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Introduction

Mathematical Challenges in mathematical Finance

High dimensional stochastic control problems often of a non-standard
type (hedging in markets with transaction costs or liquidity
constraints).

High-dimensional inverse problems, where models (PDEs, stochastic
processes) have to be selected to explain a given set of market prices
optimally.

High-dimensional prediction tasks (long term investments, portfolio
selection).

High-dimensional feature selection tasks (limit order books).
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Introduction

Neural Networks

Neural networks in their various topological features are frequently used to
approximate functions due ubiquitous universal approximation properties.
A neural network, as for instance graphically represented in Figure 1,

Figure: A 2 hidden layers neural network with 3 input and 4 output dimensions

just encodes a certain concatenation of affine and non-linear functions by
composition in a well specified order.
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Introduction

Universal Approximation

Neural networks appeard in the 1943 seminal work by Warren
McCulloch and Walter Pitts inspired by certain functionalities of the
human brain aiming for articial intelligence (AI).
Arnold-Kolmogorov Theorem represents functions on unit cube by
sums and uni-variate functions (Hilbert’s thirteenth problem), i.e.

F (x1, . . . , xd) =
2d∑
i=0

ϕi

( d∑
j=1

ψij(xj)
)

Universal Approximation Theorems (George Cybenko, Kurt Hornik, et
al.) show that one hidden layer networks can approximate any
continuous function on the unit cube.
Connections between deep neural networks and sparse representations
in certain wavelet basis (Helmut Bölcskei, Philipp Grohs et al.)
explaining their incredible representation power.
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Introduction

An example: reservoir computing paradigm

in many situations input is a time series object of varying length.

a part of the neural network, which represents the input-output map,
is chosen as a generic dynamical system (often with physical
realization and, of course, with relationship to the input-output map).
The goal of this choice is to transform the input into relevant
information pieces.

only the last layer is trained, i.e. a linear regression on the generic
network’s output is performed.

this reminds of stochastic differential equations which can be written
– in a quite regular way – as linear maps on the input signal’s
signature, i.e. the collection of all iterated integrals (universal limit
theorem of rough path theory).
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Introduction

Deep Networks in Finance

Recent ideas to use machine learning in Finance

Deep pricing: use neural networks to constitute efficient regression
bases in, e.g., the Longstaff Schwartz algorithm for pricing call-able
products like American options.
Deep hedging: use neural networks to approximate hedging strategies
in, e.g., hedging problems in the presence of market frictions (joint
work with Hans Bühler, Lukas Gonon, and Ben Wood).
Deep filtering: use neural networks on top of well selected dynamical
systems to approximate laws of signals conditional on “noisy”
observation.
Deep calibration: use machine learning to approximate the solution of
inverse problems (model selection) in Finance (joint work with Christa
Cuchiero).
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Machine Learning in mathematical Finance: an example

Calibration by machine learning

Terry Lyons (Oberwolfach 2017) on problems of calibrating rough
volatility models: “Why don’t you learn it?”
If calibration is technologically a bottleneck why not using machine
learning for it to easen time constraints.
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Machine Learning in mathematical Finance: an example

Calibration by Machine learning following Andres
Hernandez

We shall provide a brief overview of a procedure introduced by Andres
Hernandez (2016) as seen from the point of view of Team 3’s team
challenge project 2017 at UCT:

Algorithm suggested by A. Hernandez

Getting the historical price data.
Calibrating the model, a single factor Hull-White extended Vasiček
model to obtain a time series of (typical) model parameters, here the
yield curve, the rate of mean reversion α, and the short rate’s
volatility σ.
Pre-process data and generate new combinations of parameters.
With a new large training data set of (prices,parameters) a neural
network is trained.
The neural network is tested on out-of-sample data.

21 / 64



Machine Learning in mathematical Finance: an example

The data set

The collected historical data are ATM volatility quotes for GBP from
January 2nd, 2013 to June 1st, 2016. The option maturities are 1 to
10 years, 15 years and 20 years. The swap terms from 1 to 10 years,
plus 15, 20 and 25 years.
The yield curve is given 44 points, i.e. it is discretely sampled on 0, 1,
2, 7, 14 days; 1 to 24 months; 3-10 years; plus 12, 15, 20, 25, 30, 40
and 50 years. Interpolation is done by Cubic splines if necessary.
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Machine Learning in mathematical Finance: an example

Classical calibration a la QL

Historical parameters

a Levenberg-Marquardt local optimizer is first applied to minimize the
equally-weighted average of squared yield or IV differences.
calibration is done twice, with different starting points:

I at first, α = 0.1 and σ = 0.01 are the default choice
I second the calibrated parameters from the previous day (using the

default starting point) are used for the second stage of classical
calibration.
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Machine Learning in mathematical Finance: an example

Calibration results along time series

The re-calibration problem gets visible ... and it is indeed a feasible
procedure.

