Stability of approximate actions

Oren Becker

University of Camridge

Based on joint work with Michael Chapman

Ulam stability

- General question (Ulam '41): Is every approximate homomorphism $\Gamma \rightarrow G$ close to a homomorphism?
- The answer depends on:
 - The groups Γ and G.
 - What is "approximate"?
 - What is "close"?

Stability of approximate unitary representations

- An amenable group Γ.
- A Hilbert space \mathcal{H} .
- A function $f: \Gamma \to U(\mathcal{H})$.
- δ < 1/200.

Theorem (Kazhdan '82)

lf

$$\sup_{\gamma_{1},\gamma_{2}\in\Gamma}\|f(\gamma_{1}\gamma_{2})-f(\gamma_{1})f(\gamma_{2})\|_{op}\leq\delta$$

then there is a representation $h \colon \Gamma \to U(\mathcal{H})$ such that

$$\sup_{\gamma \in \Gamma} \|h(\gamma) - f(\gamma)\|_{op} \le 2\delta .$$

Distance between permutations

Instead of U(n) and $|| ||_{op}$, we consider Sym(n) and:

Definition

The normalized Hamming metric:

$$d^{H}(\sigma,\tau) = \frac{1}{n} |\{x \in [n] \mid \sigma(x) \neq \tau(x)\}| \quad \forall \sigma,\tau \in \text{Sym}(n) ,$$

where $[n] = \{1, \dots, n\}.$

Stability of approximate actions

Definition

• The uniform local defect of $f: \Gamma \rightarrow \text{Sym}(n)$:

$$\mathsf{def}_{\infty}(f) = \sup_{\gamma_1, \gamma_2 \in \Gamma} \left\{ d^H(f(\gamma_1\gamma_2), f(\gamma_1)f(\gamma_2)) \right\} .$$

2 The *uniform distance* between $f, h: \Gamma \rightarrow \text{Sym}(n)$:

$$d_{\infty}(f,h) = \sup_{\gamma \in \Gamma} \left\{ d^{H}(f(\gamma),h(\gamma)) \right\} .$$

Stability of approximate actions

Definition

• The uniform local defect of $f: \Gamma \rightarrow \text{Sym}(n)$:

$$\mathsf{def}_{\infty}(f) = \sup_{\gamma_1, \gamma_2 \in \Gamma} \left\{ d^H(f(\gamma_1\gamma_2), f(\gamma_1)f(\gamma_2)) \right\} \,.$$

2 The *uniform distance* between $f, h: \Gamma \rightarrow \text{Sym}(n)$:

$$d_{\infty}(f,h) = \sup_{\gamma \in \Gamma} \left\{ d^{H}(f(\gamma),h(\gamma)) \right\} \,.$$

Theorem (Glebsky–Rivera '09)

If Γ is finite and $f: \Gamma \to Sym(n)$ then there is a homomorphism $h: \Gamma \to Sym(n)$ such that

 $d_{\infty}(h,f) \leq Cdef_{\infty}(f)$,

where C depends only on Γ (and not on n).

Theorem (Glebsky–Rivera '09)

If Γ is finite and $f: \Gamma \to Sym(n)$ then there is a homomorphism $h: \Gamma \to Sym(n)$ such that

 $d_\infty(h,f) \leq C def_\infty(f)$,

where C depends only on Γ (and not on n).

- Question (Lubotzky '18): Is it true for $\Gamma = \mathbb{Z}$?
- Question: Can we replace C by a universal constant?

Theorem (Glebsky–Rivera '09)

If Γ is finite and $f: \Gamma \to Sym(n)$ then there is a homomorphism $h: \Gamma \to Sym(n)$ such that

 $d_{\infty}(h,f) \leq Cdef_{\infty}(f)$,

where C depends only on Γ (and not on n).

- Question (Lubotzky '18): Is it true for $\Gamma = \mathbb{Z}$?
- Question: Can we replace C by a universal constant?
- Answers: No and No.

An instability result

Theorem (B–Chapman '20)

If Γ acts transitively on $[n] = \{1, \ldots, n\}$ then there is $f: \Gamma \to Sym(n-1)$ such that

$$def_{\infty}(f) \le \frac{2}{n-1} , \qquad (1)$$

but

$$d_{\infty}(h,f) \ge \frac{1}{2} - \frac{1}{n-1}$$
 (2)

for every homomorphism $h: \Gamma \rightarrow Sym(n-1)$.

An instability result

Theorem (B–Chapman '20)

If Γ acts transitively on $[n] = \{1, ..., n\}$ then there is $f : \Gamma \to Sym(n-1)$ such that

$$def_{\infty}(f) \le \frac{2}{n-1} , \qquad (1)$$

(2)

but

$$d_{\infty}(h,f) \ge \frac{1}{2} - \frac{1}{n-1}$$

for every homomorphism $h \colon \Gamma \to Sym(n-1)$.

