomorphic to its linearization?

Stefan-Sussmann foliations

Definition (Stefan, Sussmann, A-Skandalis)

A (singular) foliation is a finitely generated sub-module \mathfrak{F} of $C_c^{\infty}(M;TM)$, stable under brackets.

No longer projective. Fiber $\mathcal{F}_x = \mathcal{F}/I_x \mathcal{F}$: upper semi-continuous dimension. One may still define leaves (Stefan-Sussmann).

Stefan-Sussmann foliations

Definition (Stefan, Sussmann, A-Skandalis)

A (singular) foliation is a finitely generated sub-module ${\mathfrak F}$ of $C^\infty_c(M;TM),$ stable under brackets.

No longer projective. Fiber $\mathcal{F}_x = \mathcal{F}/I_x \mathcal{F}$: upper semi-continuous dimension. One may still define leaves (Stefan-Sussmann).

Let L be a leaf and $x \in L$. There is a short exact sequence of vector spaces

$$0 \to \mathfrak{g}_x \to \mathfrak{F}_x \stackrel{e\nu_x}{\to} T_x L \to 0$$

where ev_x is evaluation at x. Get a transitive Lie algebroid

$$A_L = \cup_{x \in L} \mathcal{F}_x$$
, with $\Gamma A_L = \mathcal{F}/I_L \mathcal{F}$

Stefan-Sussmann foliations

Definition (Stefan, Sussmann, A-Skandalis)

A (singular) foliation is a finitely generated sub-module ${\mathfrak F}$ of $C^\infty_c(M;TM),$ stable under brackets.

No longer projective. Fiber $\mathcal{F}_x = \mathcal{F}/I_x \mathcal{F}$: upper semi-continuous dimension. One may still define leaves (Stefan-Sussmann).

Let L be a leaf and $x \in L$. There is a short exact sequence of vector spaces

$$0 \to \mathfrak{g}_x \to \mathfrak{F}_x \stackrel{e\nu_x}{\to} T_x L \to 0$$

where ev_x is evaluation at x. Get a transitive Lie algebroid

$$A_L = \cup_{x \in L} \mathfrak{F}_x$$
, with $\Gamma A_L = \mathfrak{F}/I_L \mathfrak{F}$

"Regular" leaves = leaves of maximal dimension. On regular leaves $g_x = 0$.

Examples

Actually: Different foliations may yield same partition to leaves

Actually: Different foliations may yield same partition to leaves

- If G acts linearly on a vector space V and F is the image of the infinitesimal action, then g₀ = Lie(G).

Actually: Different foliations may yield same partition to leaves

- If G acts linearly on a vector space V and F is the image of the infinitesimal action, then g₀ = Lie(G).
- ℝ² foliated by 2 leaves: {0} and ℝ² \ {0}.

 No obvious best choice. 𝔅 given by the action of a Lie group

 $\operatorname{GL}(2,\mathbb{R})$, $\operatorname{SL}(2,\mathbb{R})$, \mathbb{C}^*

Extra difficulty: Keep track of the choice of \mathcal{F} !

Need a stable way to keep track of (path) holomies associated with a particular choice of \mathcal{F} .

Need a stable way to keep track of (path) holomies associated with a particular choice of \mathcal{F} .

Answer: Bi-submersions. Think of them as covers of open subsets of the holonomy groupoid $H(\mathfrak{F})$. Explicitly:

Need a stable way to keep track of (path) holomies associated with a particular choice of \mathcal{F} .

Answer: Bi-submersions. Think of them as covers of open subsets of the holonomy groupoid $H(\mathfrak{F})$. Explicitly:

- Let X_1, \ldots, X_n local generators of \mathcal{F} .
- Let $U \subseteq M \times \mathbb{R}^n$ a neighborhood where the map

$$t: U \rightarrow M$$
, $t(y, \xi) = exp(\sum_{i=1}^{n} \xi_i X_i)(y)$

is defined.

• Put $s: U \to M$ the projection. The triple (U, t, s) is a path holonomy bi-submersion.