Figure: Calibration using default starting point
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Machine Learning in mathematical Finance: an example

How do neural networks enter calibration?

Universal approximation of calibration functionals

Neural networks are often used to approximate functions due to the
universal approximation property.
We approximate the calibration functional
(yields,prices) 7→ (parameters) which maps (yields, prices) to optimal
model parameters by a neural network.
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Machine Learning in mathematical Finance: an example

Neural Networks : Training Set Generation

With the calibration history A. Hernandez proceeds by generating the
training set

obtain errors for each calibration instrument for each day,

take logarithms of of positive parameters, and rescale parameters,
yield curves, and errors to have zero mean and variance 1,

apply a principal component analysis and an appropriate amount of
the first modes,

generate random normally distributed vectors consistent with given
covariance,

apply inverse transformations, i.e. rescale to original mean, variance
and exponentiate,

apply random errors to results.
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Machine Learning in mathematical Finance: an example

Neural Networks: Training the network

With a sample set of 150 thousand training data points,
A. Hernandez suggests to train a feed-forward neural network.

The architecture is chosen feed-forward with 4 hidden layers, each
layer with 64 neurons using an ELU (Exponential Linear Unit)

27 / 64



Machine Learning in mathematical Finance: an example

Neural Networks: testing the trained network

two neural networks were trained using a sample set produced where
the covariance matrix was estimated based on 40% of historical data.

the second sample set used 73% of historical data.

for training, the sample set was split into 80% training set and 20%
cross-validation.

the testing was done with the historical data itself (i.e. a backtesting
procedure was used to check the accuracy of the data).
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Machine Learning in mathematical Finance: an example

Results of A. Hernandez

The following graphs illustrate the results. Average volatility error here
just means ∑156

n=1

∣∣impvolmkt − impvolmodel
∣∣

156
(1)

Figure: Correlation up to June 2014
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Machine Learning in mathematical Finance: an example

Figure: Correlation up to June 2015
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Machine Learning in mathematical Finance: an example
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Machine Learning in mathematical Finance: an example

Figure: Correlation up to June 2015
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Machine Learning in mathematical Finance: an example

Towards a Bayesian model

Consider the Hull-White extended Vasiček models (on a space
(Ω,F , (Gt)t≥0 ,P)):

dr
(1)
t = (β1(t)− α1r

(1)
t ) dt + σ1 dWt ,

dr
(2)
t = (β2(t)− α2r

(2)
t ) dt + σ2 dWt .

We assume that r is is a mixture of these two models with constant
probability π ∈ [0, 1], i.e.

P(rt ≤ x) = πP
(
r

(1)
t ≤ x

)
+ (1− π)P

(
r

(2)
t ≤ x

)
.

Of course the observation filtration generated by daily ATM swaption
prices and a daily yield curve is smaller than the filtration G, hence the
theory of the first part applies.
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Machine Learning in mathematical Finance: an example

Bayesian model: setup

We still have the same set-up (in terms of data):

N = 156 + 44 = 200 input prices (swaptions + yield curve)

n = 44 + 4 + 1 = 49 parameters to estimate. These are
α1, α2, σ1, σ2, π and yield1(t) (or, equivalently, yield2(t)) at 44
maturities (notice that given α1, α2, σ1, σ2, π there is a one-to-one
map between yields and βs).

Hence, the calibration function is now

Θ : R200 −→ R49,



SWO1
SWO2
. . .

yield(0)
yield(1)
. . .

 7→



α1

α2

σ1

σ2

π
yield1(0)
yield1(1)
. . .


