Combinatorial Width Parameters for 3-Dimensional Manifolds

Kristóf Huszár PhD Student, Wagner Group

Institute of Science and Technology Austria

ETH Geometry Zoom Seminar, May 6, 2020

Kristóf Huszár, Jonathan Spreer and Uli Wagner
On the Treewidth of Triangulated 3-Manifolds
Journal of Computational Geometry, 10(2):70–98, 2019
doi:10.20382/jogc.v10i2a5

Extended abstract: SoCG 2018, Budapest, Hungary

Kristóf Huszár and Jonathan Spreer

3-Manifold Triangulations with Small Treewidth *Proceedings of the 35th International Symposium on Computational Geometry* (SoCG 2019), Portland, OR, USA, volume 129 of LIPIcs, pages 44:1–44:20. Schloss Dagstuhl, Leibniz-Zentrum für Informatik, 2019 doi:10.4230/LIPIcs.SoCG.2019.44

CG Week 2020 – ETH Zürich, June 23–26, 2020

CG Week 2020 is online only because of the COVID-19 pandemic 🚵

https://socg20.inf.ethz.ch

Combinatorial Width Parameters for 3-Dimensional Manifolds

1. 3-Manifolds

Triangulations

Graphs

In this talk only **compact** and **orientable 3-manifolds** are considered.

In this talk only **compact** and **orientable 3-manifolds** are considered.

Theorem (Moise; 1952). Every 3-manifold has a **triangulation**.

In this talk only **compact** and **orientable 3-manifolds** are considered.

Theorem (Moise; 1952). Every 3-manifold has a **triangulation**.

In this talk only **compact** and **orientable 3-manifolds** are considered.

Theorem (Moise; 1952). Every 3-manifold has a **triangulation**.

In this talk only **compact** and **orientable 3-manifolds** are considered.

Theorem (Moise; 1952). Every 3-manifold has a **triangulation**.

In this talk only **compact** and **orientable 3-manifolds** are considered.

Theorem (Moise; 1952). Every 3-manifold has a **triangulation**.

In this talk only **compact** and **orientable 3-manifolds** are considered.

Theorem (Moise; 1952). Every 3-manifold has a **triangulation**.

In this talk only **compact** and **orientable 3-manifolds** are considered.

Theorem (Moise; 1952). Every 3-manifold has a **triangulation**.

In this talk only **compact** and **orientable 3-manifolds** are considered.

Theorem (Moise; 1952). Every 3-manifold has a **triangulation**.

In this talk only **compact** and **orientable 3-manifolds** are considered.

Finitely many **tetrahedra** glued along **triangular faces**.

Dual (face pairing) graph

vertices: tetrahedra of \mathcal{T} **edges**: face gluings

(multigraph, vertex degrees \leq 4)

In this talk only **compact** and **orientable 3-manifolds** are considered.

Theorem (Moise; 1952). Every 3-manifold has a **triangulation**.

Finitely many **tetrahedra** glued along **triangular faces**.

Dual (face pairing) graph

vertices: tetrahedra of \mathcal{T} **edges**: face gluings

(multigraph, vertex degrees \leq 4)

In this talk only **compact** and **orientable 3-manifolds** are considered.

Finitely many **tetrahedra** glued along **triangular faces**.

Dual (face pairing) graph

vertices: tetrahedra of \mathcal{T} **edges**: face gluings

(multigraph, vertex degrees \leq 4)

We consider two 3-manifolds the same if they are **homeomorphic**.

Any 3-manifold has infinitely many combinatorially distinct triangulations

Image Credits: Wikimedia Commons (tetrahedron), Eeo Jun (triangulated sphere) and Daniel Rypl (Stanford bunny)

Any 3-manifold has infinitely many combinatorially distinct triangulations

Image Credits: Wikimedia Commons (tetrahedron), Eeo Jun (triangulated sphere) and Daniel Rypl (Stanford bunny)

Homeomorphism Problem (HP). Given two triangulations, is there an algorithm to decide if they encode the same closed *d*-manifold?

Any 3-manifold has infinitely many combinatorially distinct triangulations

Image Credits: Wikimedia Commons (tetrahedron), Eeo Jun (triangulated sphere) and Daniel Rypl (Stanford bunny)

Homeomorphism Problem (HP). Given two triangulations, is there an algorithm to decide if they encode the same closed *d*-manifold?

