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Section 1

Why is autocorrelation present in default rates?
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Rating and sectoral buckets

« Typically, obligors are grouped into rating and sectoral buckets.

< sectors/business lines/regions —

Swiss Swiss small US credit
mortgages businesses cards
" AAA | bucket (1,1) bucket (1,2) bucket (1,3)
o AA+ | bucket (2,1) '
c
3 AA | bucket (3,1)
1 AA- bucket( 1)

o It is assumed that the obligors in a bucket are homogeneous:
same default probabilities and default correlation within a
bucket and to other buckets.
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Default rates are cyclical

Global Corporate Default Rate (annual, in %)
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Point-in-time versus through-the-cycle ratings

Based on cyclicality of default rates, there are two types of ratings:
o Point-in-time (PiT) ratings: evaluate the credit quality by
taking into account all currently available information

= the credit cycle affects the rating of an obligor and thus
obligors move to different rating buckets in the credit cycle

= default prob. in rating bucket not dependent on credit cycle
o Through-the-cylce (TtC) ratings: focus on the permanent

component of creditworthiness

= obligor's rating does not depend on credit cycle

= default prob. in rating bucket changes through credit cycle

Meaning and (dis)advantages of ratings as PiT versus TtC credit
indicators are widely discussed in industry and academia.

Main disadvantage of PiT ratings: loss estimates (and thus the
capital buffer) reduce in good times and expand in recessions.

3 UBS



Through-the-cycle ratings in the Basel Accords

TtC ratings are often used in practice, for example, in the Basel's
advanced internal rating-based approach:

o Current: “Although the time horizon used in PD [probability of
default] estimation is one year. .. banks must use a longer time
horizon in assigning ratings.”*

« Proposed addition: “Rating systems should be designed in such
a way that assignments to rating categories generally remain
stable over time and throughout business cycles. Migration
from one category to another should generally be due to
idiosyncratic or industry-specific changes rather than due to
business cycles."?

1Paragraph 414 in Basel Committee on Banking Supervision. International convergence of capital
measures and capital standards, 2006.

2Section 4.1 in Basel Committee on Banking Supervision. Consultative document: Reducing
variation in credit risk-weighted assets — constraints on the use of internal model approaches, 2016.
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Presence of autocorrelation in default rates

In practice, when analyzing time series of default rates, we often
observe autocorrelation. Underlying reasons:

« Credit cycles are driven by economic factors, which typically
exhibit autocorrelation.

o When using TtC ratings, credit cycle and thus the
autocorrelation directly affect default rates.

o When using PiT ratings, default rates for a given rating bucket
should (in theory) not exhibit autocorrelation because they are
not dependent on the credit cycle since all available information
on the state of the economy is reflected in the current ratings.

» Attempting to use PiT ratings in practice, we still see autocorre-
lation due to TtC “dampening” of rating transitions: a change
in credit quality may not lead immediately to a change in rating.

= Autocorrelation should be taken into account when using default
rates as input of estimators.
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Section 2

Convergence results for autocorrelated time series
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Questions on asymptotic properties

Consider the sample mean My = % EtT:l Z,; of an autocorrelated

time series (Z;){=>°.

« Does My converge almost surely as T' — oo?
(Law of large numbers)

Under mild assumptions: yes, but more slowly than
i.i.d. sequence.

o Is /T My asymptotically normally distributed?
(Central limit theorem)

Under mild assumptions, yes, but with greater variance than
i.i.d. sequence.
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lllustration: AR(1) versus i.i.d.

Consider an AR(1) process:
Zy=cZi 1+ ¢
for e g (0,1) and ¢ = 0.7.

Probability densities of sample mean with T =100

< L
— i.i.d. sequence
— AR(1) withc=0.7
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o -
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lllustration: AR(1) versus i.i.d. (cont'd)

5th and 95th percentiles of sample mean
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Assumptions on time series

We consider the following assumptions:

Al Stationarity: any k subsequent random variables Z; 1 1,..., Z;1
have the same distribution regardless of the starting point ¢.

A2 Absolute summability of autocovariances: there exists a
constant C' < oo such that > ;2 |ys:| < C for all s, where
the autocovariances s, are defined by

e = B[(7 ~ B2 (2 - Bl2)]

A3 Asymptotic uncorrelatedness: E[Z|Zi—k, Zt—k—1, - - -]
converges in mean square to zero as k — 00.

A4 Asymptotic negligibility of innovations: »2° o E[rfk] is finite
for fixed t, where

Tk = B2 2, Zt i1, ) = Bl Z4 1, Zp—p—2, ... |-

For example, all assumptions are satisfied for an AR(1) process.
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Convergence results

Law of large numbers for autocorrelated time series: under
assumptions Al and A2,

lim — Z Zy = E[Z;] almost surely.