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Machine Learning in mathematical Finance: an example

Bayesian model: training

We generated a new training set and trained, tested another neural
network with a similar architecture: the quality of the new calibration is
the same as the QuantLib calibration and better than previous ML results,
in particular out of sample.
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Machine Learning in mathematical Finance: an example

Mixture Model: α1

36 / 64



Machine Learning in mathematical Finance: an example

Mixture Model: σ1
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Machine Learning in mathematical Finance: an example

Mixture Model: π
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Machine Learning in mathematical Finance: an example

it works to train networks the information of calibration functionals:
usually calibration functionals are of a hash function type, i.e. it is
easy to calculate prices from given parameters, but it is difficult to
re-construct parameters from given prices. Still it is easy to generate
training data.

the “unreasonable effectiveness” is visible by absence of the ’curse of
dimension’.

it will be interesting to train universal calibrators of realistic models
by offline algorithms which allow to circumvent high-dimensional
delicate calibration procedures.
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Machine Learning in Finance: specification of input variables

Frame of ideas

Many problems in Finance are of filtering nature, i.e. calculating
conditional laws of a true signal Xt+h, at some point in time t + h,
given some noisy observation (Ys)0≤s≤t .

Such problems often depend in a complicated, non-robust way on the
trajectory of Y , i.e. no Lipschitz dependence on Y : regularizations
are suggested by, e.g., the theory of regularity structures, and its
predecessor, rough path theory. By lifting input trajectories Y to
more complicated objects (later called models) one can increase
robustness to a satisfactory level.

The idea is to write an abstract theory of expansions as developed by
Martin Hairer in a series of papers, understand it as an “expressive”
dynamical system and learn the output layer (which is of high
regularity).
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Machine Learning in Finance: specification of input variables

Many solutions of problems in stochastics can be translated to solving
fixed point equation on modelled distributions.

By applying the reconstruction operator the modeled distribution is
translated to a real world object, which then depends – by inspecting
precisely its continuities – in an at least Lipschitz way on the
underlying model, i.e. stochastic inputs.

The theory of regularity structures tells precisely how ’models’ have to
be specified such that stochastic inputs actually constitute models:
this yields a theory of input specifications.

Supervised learning: by creating training data (in appropriate input
format!) one can learn the input-output map.

Applications: solutions of stochastic differential equations (Friz,
Lyons, Victoir, etc), solutions of correlated filtering problems (Crisan,
Friz, etc), solutions of sub-critical stochastic partial differential
equations (Hairer, Gubinelli, etc).
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Machine Learning in Finance: specification of input variables

Prediction Tasks

consider certain noisy observations of a true signal and model them
by a corresponding regularity structure (this might be necessary in
since there is no reason why non-linear functions of noisy objects
should be well defined).

construct solutions of the optimal filter by solving a fixed point
equation on modelled distributions.

reconstruct the real world filter by the reconstruction operator, which
yields – under appropriate regularity conditions – a non-linear,
Lipschitz map from the space of observations (the ’models’) to the
optimal filter.

Learn this map on regularized noises.
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Machine learning in Finance: deep Hedging

Deep Hedging

given a generic market situation: scenarios generated by one or many
different models fitting aspects of the market environment.

given transaction costs, liquidity constraints, bid ask spreads. etc.

given a derivative and a risk objective.

approximate hedging strategies by deep neural networks of all
appropriate factors, which creates a dense subset of admissible
strategies,

minimize the given risk objective over all possible deep hedges.
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Machine learning in Finance: deep Hedging

Advantages

particular models play a minor role, very data driven.

tractability, which is a delicate problem, for high dimensional
non-linear PIDEs, does not play a role for setting up the problem:
even very high dimensional reinforcement learning problems can be
solved in a satisfying way.

market frictions can be easily included.

idea: set up a describable set of hedging strategies which allow to ε
approximate the optimal solution.
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Machine learning in Finance: deep Hedging
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Figure: Comparison of model hedge and deep hedge associated to 50%-expected
shortfall criterion.
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Machine learning in Finance: deep Hedging
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Figure: Comparison of recurrent and simpler network structure (no transaction
costs).
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Machine learning in Finance: deep Hedging

Mean Loss Price Realized CVar

recurrent 0.0018 5.5137 -0.0022

simpler 0.0022 6.7446 -0.0
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Figure: Network architecture matters: Comparison of recurrent and simpler
network structure (with transaction costs and 99%-CVar criterion).
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Outlooks

Machine Learning for calibration works, even where classical
calibration would have difficulties. Recent project (jointly with
C. Cuchiero, A. Hernandez, and W. Khosrawi-Sardroudi): machine
learn calibration of local stochastic volatility models which are widely
used but where classical calibration is very delicate.

Why does it work so well: explain the “unreasonable effectiveness”:
sparse wavelet representation seem to provide a key.

How to choose input variables? Universal approximation depends a
lot on this: rough paths or regularity structures as a solution concept.

Reservoir computing: use real-world dynamical systems (i.e. build
from financial markets) to provide prototype input-output maps: on
top of those “generic” maps specific tasks can solved by regression.
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