Need a stable way to keep track of (path) holomies associated with a particular choice of \mathcal{F} .

Answer: Bi-submersions. Think of them as covers of open subsets of the holonomy groupoid $H(\mathcal{F})$. Explicitly:

- Let X_1, \ldots, X_n local generators of \mathcal{F} .
- Let $U \subseteq M \times \mathbb{R}^n$ a neighborhood where the map

$$t: U \to M$$
, $t(y, \xi) = exp(\sum_{i=1}^{n} \xi_i X_i)(y)$

is defined.

• Put $s: U \to M$ the projection. The triple (U, t, s) is a path holonomy bi-submersion.

Indeed (U, t, s) keeps track of path holonomies near the identity:

bisections of $(U,t,s) \rightsquigarrow \mathsf{path}$ holonomies

Passing to germs

Cover M with a family $\{(U_i, t_i, s_i)\}_{i \in I}$. Let \mathcal{U} be the family of all finite products of $\{(U_i, t_i, s_i)\}_{i \in I}$ and of their inverses.

Holonomy groupoid (A-Skandalis)

The holonomy groupoid is

$$\mathsf{H}(\mathfrak{F}) = \coprod_{U \in \mathfrak{U}} U / \sim$$

where $U \ni u \sim u' \in U'$ iff there is a morphism of bi-submersions $f: U \to U'$ (defined near u) such that f(u) = u'.

 $H(\mathcal{F})$ is a topological groupoid over M, usually not smooth.

(Almost) regular case: $H(\mathcal{F})$ usual holonomy groupoid.

- (Almost) regular case: $H(\mathcal{F})$ usual holonomy groupoid.
- 0 Action of S^1 on \mathbb{R}^2 by rotations: H is the transformation groupoid $M\times S^1.$

- (Almost) regular case: $H(\mathcal{F})$ usual holonomy groupoid.
- 0 Action of S^1 on \mathbb{R}^2 by rotations: H is the transformation groupoid $M\times S^1.$
- **③** $\mathcal{F} = \rho(AG)$: $H(\mathcal{F})$ is a quotient of G.

- (Almost) regular case: $H(\mathcal{F})$ usual holonomy groupoid.
- 0 Action of S^1 on \mathbb{R}^2 by rotations: H is the transformation groupoid $M\times S^1.$
- $\ \, {\mathfrak S}=\rho(AG):\ H({\mathfrak F}) \ \text{is a quotient of }G.$
- $\mathcal{F} = \langle X \rangle$ s.t. X has non-periodic integral curves around $\partial \{X = 0\}$:

$$\mathsf{H}(\mathfrak{F}) = \mathsf{H}(X)|_{\{X \neq 0\}} \cup \mathsf{Int}\{X = 0\} \cup (\mathbb{R} \times \partial \{X = 0\})$$

- (Almost) regular case: $H(\mathcal{F})$ usual holonomy groupoid.
- 0 Action of S^1 on \mathbb{R}^2 by rotations: H is the transformation groupoid $M\times S^1.$
- $\ \, {\mathfrak S}=\rho(AG):\ H({\mathfrak F}) \ \text{is a quotient of }G.$
- $\mathcal{F} = \langle X \rangle$ s.t. X has non-periodic integral curves around $\partial \{X = 0\}$:

$$\mathsf{H}(\mathfrak{F}) = \mathsf{H}(X)|_{\{X \neq 0\}} \cup \mathsf{Int}\{X = 0\} \cup (\mathbb{R} \times \partial \{X = 0\})$$

- (Almost) regular case: $H(\mathcal{F})$ usual holonomy groupoid.
- $\textcircled{\sc 3}$ Action of S^1 on \mathbb{R}^2 by rotations: H is the transformation groupoid $M\times S^1.$
- $\ \, {\mathfrak S}=\rho(AG):\ H({\mathfrak F}) \ \text{is a quotient of }G.$
- $\mathcal{F} = \langle X \rangle$ s.t. X has non-periodic integral curves around $\partial \{X = 0\}$:

$$\mathsf{H}(\mathfrak{F}) = \mathsf{H}(X)|_{\{X \neq 0\}} \cup \mathsf{Int}\{X = 0\} \cup (\mathbb{R} \times \partial \{X = 0\})$$