• d = 2: Compute the Euler characteristic & check orientability \checkmark

Any 3-manifold has infinitely many combinatorially distinct triangulations

Image Credits: Wikimedia Commons (tetrahedron), Eeo Jun (triangulated sphere) and Daniel Rypl (Stanford bunny)

Homeomorphism Problem (HP). Given two triangulations, is there an algorithm to decide if they encode the same closed *d*-manifold?

- d = 2: Compute the Euler characteristic & check orientability \checkmark
- *d* = 3: Yes, but **very** complicated. (It relies on Perelman's solution to the Geometrization Conjecture and on the work of many others.)

Any 3-manifold has infinitely many combinatorially distinct triangulations

Image Credits: Wikimedia Commons (tetrahedron), Eeo Jun (triangulated sphere) and Daniel Rypl (Stanford bunny)

Homeomorphism Problem (HP). Given two triangulations, is there an algorithm to decide if they encode the same closed *d*-manifold?

- d = 2: Compute the Euler characteristic & check orientability \checkmark
- *d* = 3: Yes, but **very** complicated. (It relies on Perelman's solution to the Geometrization Conjecture and on the work of many others.)

Thus, in practice, the **HP** is approached via **computable invariants**.

ALGORITHM	RUNNING TIME	CITATION
taut angle structures of ideal triangulations	$O(7^t \cdot n)$	Burton–Spreer 2013
Turaev–Viro invariants for parameter $r \ge 3$	$O((r-1)^{6(t+1)}t^2\log r \cdot n)$	Burton–Maria– Spreer 2015
optimal Morse matchings in the Hasse diagram of $\ensuremath{\mathcal{T}}$	$O(4^{t^2+t}t^3\log t\cdot n)$	Burton–Lewiner– Paixão–Spreer 2016
any problem expressed in monadic second-order logic	$O(f(t) \cdot n)$	Burton–Downey '17 (Courcelle 1990)

ALGORITHM	RUNNING TIME	CITATION
taut angle structures of ideal triangulations	$O(7^t \cdot n)$	Burton–Spreer 2013
Turaev–Viro invariants for parameter $r \ge 3$	$O((r-1)^{6(t+1)}t^2\log r \cdot n)$	Burton–Maria– Spreer 2015
optimal Morse matchings in the Hasse diagram of $\ensuremath{\mathcal{T}}$	$O(4^{t^2+t}t^3\log t\cdot n)$	Burton–Lewiner– Paixão–Spreer 2016
any problem expressed in monadic second-order logic	$O(f(t) \cdot n)$	Burton–Downey '17 (Courcelle 1990)

ALGORITHM	RUNNING TIME	CITATION
taut angle structures of ideal triangulations	$O(7^t \cdot n)$	Burton–Spreer 2013
Turaev–Viro invariants for parameter $r \ge 3$	$O((r-1)^{6(t+1)}t^2 \log r \cdot n)$	Burton–Maria– Spreer 2015
optimal Morse matchings in the Hasse diagram of $\ensuremath{\mathcal{T}}$	$O(4^{t^2+t}t^3\log t \cdot n)$	Burton–Lewiner– Paixão–Spreer 2016
any problem expressed in monadic second-order logic	O(n) $O(f(t) \cdot n)$	Burton–Downey '17 (Courcelle 1990)

 \mathcal{T} : *n*-tetrahedron triangulation, $\mathbf{t} = \operatorname{tw}(\Gamma(\mathcal{T}))$ is the **treewidth** of $\Gamma(\mathcal{T})$.

ALGORITHM	RUNNING TIME	CITATION
taut angle structures of ideal triangulations	$O(7^t \cdot n)$	Burton–Spreer 2013
Turaev–Viro invariants for parameter $r \ge 3$	$O((r-1)^{6(t+1)}t^2 \log r \cdot n)$	Burton–Maria– Spreer 2015
optimal Morse matchings in the Hasse diagram of $\ensuremath{\mathcal{T}}$	$O(4^{t^2+t}t^3\log t \cdot n)$	Burton–Lewiner– Paixão–Spreer 2016
any problem expressed in monadic second-order logic	$O(f(t) \cdot n)$	Burton–Downey '17 (Courcelle 1990)

Question: Given a 3-manifold \mathcal{M} , how small tw ($\Gamma(\mathcal{T})$) can be?

(This has been asked by several people, incl. at an Oberwolfach meeting in 2015.)

