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3-Manifolds: Triangulations and Their Dual Graphs

In this talk only compact and orientable 3-manifolds are considered.

Theorem (Moise; 1952). Every
3-manifold has a triangulation.

Dual (face pairing) graph

We consider two 3-manifolds the same if they are homeomorphic.
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Context: Algorithmic Study of 3-Manifolds

Any 3-manifold has infinitely many combinatorially distinct triangulations

Image Credits: Wikimedia Commons (tetrahedron), Eeo Jun (triangulated sphere) and Daniel Rypl (Stanford bunny)

Homeomorphism Problem (HP). Given two triangulations, is there an
algorithm to decide if they encode the same closed d-manifold?

d � 2: Compute the Euler characteristic & check orientability X
d � 3: Yes, but very complicated. (It relies on Perelman’s solution to
the Geometrization Conjecture and on the work of many others.)

Thus, in practice, the HP is approached via computable invariants.
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Motivation: Fixed-Parameter Tractable Algorithms

T : n-tetrahedron triangulation, t � tw pΓpT qq is the treewidth of ΓpT q.

Question: Given a 3-manifold M, how small tw pΓpT qq can be?

(This has been asked by several people, incl. at an Oberwolfach meeting in 2015.)
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The Treewidth of a Graph

The treewidth tw pGq quantifies the similarity of G to any tree.

Key concept in graph minor theory developed by Robertson and
Seymour between 1983–2004 (20 papers, 500+ pages).
Cornerstone of parametrized complexity theory (since the 1970s).
A zoo of width parameters for graphs: cutwidth, pathwidth, etc.
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The Treewidth of a 3-Manifold

Question. Given a 3-manifold M, how small tw pΓpT qq can be?

Motivated by this, we define the treewidth of a 3-manifold M as

tw pMq � minttw pΓpT qq : T is a triangulation of Mu.

This way, any non-negative graph parameter yields a topological invariant
for 3-manifolds. We call these combinatorial width parameters.

Examples. pathwidth pwpMq, cutwidth cwpMq, congestion cngpMq, . . .

Caveat. Their definition does not offer a direct way of computing them.

Motif. Understand the quantitative relation between treewidth & co.
and classical topological invariants of 3-manifolds, e.g., Heegaard genus,
hyperbolic volume, Scharlemann–Thompson width, etc.
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The Heegaard Genus of a 3-Manifold

A handlebody of genus g is a solid body with g holes.

� � �

Assume M is connected, orientable & closed: compact, no boundary.

Theorem. Every such M can be obtained as a Heegaard splitting
i.e. two handlebodies of the same genus with their boundaries identified.
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Theorem. Every such M can be obtained as a Heegaard splitting
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Results, I. 3-Manifolds with Large Treewidth

Theorem 1 (H–Spreer–Wagner, 2019). Let M be closed, orientable,
irreducible, non-Haken. Then its Heegaard genus and treewidth satisfy

gpMq ¤ 18 ptw pMq � 1q .

Corollary Using Agol (2003): p@n P NqpDMq such that tw pMq ¥ n.

Theorem 2 (H–Spreer, 2019). For M closed and orientable we have

tw pMq ¤ pwpMq ¤ 4gpMq � 2.

Corollary For non-Haken 3-manifolds we have tw pMq � gpMq.

Theorem (de Mesmay–Purcell–Schleimer–Sedgwick, 2019). For every
natural number n, there exists a knot K : S1

ãÑ R3 with tw pK q ¥ n.

Here tw pK q denotes the minimum treewidth of any diagram D of K .
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Results, II. 3-Manifolds with Small Treewidth

Theorem (Jaco–Rubinstein, 2003). Let M be a closed and orientable
3-manifold with Heegaard genus gpMq ¤ 1. Then we have tw pMq ¤ 1.

Theorem 3 (H–Spreer, 2019). Let M be a closed, orientable 3-manifold
with tw pMq ¤ 1. Then either gpMq ¤ 1, or M is the Seifert fibered
space SFSrS2 : p2, 1q, p2, 1q, p2,�1qs of Heegaard genus two.

Theorem 4 (H–Spreer, 2019). Orientable Seifert fibered spaces over S2

or over a non-orientable surface have treewidth two.

Corollary 4889 out of the 4979 3-manifolds that have a triangulation
with at most 10 tetrahedra have treewidth ¤ 2.

Corollary Minimal triangulations are not always of minimum treewidth.
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Results, III. Hyperbolic 3-Manifolds

M is hyperbolic if it is a quotient of H3 by a discrete isometry group.

Mostow Rigidity Theorem. Let M and N be finite-volume hyperbolic.
Every isomorphism π1pMq Ñ π1pN q is induced by an isometry M Ñ N .

“geometric properties of hyperbolic 3-manifolds are topological invariants”

Theorem (Maria–Purcell, 2019). There exists a universal constant C ¡ 0,
such that, for every closed hyperbolic 3-manifold M, we have

tw pMq ¤ C � volpMq.

Theorem 5 (H, 2020+). There exists a universal constant C 1 ¡ 0, such
that, for every closed hyperbolic 3-manifold M, we have

pwpMq ¤ C 1 � volpMq.
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Generalized Heegaard Splittings: A Case Study
Scharlemann–Thompson, 1994; Scharlemann–Schultens–Saito, 2016

gpBq : 0

1 2 3 2 1 0  Heegaard splitting of genus 3

gpBq : 0

1 2 1
1 2 1 0  gen. Heegaard splitting of width p2, 2q

Gen. Heegaard splitting of lexicographically minimal width: thin position
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Proof of Theorem 1

Theorem 1 (H–Spreer–Wagner, 2019). Let M be closed, orientable,
irreducible, non-Haken. Then we have gpMq ¤ 18 ptw pMq � 1q.

Strategy Triangulation T of M  Heegaard splitting with small genus.

H1 � t0-handlesu Y t1-handlesu
H2 � t2-handlesu Y t3-handlesu  M � H1 YH2, BH1 � BH2 � S

Problem If T has n tetrahedra, then gpSq � n � 1 ñ Too large!
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Proof of Theorem 5

Theorem 5 (H, 2020+). There exists a universal constant C 1 ¡ 0, such
that, for every closed hyperbolic 3-manifold pwpMq ¤ C 1 � volpMq.
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1. Thick-thin decompositionùù
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ñ Theorem 2
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Thank you for your attention!
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