(a) action of $SL(2, \mathbb{R})$ on \mathbb{R}^2 :

 $\mathsf{H}(\mathfrak{F}) = (\mathbb{R}^2 \setminus \{0\})^2 \cup \mathsf{SL}(2,\mathbb{R}) \times \{0\}$

topology: Let $x \in \mathbb{R}^2 \setminus \{0\}$. Then $(\frac{x}{n}, \frac{x}{n}) \in H(\mathcal{F})$ converges to every g in stabilizer group of x... namely to every point of $\mathbb{R}!$

Integrating A_L

All the previous examples have smooth *s*-fibers! Is this always the case? Equivalently, is A_L always integrable?

Integrating A_L

All the previous examples have smooth *s*-fibers! Is this always the case? Equivalently, is A_L always integrable?

To answer this, let G_x the connected and simply connected Lie group integrating g_x . Near the identity, consider the map

$$\widetilde{\epsilon}_x: G_x \to U_x^x, \quad exp_{\mathfrak{g}_x}(\sum_{i=1}^n \xi_i[X_i]) \mapsto exp(\sum_{i=1}^n \xi_iY_i)$$

where $Y_i \in C^\infty(U; \ker ds)$ are vertical lifts of the $X_i s.$

Integrating A_L

All the previous examples have smooth *s*-fibers! Is this always the case? Equivalently, is A_L always integrable?

To answer this, let G_x the connected and simply connected Lie group integrating $\mathfrak{g}_x.$ Near the identity, consider the map

$$\widetilde{\epsilon}_{x}: G_{x} \to U_{x}^{x}, \quad exp_{\mathfrak{g}_{x}}(\sum_{i=1}^{n} \xi_{i}[X_{i}]) \mapsto exp(\sum_{i=1}^{n} \xi_{i}Y_{i})$$

where $Y_i \in C^{\infty}(U; \text{ker } ds)$ are vertical lifts of the X_i s. Composing with $\sharp: U_x^x \to H_x^x$ we get a morphism

$$\epsilon_x:G_x\to H^x_x$$

ker ε_{x} is the essential isotropy group of the leaf L_{x} .

Theorem (A-Zambon)

The transitive Lie groupoid H_L is smooth and integrates A_L if and only if the essential isotropy group of L is discrete.

I. Androulidakis (Athens)

Lemma (A-Zambon)

If $\ker \epsilon_x$ is discrete then it lies in ZG_x

Lemma (A-Zambon)

If $\mbox{ker}\,\epsilon_x$ is discrete then it lies in ZG_x

Crainic and Fernandes showed that when A_L is integrable then there is an s-simply connected Lie groupoid Γ with $A\Gamma = A_L$.

Lemma (A-Zambon)

If $\mbox{ker}\,\epsilon_x$ is discrete then it lies in ZG_x

Crainic and Fernandes showed that when A_L is integrable then there is an s-simply connected Lie groupoid Γ with $A\Gamma = A_L$.

The C-F obstruction is the "monodromy group" $\mathfrak{N}_x(A_L)=\text{ker}(G_x\to\Gamma^x_x)$ induced by $\mathfrak{g}_x\to A_L.$

Lemma (A-Zambon)

If $\mbox{ker}\,\epsilon_x$ is discrete then it lies in ZG_x

Crainic and Fernandes showed that when A_L is integrable then there is an s-simply connected Lie groupoid Γ with $A\Gamma = A_L$.