The **treewidth** tw (G) quantifies the similarity of G to any tree.

The **treewidth** tw (G) quantifies the similarity of G to any tree.

 $\mathsf{tw}(\mathsf{tree}) = 1$ $\mathsf{tw}(G) = 2$ $\mathsf{tw}(k \times k\operatorname{-grid}) = k$ $\mathsf{tw}(K_n) = n - 1$

The **treewidth** tw (G) quantifies the similarity of G to any tree.

 $\mathsf{tw}(\mathsf{tree}) = 1$ $\mathsf{tw}(G) = 2$ $\mathsf{tw}(k \times k\operatorname{-grid}) = k$ $\mathsf{tw}(K_n) = n - 1$

• Key concept in **graph minor theory** developed by Robertson and Seymour between 1983–2004 (20 papers, 500+ pages).

The **treewidth** tw (G) quantifies the similarity of G to any tree.

 $\mathsf{tw}(\mathsf{tree}) = 1$ $\mathsf{tw}(G) = 2$ $\mathsf{tw}(k \times k\operatorname{-grid}) = k$ $\mathsf{tw}(K_n) = n - 1$

- Key concept in **graph minor theory** developed by Robertson and Seymour between 1983–2004 (20 papers, 500+ pages).
- Cornerstone of parametrized complexity theory (since the 1970s).

The **treewidth** tw (G) quantifies the similarity of G to any tree.

 $\mathsf{tw}(\mathsf{tree}) = 1$ $\mathsf{tw}(G) = 2$ $\mathsf{tw}(k \times k\operatorname{-grid}) = k$ $\mathsf{tw}(K_n) = n - 1$

- Key concept in **graph minor theory** developed by Robertson and Seymour between 1983–2004 (20 papers, 500+ pages).
- Cornerstone of parametrized complexity theory (since the 1970s).
- A zoo of width parameters for graphs: cutwidth, pathwidth, etc.
Question. Given a 3-manifold \mathcal{M} , how small tw ($\Gamma(\mathcal{T})$) can be?

Question. Given a 3-manifold \mathcal{M} , how small tw ($\Gamma(\mathcal{T})$) can be?

Motivated by this, we define the **treewidth of a 3-manifold** \mathcal{M} as

 $\mathsf{tw}\,(\mathcal{M}) = \mathsf{min}\{\mathsf{tw}\,(\Gamma(\mathcal{T})): \mathcal{T} \text{ is a triangulation of } \mathcal{M}\}.$

Question. Given a 3-manifold \mathcal{M} , how small tw ($\Gamma(\mathcal{T})$) can be?

Motivated by this, we define the **treewidth of a 3-manifold** \mathcal{M} as $\mathsf{tw}(\mathcal{M}) = \min\{\mathsf{tw}(\Gamma(\mathcal{T})) : \mathcal{T} \text{ is a triangulation of } \mathcal{M}\}.$

This way, any non-negative graph parameter yields a *topological invariant* for 3-manifolds. We call these **combinatorial width parameters**.

Examples. *pathwidth* pw(M), *cutwidth* cw(M), *congestion* cng(M),...

Question. Given a 3-manifold \mathcal{M} , how small tw ($\Gamma(\mathcal{T})$) can be?

Motivated by this, we define the **treewidth of a 3-manifold** \mathcal{M} as $\mathsf{tw}(\mathcal{M}) = \min\{\mathsf{tw}(\Gamma(\mathcal{T})) : \mathcal{T} \text{ is a triangulation of } \mathcal{M}\}.$

This way, any non-negative graph parameter yields a *topological invariant* for 3-manifolds. We call these **combinatorial width parameters**.

Examples. *pathwidth* pw(M), *cutwidth* cw(M), *congestion* cng(M),...

Caveat. Their definition does not offer a direct way of computing them.

Question. Given a 3-manifold \mathcal{M} , how small tw ($\Gamma(\mathcal{T})$) can be?

Motivated by this, we define the **treewidth of a 3-manifold** \mathcal{M} as $tw(\mathcal{M}) = min\{tw(\Gamma(\mathcal{T})) : \mathcal{T} \text{ is a triangulation of } \mathcal{M}\}.$

This way, any non-negative graph parameter yields a *topological invariant* for 3-manifolds. We call these **combinatorial width parameters**.

Examples. *pathwidth* $pw(\mathcal{M})$ *, cutwidth* $cw(\mathcal{M})$ *, congestion* $cng(\mathcal{M})$ *,...*

Caveat. Their definition does not offer a direct way of computing them.