Proof.

Let

$$f: \Gamma \xrightarrow{\text{transitive}} \operatorname{Sym}(n) \xrightarrow{\text{res}_n} \operatorname{Sym}(n-1)$$
,

where
$$\operatorname{res}_{n}(\sigma)x = \begin{cases} \sigma(x) & \sigma(x) \neq n \\ \sigma(\sigma(x)) & \sigma(x) = n \end{cases}$$
 for $x \in [n-1]$.

A relaxed question: Is every approximate homomorphism $f: \Gamma \rightarrow \text{Sym}(n)$ close to a homomorphism $h: \Gamma \rightarrow \text{Sym}(N)$, where N is only slightly larger than n?

A relaxed question: Is every approximate homomorphism $f: \Gamma \rightarrow \text{Sym}(n)$ close to a homomorphism $h: \Gamma \rightarrow \text{Sym}(N)$, where N is only slightly larger than n?

Theorem (Gowers-Hatami '17, De Chiffre-Ozawa-Thom '19)

If Γ is amenable, $f: \Gamma \rightarrow U(n)$, $\delta > 0$ and

$$\|f(\gamma_{1}\gamma_{2}) - f(\gamma_{1})f(\gamma_{2})\|_{hs} \leq \delta \quad \forall \gamma_{1}, \gamma_{2} \in \Gamma$$

then there is a representation $h: \Gamma \to U(N)$ and an isometry $T: \mathbb{C}^n \to \mathbb{C}^N$ such that

$$\|h(\gamma) - T^* f(\gamma) T\|_{hs} \le 211\delta \quad \forall \gamma \in \Gamma$$

and

$$n \le N \le \left(1 + 2500\delta^2\right) n \; .$$

 $||A||_{\mathsf{hs}} = \left(\frac{1}{n} \mathrm{tr}(A^*A)\right)^{1/2} \text{ for } A \in \mathsf{U}(n)$

A relaxed question: Is every approximate homomorphism $f: \Gamma \rightarrow \text{Sym}(n)$ close to a homomorphism $h: \Gamma \rightarrow \text{Sym}(N)$, where N is only slightly larger than n?

Definition

For $\sigma \in \text{Sym}(n)$ and $\tau \in \text{Sym}(N)$, $n \leq N$,

$$d^{H}(\sigma,\tau) = d^{H}(\tau,\sigma) = \frac{1}{N} (|\{x \in [n] \mid \sigma(x) \neq \tau(x)\}| + (N-n))$$

 d^H is a metric on $\prod_{n \in \mathbb{N}} \operatorname{Sym}(n)$.

A relaxed question: Is every approximate homomorphism $f: \Gamma \rightarrow \text{Sym}(n)$ close to a homomorphism $h: \Gamma \rightarrow \text{Sym}(N)$, where N is only slightly larger than n?

Definition

For $\sigma \in \text{Sym}(n)$ and $\tau \in \text{Sym}(N)$, $n \leq N$,

$$d^{H}(\sigma,\tau) = d^{H}(\tau,\sigma) = \frac{1}{N} (|\{x \in [n] \mid \sigma(x) \neq \tau(x)\}| + (N-n))$$

 d^H is a metric on $\prod_{n \in \mathbb{N}} \operatorname{Sym}(n)$.

Definition

For $f: \Gamma \rightarrow \text{Sym}(n)$ and $h: \Gamma \rightarrow \text{Sym}(N)$,

$$d_{\infty}(f,h) = \sup_{\gamma \in \Gamma} \left\{ d^{H}(f(\gamma),h(\gamma)) \right\} .$$

Question (Kun–Thom '19)

- A finite group Γ .
- A function $f: \Gamma \rightarrow \text{Sym}(n)$.

Is there a homomorphism $h: \Gamma \to \operatorname{Sym}(N)$ such that

$$d_{\infty}(h,f) \leq \varepsilon$$
 and $n \leq N \leq (1+\varepsilon)n$,

where:

- ε depends only on def_{∞}(*f*).
- $\varepsilon \to 0$ as def_{∞}(f) $\to 0$?

Question (Kun–Thom '19)

- A finite group Γ.
- A function $f: \Gamma \rightarrow \text{Sym}(n)$.

Is there a homomorphism $h: \Gamma \to \text{Sym}(N)$ such that

$$d_{\infty}(h,f) \leq \varepsilon$$
 and $n \leq N \leq (1+\varepsilon)n$,

where:

- ε depends only on def_{∞}(*f*).
- $\varepsilon \to 0$ as def_{∞} $(f) \to 0$?

Answer (B-Chapman)

Yes, and

- Only assume that Γ is amenable,
- $\varepsilon \leq 2039 \text{def}_{\infty}(f)$.

