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Section 1

Background



Banking Background: Credit Risk

� One of the fundamental economic purposes of credit institutions is
maturity transformation

� They do this by borrowing in the short term and issuing long-term
credit

� This practice exposes banks to credit default risk (amongst others)

� "Credit risk is most simply de�ned as the potential that a bank
borrower or counterparty will fail to meet its obligations in
accordance with agreed terms." 1

1Principles for the Management of Credit Risk, Basel Committee on Banking Supervision (2000)



Regulatory background: Credit Portfolio Risk

� "Traditionally, banks have focused on oversight of contractual
performance of individual credits in managing their overall credit risk.
While this focus is important, banks also need to have in place a
system for monitoring the overall composition and quality of
the various credit portfolios. This system should be consistent
with the nature, size and complexity of the bank's portfolios." 2

2ibid. p. 16



Section 2

Introduction to the Modeling of Credit Portfolio Risk



The Merton structural credit risk model

"Equity is a European call option on a �rm's assets"3

� Consider a toy �rm that is �nanced through equity (Et)t∈[0,T ] and a zero coupon

bond (Dt)t∈[0,T ] with maturity T and principal K
� The �rm's value (Vt)t∈[0,T ] is the sum of the values of its securities:

Vt = Et +Dt

� The �rm's value Vt is assumed to follow a GBM

� Default occurs if the value of the �rm is insu�cient to repay the debt principal

l = 1{VT<K}

� In this toy setting, equity holders receive nothing if the �rm defaults, but pro�t

from all the upside if the �rm is solvent; the payo� to equity holders is therefore

ET = max (VT −K, 0)

� The �rm's equity can thus be calculated using the Black-Scholes formula

Et = Vt Φ(d+)−K e−r (T−t) ∗ Φ(d−)

d± =
log(Vt/K) + (r ± 0.5 σ2) (T − t)

σ
√
T − t

3R. C. Merton (1974)



The Credit Portfolio Model Cookbook

1. Calculate PD (rating), LGD, EAD for each obligor

2. Group obligors i = 1, ..., It into segments j = 1, ..., J , J << It
3. Calibrate asset returns to the factor model

Ri,t =

P∑
p=1

βj,p Yp,t + σj Zi,t, i = 1, · · · , It, j = 1, · · · , J,

4. Run a Monte Carlo simulation to generate asset return realizations

5. If the asset return realization is less than the PD-implied default
threshold, the obligor defaults
− In this scenario, a loss of the amount of LGDi ∗ EADi is registered for obligor i

6. In each scenario, add up the obligor's losses to get the portfolio loss
for this scenario

7. Calculate the VaR, cVaR etc. of the loss distribution from Step 6.



Section 3

Estimation of Latent Asset Return
Correlations when Returns are Serially Independent



Conditional Probabilities of Default

� Consider a one-factor model for the standardized asset log-return of an obligor i

Ri,t = log

(
Vi,t

Vi,0

)
=
√
ρ Yt +

√
1− ρ Zi,t

� We assume that the common factor Yt ∼ N(0, 1) describing the overall state of

the world is independent from the �rm-speci�c residual return Zi,t ∼ N(0, 1)

� Default occurs if the obligor's assets are insu�cient to cover her liabilities

� This threshold is determined using the obligor's PD p

� Denote by P (Yt) the conditional PD de�ned as

P (Yt) := P
[
Ri,t < Φ(−1)(p)

∣∣ Yt]
= P

[
Zi,t <

Φ(−1)(p)−√ρ Yt√
1− ρ

∣∣ Yt] = Φ

(
Φ(−1)(p)−√ρ Yt√

1− ρ

)
� Given the realization Yt = yt, the conditional probability of default for this

scenario is thus given by

P (yt) = Φ

(
Φ(−1)(p)−√ρ yt√

1− ρ

)



Estimation of Latent Asset Return Correlations

Recall from the preceding slide that

P (Yt) = Φ

(
Φ(−1)(p)−√ρ Yt√

1− ρ

)
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Moment Matching - Theory

The problem at hand now consists in �nding the latent asset return
correlation ρ.
One can calculate that

� E[P (Yt)] = p

� V[P (Yt)] = Φ2

(
Φ(−1)(p),Φ(−1)(p); ρ

)
− p2

While these theoretical moments are of course unknown, we may, by the
strong law of large numbers, assume that they can be approximated by
the sample mean and the sample variance of the observed default rate
time series (if certain conditions are satis�ed).



Moment Matching - Practice

In practice, we use the time series of observed default rates (∆t)
T
t=1 for

in order to determine the latent asset return correlations.
� The default rate is de�ned as the ratio of the number of defaulted
obligors in a portfolio over the total number of obligors, i.e.