Motif. Understand the **quantitative relation** between treewidth & co. and classical topological invariants of 3-manifolds, e.g., *Heegaard genus*, *hyperbolic volume*, *Scharlemann–Thompson width*, etc.

A handlebody of genus g is a solid body with g holes.

. . .

A **handlebody of genus** *g* is a solid body with *g* holes.

Assume \mathcal{M} is **connected**, **orientable** & **closed**: compact, no boundary.

A handlebody of genus g is a solid body with g holes.

Assume \mathcal{M} is **connected**, **orientable** & **closed**: compact, no boundary.

A **handlebody of genus** *g* is a solid body with *g* holes.

Assume \mathcal{M} is **connected**, **orientable** & **closed**: compact, no boundary.

$$\mathcal{M} = \bigcirc \bigcirc_{f_1} \bigcirc \bigcirc_{f_1} \bigcirc \bigcirc_{f_2} \bigcirc \bigcirc_{f_$$

A **handlebody of genus** *g* is a solid body with *g* holes.

Assume \mathcal{M} is **connected**, **orientable** & **closed**: compact, no boundary.

$$\mathcal{M} = \bigcirc \bigcirc_{f_1} \bigcirc \bigcirc_{f_2} \bigcirc_{f_2} \bigcirc \bigcirc_{f_2} \bigcirc_{f_2} \bigcirc \bigcirc_{f_2} \bigcirc \bigcirc_{f_2} \bigcirc \bigcirc_{f_2} \odot_{f_2} \bigcirc_{f_2} \bigcirc_{f_2} \bigcirc_{f_2} \bigcirc_{f_2} \odot_{f_2} \bigcirc_{f_2} \bigcirc_{f_2} \bigcirc_{f_2} \odot_{f_2} \odot_{f_2} \bigcirc_{f_2} \odot_{f_2} \bigcirc_{f_2} \odot_{f_2} \odot_{f_$$

A **handlebody of genus** *g* is a solid body with *g* holes.

Assume \mathcal{M} is **connected**, **orientable** & **closed**: compact, no boundary.

$$\mathcal{M} = \bigcirc_{f_1} \bigcirc_{f_1} \bigcirc_{g(\mathcal{M})}$$
The Heegaard genus
 $\mathfrak{g}(\mathcal{M})$ is the minimum
genus of any Heegaard
splitting of \mathcal{M} .

Theorem 1 (H–Spreer–Wagner, 2019). Let \mathcal{M} be closed, orientable, irreducible, non-Haken. Then its Heegaard genus and treewidth satisfy

 $\mathfrak{g}(\mathcal{M}) \leqslant 18 \left(\mathsf{tw} \left(\mathcal{M} \right) + 1 \right).$

Theorem 1 (H–Spreer–Wagner, 2019). Let \mathcal{M} be closed, orientable, irreducible, non-Haken. Then its Heegaard genus and treewidth satisfy $\mathfrak{g}(\mathcal{M}) \leq 18 (\operatorname{tw}(\mathcal{M}) + 1)$.

Corollary Using Agol (2003): $(\forall n \in \mathbb{N})(\exists \mathcal{M})$ such that tw $(\mathcal{M}) \ge n$.

Theorem 1 (H–Spreer–Wagner, 2019). Let \mathcal{M} be closed, orientable, irreducible, non-Haken. Then its Heegaard genus and treewidth satisfy $\mathfrak{g}(\mathcal{M}) \leqslant 18 (\operatorname{tw}(\mathcal{M}) + 1)$.

Corollary Using Agol (2003): $(\forall n \in \mathbb{N})(\exists \mathcal{M})$ such that tw $(\mathcal{M}) \ge n$.

Theorem 2 (H–Spreer, 2019). For \mathcal{M} closed and orientable we have tw $(\mathcal{M}) \leq pw(\mathcal{M}) \leq 4\mathfrak{g}(\mathcal{M}) - 2.$

Theorem 1 (H–Spreer–Wagner, 2019). Let \mathcal{M} be closed, orientable, irreducible, non-Haken. Then its Heegaard genus and treewidth satisfy $\mathfrak{g}(\mathcal{M}) \leqslant 18 (\operatorname{tw}(\mathcal{M}) + 1)$.