T—oo T

Gordin's central limit theorem: under assumptions A1-A4,

[e.e]

T
1
7 Sz, 2% /\/(0, S W) in distribution.
t=1

t=—00
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Biased estimator for finite time series

« We consider a moment estimator of the form g(6) = p, where
is a parameter to be estimated, y is the unknown mean of the
stationary time series (Z¢)¢=1,..7.

o We assume that g is three times continuously differentiable and
invertible with inverse g = ¢!

o A natural estimation for @ is the moment estimator

o352

o For finite T, there is an estimation bias because
. 1 &
o= Ee)] Al o] o
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Adjusting for shortness and autocorrelation

o We introduce a new estimator

e ~ k
o 9" (9(1)) ggu
=10 eGP Ty 2 T
original _ ; -l
estimator 2djustment for adjustment for short-
pure shortness ness and autocorrelation

where i = %Zthl Zy is the sample mean and
1 I
OM:T Z(Zt—ﬂ)(zt,g—ﬂ), ¢=0,1,...,k
t=1+¢
is the lag-¢ sample autocovariance.
« We can show an explicit bound for the error of 6 in estimating
0, and find approximate confidence intervals for 65.
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Section 3

Adjusted estimators in credit risk
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Revisiting the Merton framework

« We consider a fixed rating and sectoral bucket.
« The normalized asset return of obligor 7 is given by
Ri =\/oY ++/1-¢¢
where
— 0 € [0,1] is the latent return correlation
—Y ~ N(0,1) is the systematic factor common to all obligors

— € Hi N(0,1) is the idiosyncratic component, indep. of Y.
o Obligor ¢ defaults if his/her return is below a threshold s.
« If the unconditional default probability is p,
p=PlR; < 5] = 0(s) = 5=0"(p)

« The loss rate conditional on the systematic factor Y is given by

=D (p) —
)
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Classical estimator for latent return correlation

o In practice, we observe a time series Z; = p(Y};) for
t=1,...,T and want to estimate latent correlation o.

o Classical result:
E[(p(¥y)?] = @2(2V (p), 2V (p); 0),

where ®5(., .; o) denotes the bivariate normal cumulative
distribution function with correlation o.

o Thus, we obtain an estimator g1 from
1 T
7 2 (1) = 2a(2V(p), @V (): 1)
t=1

where p = % 23;1 p(Yy).

3 UBS



Classical estimator is biased

« We can show g(.) = ®» (CIJ(_l)(ﬁ),q)(_l)(ﬁ)); .) is invertible.
o Estimator given by
1 I
br=g" (T Z(p(Yt))2>
t=1

— has bias because of shortness and autocorrelation of time
series (p(V3))%, t=1,...,T

— is of the same form as in the previous section

— can be adjusted for shortness and autocorrelation
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New estimator for latent return correlation

« Applying results from previous section, we obtain a new
estimator

(A

g9"(o1) -
02 =01+ W(aO/Q + ;(1 _E/T)O‘Z>a

where derivatives in correction term are explicitly determined,
and ag and oy are the sample variance and covariances.

« Adjusting for autocorrelation crucially depends on the length T’
of the time series.

» Based on the results of the previous section, we can also find
confidence intervals for the estimators.

o We have similarly adjusted estimators for the correlation
estimator between two different buckets.
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Value of density

lllustration of adjustment for AR(1)

Density of correlation for AR(1) process after 80 quarters
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o The underlying factors are simulated based on an AR(1) process
with coefficient 0.7 and 50,000 simulations.

« The adjustments remove a big part of the bias so that the
adjusted means are much closer to the true value of o = 0.05
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Value of density

lllustration of adjustment for i.i.d.

Density of correlation for i.i.d. process after 80 quarters
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« The underlying factors are simulated based on i.i.d.

observations and 50,000 simulations.

« Also for independent observations, the adjusted means are

much closer to the true value of ¢ = 0.05
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Conclusion

o We explained why and how autocorrelation is present in time
series of default rates.

o We showed that classical estimators used in credit risk
modelling suffer from bias due to shortness and autocorrelation
of default series.

« We suggested new estimators based on adjustments for general
autocorrelated time series, removing a big portion of the bias.

« Alternatives are maximum likelihood estimators, which,
however, are much harder to adjust for autocorrelation than
method of moment estimators.

« Thank you very much for your attention!
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Disclaimer

This presentation is for your information only and is not intended as
an offer, or a solicitation of an offer, to buy or sell any product or
other specific service. Although all pieces of information and opinions
expressed in this presentation were obtained from sources believed
to be reliable and in good faith, neither representation nor warranty,
expressed or implied, is made as to its accuracy or completeness.

UBS AG (“UBS") does not provide legal or tax advice and this pre-
sentation does not constitute such advice.

(©OUBS 2017. The key symbol and UBS are among the registered
and unregistered trademarks of UBS. All rights reserved.
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