The C-F obstruction is the "monodromy group" $\mathfrak{N}_x(A_L)=\text{ker}(G_x\to\Gamma^x_x)$ induced by $\mathfrak{g}_x\to A_L.$

Integrating Id : $A_L \to A_L$ provides a morphism $\Gamma^{\chi}_x \to H^{\chi}_x$ and ϵ factors as

$$\mathsf{G}_x\to \mathsf{\Gamma}^x_x\to \mathsf{H}^x_x$$

whence

 $\mathfrak{N}_x(A_L)\subset \text{ker}\,\epsilon$

Lemma (A-Zambon)

If $\mbox{ker}\,\epsilon_x$ is discrete then it lies in ZG_x

Crainic and Fernandes showed that when A_L is integrable then there is an s-simply connected Lie groupoid Γ with $A\Gamma = A_L$.

The C-F obstruction is the "monodromy group" $\mathfrak{N}_x(A_L)=\text{ker}(G_x\to\Gamma^x_x)$ induced by $\mathfrak{g}_x\to A_L.$

Integrating Id : $A_L \to A_L$ provides a morphism $\Gamma^{\chi}_x \to H^{\chi}_x$ and ϵ factors as

$$G_x \to \Gamma^x_x \to H^x_x$$

whence

$$\mathfrak{N}_{\mathbf{x}}(A_L) \subset \ker \epsilon$$

We do not yet know how the isotropy and monodromy groups are related in general...

A discreteness criterion

Essential isotropy is very hard to compute. However, we were able to show the following:

A discreteness criterion

Essential isotropy is very hard to compute. However, we were able to show the following:

Let S_x be a slice to a leaf L_x (at x). There is a "splitting theorem" for \mathcal{F} , namely S_x is naturally endowed with a "transversal" foliation \mathcal{F}_{S_x} .

Theorem (A-Zambon)

Assume that for any time-dependent vector field $\{X_t\}_{t\in[0,1]} \in I_x \mathcal{F}_{S_x}$ there exists a vector field $Z' \in I_x \mathcal{F}_{S_x}$ and a neighborhood S' of x in S_x such that $exp(Z) \mid_{Z'}$ is the time-1 flow of $\{X_t\}_{t\in[0,1]}$.

A discreteness criterion

Essential isotropy is very hard to compute. However, we were able to show the following:

Let S_x be a slice to a leaf L_x (at x). There is a "splitting theorem" for \mathcal{F} , namely S_x is naturally endowed with a "transversal" foliation \mathcal{F}_{S_x} .

Theorem (A-Zambon)

Assume that for any time-dependent vector field $\{X_t\}_{t\in[0,1]} \in I_x \mathcal{F}_{S_x}$ there exists a vector field $Z' \in I_x \mathcal{F}_{S_x}$ and a neighborhood S' of x in S_x such that $exp(Z) \mid_{Z'}$ is the time-1 flow of $\{X_t\}_{t\in[0,1]}$.

Guess: This condition is satisfied whenever \mathcal{F} is closed as a Frechet space...

(This rules out the *extremely* singular cases...)

The holonomy map

Let (M, \mathcal{F}) a singular foliation, L a leaf, $x,y \in L$ and S_x,S_y slices of L at x,y respectively.

Theorem (A-Zambon)

There is a well defined map

$$\Phi^{y}_{x}: \mathsf{H}^{y}_{x} \rightarrow \frac{\operatorname{GermAut}_{\mathcal{F}}(\mathsf{S}_{x}, \mathsf{S}_{y})}{\exp(\mathrm{I}_{x}\mathcal{F})\mid_{\mathsf{S}_{x}}}, \mathsf{h} \mapsto \langle \tau \rangle$$

where τ is defined as

- pick any bi-submersion (U,t,s) and $u\in U$ with [u]=h
- pick any section $b:S_x\to U$ of s through $\mathfrak u$ such that $(t\circ b)S_x\subseteq S_y$ and define $\tau=t\circ b:S_x\to S_y.$

The holonomy map

Let (M, \mathcal{F}) a singular foliation, L a leaf, $x,y \in L$ and S_x,S_y slices of L at x,y respectively.