Corollary Using Agol (2003): $(\forall n \in \mathbb{N})(\exists \mathcal{M})$ such that tw $(\mathcal{M}) \ge n$.

Theorem 2 (H–Spreer, 2019). For \mathcal{M} closed and orientable we have tw $(\mathcal{M}) \leq pw(\mathcal{M}) \leq 4\mathfrak{g}(\mathcal{M}) - 2.$

Corollary For non-Haken 3-manifolds we have tw $(\mathcal{M}) \approx \mathfrak{g}(\mathcal{M})$.

Theorem 1 (H–Spreer–Wagner, 2019). Let \mathcal{M} be closed, orientable, irreducible, non-Haken. Then its Heegaard genus and treewidth satisfy $\mathfrak{g}(\mathcal{M}) \leqslant 18 (\operatorname{tw}(\mathcal{M}) + 1)$.

Corollary Using Agol (2003): $(\forall n \in \mathbb{N})(\exists \mathcal{M})$ such that tw $(\mathcal{M}) \ge n$.

Theorem 2 (H–Spreer, 2019). For \mathcal{M} closed and orientable we have $\operatorname{tw}(\mathcal{M}) \leqslant \operatorname{pw}(\mathcal{M}) \leqslant 4\mathfrak{g}(\mathcal{M}) - 2.$

Corollary For non-Haken 3-manifolds we have tw $(\mathcal{M}) \approx \mathfrak{g}(\mathcal{M})$.

Theorem (de Mesmay–Purcell–Schleimer–Sedgwick, 2019). For every natural number *n*, there exists a knot $K : \mathbb{S}^1 \hookrightarrow \mathbb{R}^3$ with tw $(K) \ge n$.

Here tw (K) denotes the minimum treewidth of any *diagram* D of K.

Theorem (Jaco–Rubinstein, 2003**).** Let \mathcal{M} be a closed and orientable 3-manifold with Heegaard genus $\mathfrak{g}(\mathcal{M}) \leq 1$. Then we have tw $(\mathcal{M}) \leq 1$.

Theorem (Jaco–Rubinstein, 2003**).** Let \mathcal{M} be a closed and orientable 3-manifold with Heegaard genus $\mathfrak{g}(\mathcal{M}) \leq 1$. Then we have tw $(\mathcal{M}) \leq 1$.

Theorem (Jaco–Rubinstein, 2003**).** Let \mathcal{M} be a closed and orientable 3-manifold with Heegaard genus $\mathfrak{g}(\mathcal{M}) \leq 1$. Then we have tw $(\mathcal{M}) \leq 1$.

Theorem 3 (H–Spreer, 2019). Let \mathcal{M} be a closed, orientable 3-manifold with tw (\mathcal{M}) ≤ 1 . Then either $\mathfrak{g}(\mathcal{M}) \leq 1$, or \mathcal{M} is the *Seifert fibered space* SFS[\mathbb{S}^2 : (2, 1), (2, 1), (2, -1)] of Heegaard genus two.

Theorem (Jaco–Rubinstein, 2003**).** Let \mathcal{M} be a closed and orientable 3-manifold with Heegaard genus $\mathfrak{g}(\mathcal{M}) \leq 1$. Then we have tw $(\mathcal{M}) \leq 1$.

Theorem 3 (H–Spreer, 2019). Let \mathcal{M} be a closed, orientable 3-manifold with tw $(\mathcal{M}) \leq 1$. Then either $\mathfrak{g}(\mathcal{M}) \leq 1$, or \mathcal{M} is the *Seifert fibered space* SFS[\mathbb{S}^2 : (2,1), (2,1), (2,-1)] of Heegaard genus two.

Theorem (Jaco–Rubinstein, 2003**).** Let \mathcal{M} be a closed and orientable 3-manifold with Heegaard genus $\mathfrak{g}(\mathcal{M}) \leq 1$. Then we have tw $(\mathcal{M}) \leq 1$.

Theorem 3 (H–Spreer, 2019). Let \mathcal{M} be a closed, orientable 3-manifold with tw $(\mathcal{M}) \leq 1$. Then either $\mathfrak{g}(\mathcal{M}) \leq 1$, or \mathcal{M} is the *Seifert fibered space* SFS[S² : (2, 1), (2, 1), (2, -1)] of Heegaard genus two.

Theorem 4 (H–Spreer, 2019). Orientable Seifert fibered spaces over \mathbb{S}^2 or over a non-orientable surface have treewidth two.