∆t =
# Obligors that defaulted in [t− 1, t)

# All Obligors in [t− 1, t)

In view of our modelling assumptions,

� ∆T := 1
T

∑T
t=1 ∆t = 1

T

∑T
t=1 P (yt) =: P (y)T

�
1

T−1
∑T
t=1

(
∆t −∆T

)2
= 1

T−1
∑T
t=1

(
P (yt)− P (y)T

)2

1

T − 1

T∑
t=1

(
P (yt)− P (y)T

)2 T→∞−−−−→ Φ2

(
Φ(−1)(p),Φ(−1)(p); ρ

)
− p2

� One can back out ρ using a standard numerical solver.



Maximum Likelihood Estimation

In many applications, MLE is preferred to MoM. Recall that

P (yt) = Φ

(
Φ(−1)(p)−√ρ yt√

1− ρ

)
The MLE for the estimation of latent asset return correlations consists in
�nding ρ0 ∈ (0, 1) maximizing the likelihood function

L(ρ) =

∫
RT

P (yt)
Dt (1− P (yt))

Nt−DtdF (y1, · · · , yT ), (1)

where Dt is the number of defaulted obligors in [t− 1, t), Nt is the total
number of obligors in [t− 1, t), and F is the joint distribution of
(Y1, · · · , YT ).

� If (Y1, · · · , YT ) are i.i.d. Gaussian, then (1) becomes

L(ρ) =

T∏
t=1

[∫ ∞
−∞

P (yt)
Dt (1− P (yt))

Nt−Dt dΦ(yt)

]



Section 4

Estimation of Latent Asset Return
Correlations when Returns are Serially Dependent



What to do in the presence of autocorrelation?

� If (Y1, · · · , YT ) are not i.i.d., the classical SLLN fails to apply

� There is an extension of the SLLN to stationary L2 processes4

− A sequence of rv's (Yt) is called stationary if each Yt has the same distribution and
the distribution of (Yt1+h, · · · , Ytk+h) does not depend on h, for any k

− The sequence is called L2 if each Yt has �nite variance σ2

� (Theorem) Let the auto-covariance γs,t (s, t ∈ R) of the stationary
process Y , de�ned by γs,t = E[(Ys − E[Y ]) (Yt − E[Y ])], be
summable, i.e.,

∑∞
t=−∞ |γs,t| ≤ c <∞. Then

1

T

T∑
t=0

Yt
T→∞−−−−→ E[Y ] a.s.

� For the problem at hand, we invoke this theorem for the convergence
of the sample variances - in which case we need that the
auto-cokurtoses of Y are summable.

4C. Frei, M. Wunsch (2017) - Preprint



Example: A process with summable auto-comoments

Consider the AR(1) process

Xt = α Xt−1 + σZt,

where |α| < 1, σ > 0, and Zt ∼ N(0, 1) for all t, so that

� Xt ∼ N
(
0, σ2/(1− α2)

)
� γs,t = (σ2α|s−t|)/(1− α2)

Hence γs,t satis�es the summability condition of the theorem, so that the
generalized SLLN holds for AR(1) sequences.

Notice that for the auto-cokurtosis κ
(2,2)
s,t we have

κ
(2,2)
s,t :=

E[(Xs)
2 (Xt)

2]

γs,s γt,t
=

3σ4

1− α4

α(2|s−t|)

σ4

(1−α2)2

=
3(1− α2)

1 + α2
α(2|s−t|)

Analogous summable expressions hold for the other auto-cokurtoses.
This implies that we can invoke the generalized SLLN for the almost sure
convergence of the second moment of an AR(1).



MLE in the presence of autocorrelation

Let us assume that (Y1, · · · , YT ) is AR(1), i.e.

Ri,t =
√
ρ Yt +

√
1− ρ Zi,t Yt ⊥ Zi,t, k = i, ..., It,

Yt = α Yt−1 +
√

1− α2 Υt, Yt−1 ⊥ Υt, t = 2, · · · , T,
In this case, the likelihood function (1) takes the form

L(ρ) =

∫
RT

P (yt)
Dt (1− P (yt))

Nt−Dt dΦT ((y1, · · · , yT )′;0,ΣT )

where the covariance matrix is given by

ΣT =


1 α · · · αT

α 1 · · · αT−1

...
...

. . .
...

αT αT−1 · · · 1

 .

McNeil and Wendin (2007) solve this MLE using Gibbs sampling.



Latent Asset Correlations: Problems and Solutions

We summarize what we have learnt so far in the table below.

Problem Solution Implementation
MLE Complicated likelihood function Gibbs Sampling Intricate
MoM Slow convergence rate  Part 2 Straightforward



Thank you very much for your attention!
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