Theorem (A-Zambon)

There is a well defined map

$$\Phi^{y}_{x}: \mathsf{H}^{y}_{x} \rightarrow \frac{\operatorname{GermAut}_{\mathcal{F}}(\mathsf{S}_{x}, \mathsf{S}_{y})}{\exp(\mathrm{I}_{x}\mathcal{F})\mid_{\mathsf{S}_{x}}}, \mathsf{h} \mapsto \langle \tau \rangle$$

where τ is defined as

• pick any bi-submersion (U,t,s) and $u\in U$ with [u]=h

• pick any section $b:S_x\to U$ of s through u such that $(t\circ b)S_x\subseteq S_y$ and define $\tau=t\circ b:S_x\to S_y.$

It defines a morphism of groupoids

$$\Phi: \mathsf{H} \to \cup_{x,y} \frac{\operatorname{GermAut}_{\mathcal{F}}(\mathsf{S}_x, \mathsf{S}_y)}{\exp(\mathsf{I}_x \mathcal{F}) \mid_{\mathsf{S}_x}}$$

Conjecture: Φ is injective.

(Proven at points x where ${\mathcal F}$ vanishes and for regular foliations.)

Conjecture: Φ is injective.

(Proven at points x where ${\mathfrak F}$ vanishes and for regular foliations.)

If ${\mathfrak F}$ is regular then $exp(I_x{\mathfrak F})\mid_{S_x}=\{Id\},$ so we recover the usual holonomy map.

Conjecture: Φ is injective.

(Proven at points x where ${\mathfrak F}$ vanishes and for regular foliations.)

If $\mathfrak F$ is regular then $exp(I_x \mathfrak F)\mid_{S_x}=\{Id\}$, so we recover the usual holonomy map.

Let L be a leaf with discrete essential isotropy.

 $\bullet \quad \text{The derivative of } \tau \text{ gives}$

 $\Psi_{L}: H_{L} \rightarrow Iso(NL, NL)$

Lie groupoid representation of H_{L} on NL;

Conjecture: Φ is injective.

(Proven at points x where ${\mathcal F}$ vanishes and for regular foliations.)

If $\mathfrak F$ is regular then $exp(I_x \mathfrak F)\mid_{S_x}=\{Id\}$, so we recover the usual holonomy map.

Let L be a leaf with discrete essential isotropy.

 $\bullet \quad \text{The derivative of } \tau \text{ gives}$

 $\Psi_{L}: H_{L} \rightarrow Iso(NL, NL)$

Lie groupoid representation of H_{L} on NL;

 $\textcircled{O} \ \ Differentiating \ \Psi_L \ gives$

$$\nabla^{L,\perp}: A_L \to Der(NL)$$

It is the Bott conection...

Conjecture: Φ is injective.

(Proven at points x where ${\mathfrak F}$ vanishes and for regular foliations.)

If $\mathfrak F$ is regular then $exp(I_x \mathfrak F)\mid_{S_x}=\{Id\}$, so we recover the usual holonomy map.

Let L be a leaf with discrete essential isotropy.

• The derivative of τ gives

 $\Psi_{L}: H_{L} \rightarrow Iso(NL, NL)$

Lie groupoid representation of H_{L} on NL;

 $\textcircled{O} \ \ Differentiating \ \Psi_L \ gives$

$$\nabla^{L,\perp}: A_L \to Der(NL)$$

It is the Bott conection...

All this justifies the terminology "holonomy groupoid"!

Linearization

Vector field on M tangent to L \rightsquigarrow Vector field Y_{lin} on NL, defined as follows:

 $\begin{array}{l} Y_{lin} \text{ acts on the fibrewise constant functions as } Y \mid_L \\ Y_{lin} \text{ acts on } C^\infty_{lin}(NL) \equiv I_L/I_L^2 \text{ as } Y_{lin}[f] = [Y(f)]. \end{array}$

Linearization

Vector field on M tangent to L \rightsquigarrow Vector field Y_{lin} on NL, defined as follows:

 $\begin{array}{l} Y_{lin} \text{ acts on the fibrewise constant functions as } Y\mid_L \\ Y_{lin} \text{ acts on } C^\infty_{lin}(NL) \equiv I_L/I_L^2 \text{ as } Y_{lin}[f] = [Y(f)]. \end{array}$

The linearization of \mathfrak{F} at L is the foliation \mathfrak{F}_{lin} on NL generated by $\{Y_{lin} : Y \in \mathfrak{F}\}$.