Theorem (B-Chapman)

Let Γ be an amenable group and $f: \Gamma \to Sym(n)$. Then there is a homomorphism $h: \Gamma \to Sym(N)$ such that

 $d_{\infty}\left(h,f\right) \leq 2039 def_{\infty}\left(f\right) \quad and \quad n \leq N \leq \left(1 + 1218 def_{\infty}\left(f\right)\right)n \,.$

Theorem (B-Chapman)

Let Γ be an amenable group and $f: \Gamma \to Sym(n)$. Then there is a homomorphism $h: \Gamma \to Sym(N)$ such that

 $d_{\infty}\left(h,f\right) \leq 2039 def_{\infty}\left(f\right) \quad \text{and} \quad n \leq N \leq \left(1 + 1218 def_{\infty}\left(f\right)\right)n \ .$

Rough sketch of proof.

- Set $h(\gamma)x = y$ if $f(t)f(t^{-1}\gamma)x = y$ for many $t \in \Gamma$. "many" is w.r.t. an invariant prob. measure on Γ .
- Each $h(\gamma)$ is a partial injective map $[n] \rightarrow [n]$ and

 $h(\gamma_1\gamma_2)x = h(\gamma_1)h(\gamma_2)x$

for $x \in [n]$ whenever both sides are defined.

• Extend $h(\gamma)$ to a bijection $[N] \rightarrow [N]$ such that h is a homomorphism.

Theorem (B–Chapman)

Let $f: SL_r\mathbb{Z} \to Sym(n)$, $r \ge 3$. Then there is a homomorphism $h: SL_r\mathbb{Z} \to Sym(N)$ such that

 $d_{\infty}(h,f) \leq Cdef_{\infty}(f)$ and $n \leq N \leq (1 + Cdef_{\infty}(f))n$,

where C depends only on r.

Theorem (B–Chapman)

Let $f: SL_r\mathbb{Z} \to Sym(n)$, $r \ge 3$. Then there is a homomorphism $h: SL_r\mathbb{Z} \to Sym(N)$ such that

 $d_{\infty}(h,f) \leq Cdef_{\infty}(f)$ and $n \leq N \leq (1 + Cdef_{\infty}(f))n$,

where C depends only on r.

Sketch of proof (following a method of Burger–Ozawa–Thom).

- Let f_− and f₊ be the restrictions of f to the subgroups of lower and upper triangular unipotent matrices of SL_rZ.
- Apply the previous theorem to each.
- Both f₊ and f₋ are close to homomorphisms, and thus almost vanish on a finite index subgroup Δ ⊲ SL_rZ.
- By bounded generation in $SL_r\mathbb{Z}$, f almost vanishes on Δ .
- Apply the previous theorem to the finite group $(SL_r\mathbb{Z})/\Delta$.

Approximate homomorphisms away from homomorphisms

Theorem (B–Chapman)

Let Γ be a group that surjects onto a nonabelian free group. Then there is a sequence of functions

$$f_k: \Gamma \to Sym(n_k), \quad n_k \stackrel{k \to \infty}{\longrightarrow} \infty$$

such that

$$def_{\infty}(f_k) \leq \frac{2}{k}$$

but

$$d_{\infty}(h_k, f_k) \ge 1 - \frac{5}{k}$$

for every homomorphism $h_k \colon \Gamma \to Sym(N_k)$ for all $N_k \ge n_k$.

Approximate homomorphisms away from homomorphisms

Theorem (B–Chapman)

Let Γ be a group that surjects onto a nonabelian free group. Then there is a sequence of functions

$$f_k: \Gamma \to Sym(n_k), \quad n_k \stackrel{k \to \infty}{\longrightarrow} \infty$$

such that

$$def_{\infty}(f_k) \leq \frac{2}{k}$$

but

$$d_{\infty}(h_k, f_k) \ge 1 - \frac{5}{k}$$

for every homomorphism $h_k \colon \Gamma \to Sym(N_k)$ for all $N_k \ge n_k$.

 Proof by explicit construction inspired by the construction of quasimorphisms by Rolli (masters thesis supervised by A. lozzi, '09).

Approximate homomorphisms away from homomorphisms

Theorem (B–Chapman)

Let Γ be a group that surjects onto a nonabelian free group. Then there is a sequence of functions

$$f_k: \Gamma \to Sym(n_k), \quad n_k \stackrel{k \to \infty}{\longrightarrow} \infty$$

such that

$$def_{\infty}(f_k) \leq \frac{2}{k}$$

but

$$d_{\infty}(h_k, f_k) \ge 1 - \frac{5}{k}$$

for every homomorphism $h_k \colon \Gamma \to Sym(N_k)$ for all $N_k \ge n_k$.