Linearization

Vector field on M tangent to L \rightsquigarrow Vector field Y_{lin} on NL, defined as follows:

 $\begin{array}{l} Y_{lin} \text{ acts on the fibrewise constant functions as } Y \mid_L \\ Y_{lin} \text{ acts on } C^\infty_{lin}(NL) \equiv I_L/I_L^2 \text{ as } Y_{lin}[f] = [Y(f)]. \end{array}$

The linearization of \mathfrak{F} at L is the foliation \mathfrak{F}_{lin} on NL generated by $\{Y_{lin}: Y \in \mathfrak{F}\}$.

Lemma

Let L be an embedded leaf such that ker ε is discrete. Then the linearized foliation \mathcal{F}_{lin} is the foliation induced by the Lie groupoid action Ψ_L of H_L on NL.

We say \mathcal{F} is linearizable at L if there is a diffeomorphism mapping \mathcal{F} to \mathcal{F}_{lin} .

We say \mathcal{F} is linearizable at L if there is a diffeomorphism mapping \mathcal{F} to \mathcal{F}_{lin} .

Remark: When $\mathcal{F}\langle X \rangle$ with X vanishing at $L = \{x\}$, linearizability of \mathcal{F} means:

There is a diffeomorphism taking X to fX_{lin} for a non-vanishing function f.

This is a weaker condition than the linearizability of the vector field X!

Question: When is a singular foliation isomorphic to its linearization?

Question: When is a singular foliation isomorphic to its linearization?

We don't know yet, but:

Proposition (A-Zambon)

Let L_x embedded leaf with discrete essential isotropy. Assume H_x^x compact.

The following are equivalent:

- $\textbf{0} \hspace{0.1in} \mathfrak{F} \hspace{0.1in} \text{is linearizable about } L \\$
- ② there exists a tubular neighborhood U of L and a (Hausdorff) Lie groupoid G → U, proper at x, inducing the foliation $\mathcal{F}|_{U}$.

Question: When is a singular foliation isomorphic to its linearization?

We don't know yet, but:

Proposition (A-Zambon)

Let L_{x} embedded leaf with discrete essential isotropy. Assume $H_{\mathrm{x}}^{\mathrm{x}}$ compact.

- The following are equivalent:
 - **①** \mathcal{F} is linearizable about L
 - ② there exists a tubular neighborhood U of L and a (Hausdorff) Lie groupoid G → U, proper at x, inducing the foliation $\mathcal{F}|_{U}$.

In that case:

- G can be chosen to be the transformation groupoid of the action Ψ_L of H_L on NL.
- $(\boldsymbol{U}, \mathfrak{F}|_{\boldsymbol{U}})$ admits the structure of a singular Riemannian foliation.

Papers

[1] I. A. AND G. SKANDALIS The holonomy groupoid of a singular foliation. *J. Reine Angew. Math.* **626** (2009), 1–37.

[2] I. A. AND M. ZAMBON Smoothness of holonomy covers for singular foliations and essential isotropy. arXiv:1111.1327

[3] I. A. AND M. ZAMBON Holonomy transformations for singular foliations. arXiv:1205.6008

Papers

[1] I. A. AND G. SKANDALIS The holonomy groupoid of a singular foliation. *J. Reine Angew. Math.* **626** (2009), 1–37.

[2] I. A. AND M. ZAMBON Smoothness of holonomy covers for singular foliations and essential isotropy. arXiv:1111.1327

[3] I. A. AND M. ZAMBON Holonomy transformations for singular foliations. arXiv:1205.6008

Thank you!