- Proof by explicit construction inspired by the construction of quasimorphisms by Rolli (masters thesis supervised by A. lozzi, '09).
- **Open Q:** Is the theorem true for nonelementary word-hyperbolic groups?

Property testing

Let Γ and G be finite groups.

Theorem (Blum-Luby-Rubinfeld)

If $f: \Gamma \to G$ disagrees with every homomorphism $\Gamma \to G$ on at least $\varepsilon |\Gamma|$ elements, $\varepsilon \le 1/3$, then

$$\Pr_{(\gamma_1,\gamma_2)\in\Gamma\times\Gamma}(f(\gamma_1\gamma_2)\neq f(\gamma_1)f(\gamma_2))\geq \varepsilon/2.$$

For $\alpha > 0$, repeat the test $\frac{2\log(1/\alpha)}{\varepsilon}$ times to increase the rejection probability to $1 - \alpha$.

Property testing

Let Γ and G be finite groups.

Theorem (Blum-Luby-Rubinfeld)

If $f: \Gamma \to G$ disagrees with every homomorphism $\Gamma \to G$ on at least $\varepsilon |\Gamma|$ elements, $\varepsilon \le 1/3$, then

$$\Pr_{(\gamma_1,\gamma_2)\in\Gamma\times\Gamma}(f(\gamma_1\gamma_2)\neq f(\gamma_1)f(\gamma_2))\geq \varepsilon/2.$$

For $\alpha > 0$, repeat the test $\frac{2\log(1/\alpha)}{\varepsilon}$ times to increase the rejection probability to $1 - \alpha$. What if G = Sym(n) and *n* is very large?

Property testing

Let Γ and G be finite groups.

Theorem (Blum-Luby-Rubinfeld)

If $f: \Gamma \to G$ disagrees with every homomorphism $\Gamma \to G$ on at least $\varepsilon |\Gamma|$ elements, $\varepsilon \le 1/3$, then

$$\Pr_{(\gamma_1,\gamma_2)\in\Gamma\times\Gamma}(f(\gamma_1\gamma_2)\neq f(\gamma_1)f(\gamma_2))\geq \varepsilon/2.$$

For $\alpha > 0$, repeat the test $\frac{2\log(1/\alpha)}{\varepsilon}$ times to increase the rejection probability to $1 - \alpha$. What if G = Sym(n) and *n* is very large?

Theorem (B–Chapman)

If $f: \Gamma \to Sym(n)$ satisfies $\int d^{H}(f(\gamma), h(\gamma)) dm(\gamma) \ge \varepsilon$ for every homomorphism $h: \Gamma \to Sym(N), N \ge n$, then

 $\Pr_{(\gamma_1,\gamma_2,x)\in\Gamma\times\Gamma\times[n]}(f(\gamma_1\gamma_2)x\neq f(\gamma_1)f(\gamma_2)x)\geq \varepsilon/2913.$

Property testing + Quantum Computing

- **Recall**: Gowers–Hatami Theorem about stability of homomorphisms $\Gamma \rightarrow U(n)$, w.r.t. $\|\cdot\|_{hs}$ and Γ finite.
- This too can be viewed in the property testing setting.
- Used by Vidick and Natarajan, and eventually in the negative answer for the Connes Embedding Problem.

Uniform stability (as studied in the previous slides): Given $(f_k : \Gamma \to \text{Sym}(n_k))_{k=1}^{\infty}$ such that

$$\sup_{\gamma_1,\gamma_2\in\Gamma} d^H(f_k(\gamma_1\gamma_2),f_k(\gamma_1)f_k(\gamma_2)) \stackrel{k\to\infty}{\longrightarrow} 0$$

is there a sequence of homomorphisms $(h_k \colon \Gamma \to \operatorname{Sym}(N_k))_{k=1}^{\infty}$ such that

$$\sup_{\gamma \in \Gamma} d^{H}(h_{k}(\gamma), f_{k}(\gamma)) \stackrel{k \to \infty}{\longrightarrow} 0 ?$$

Pointwise stability (studied a lot in recent years): Given $(f_k : \Gamma \to \text{Sym}(n_k))_{k=1}^{\infty}$ such that

$$d^{H}(f_{k}(\gamma_{1}\gamma_{2}),f_{k}(\gamma_{1})f_{k}(\gamma_{2})) \xrightarrow{k \to \infty} 0 \quad \forall \gamma_{1},\gamma_{2} \in \Gamma,$$

is there a sequence of homomorphisms $(h_k \colon \Gamma \to \text{Sym}(N_k))_{k=1}^{\infty}$ such that

$$d^{H}(h_{k}(\gamma), f_{k}(\gamma)) \xrightarrow{k \to \infty} 0 \quad \forall \gamma \in \Gamma?$$

Thank you for your attention!