Theorem (Jaco–Rubinstein, 2003**).** Let \mathcal{M} be a closed and orientable 3-manifold with Heegaard genus $\mathfrak{g}(\mathcal{M}) \leq 1$. Then we have tw $(\mathcal{M}) \leq 1$.

Theorem 3 (H–Spreer, 2019). Let \mathcal{M} be a closed, orientable 3-manifold with tw $(\mathcal{M}) \leq 1$. Then either $\mathfrak{g}(\mathcal{M}) \leq 1$, or \mathcal{M} is the *Seifert fibered space* SFS[S² : (2, 1), (2, 1), (2, -1)] of Heegaard genus two.

Theorem 4 (H–Spreer, 2019). Orientable Seifert fibered spaces over \mathbb{S}^2 or over a non-orientable surface have treewidth two.

Corollary 4889 out of the 4979 3-manifolds that have a triangulation with at most 10 tetrahedra have treewidth ≤ 2 .

Theorem (Jaco–Rubinstein, 2003**).** Let \mathcal{M} be a closed and orientable 3-manifold with Heegaard genus $\mathfrak{g}(\mathcal{M}) \leq 1$. Then we have tw $(\mathcal{M}) \leq 1$.

Theorem 3 (H–Spreer, 2019). Let \mathcal{M} be a closed, orientable 3-manifold with tw $(\mathcal{M}) \leq 1$. Then either $\mathfrak{g}(\mathcal{M}) \leq 1$, or \mathcal{M} is the *Seifert fibered space* SFS[S² : (2, 1), (2, 1), (2, -1)] of Heegaard genus two.

Theorem 4 (H–Spreer, 2019). Orientable Seifert fibered spaces over \mathbb{S}^2 or over a non-orientable surface have treewidth two.

Corollary 4889 out of the 4979 3-manifolds that have a triangulation with at most 10 tetrahedra have treewidth ≤ 2 .

Corollary Minimal triangulations are *not* always of minimum treewidth.

 \mathcal{M} is **hyperbolic** if it is a quotient of \mathbb{H}^3 by a discrete isometry group.

 \mathcal{M} is **hyperbolic** if it is a quotient of \mathbb{H}^3 by a discrete isometry group.

Mostow Rigidity Theorem. Let \mathcal{M} and \mathcal{N} be finite-volume hyperbolic. Every isomorphism $\pi_1(\mathcal{M}) \to \pi_1(\mathcal{N})$ is induced by an isometry $\mathcal{M} \to \mathcal{N}$.

"geometric properties of hyperbolic 3-manifolds are topological invariants"

 \mathcal{M} is **hyperbolic** if it is a quotient of \mathbb{H}^3 by a discrete isometry group.

Mostow Rigidity Theorem. Let \mathcal{M} and \mathcal{N} be finite-volume hyperbolic. Every isomorphism $\pi_1(\mathcal{M}) \to \pi_1(\mathcal{N})$ is induced by an isometry $\mathcal{M} \to \mathcal{N}$.

"geometric properties of hyperbolic 3-manifolds are topological invariants"

Theorem (Maria–Purcell, 2019**).** There exists a universal constant C > 0, such that, for every closed hyperbolic 3-manifold \mathcal{M} , we have

 $\mathsf{tw}\,(\mathcal{M}) \leqslant C \cdot \mathsf{vol}(\mathcal{M}).$

 \mathcal{M} is **hyperbolic** if it is a quotient of \mathbb{H}^3 by a discrete isometry group.

Mostow Rigidity Theorem. Let \mathcal{M} and \mathcal{N} be finite-volume hyperbolic. Every isomorphism $\pi_1(\mathcal{M}) \to \pi_1(\mathcal{N})$ is induced by an isometry $\mathcal{M} \to \mathcal{N}$.

"geometric properties of hyperbolic 3-manifolds are topological invariants"

Theorem (Maria–Purcell, 2019**).** There exists a universal constant C > 0, such that, for every closed hyperbolic 3-manifold \mathcal{M} , we have tw $(\mathcal{M}) \leq C \cdot \operatorname{vol}(\mathcal{M})$.

Theorem 5 (H, 2020+). There exists a universal constant C' > 0, such that, for every closed hyperbolic 3-manifold \mathcal{M} , we have

 $\mathsf{pw}(\mathcal{M}) \leqslant C' \cdot \mathsf{vol}(\mathcal{M}).$

Scharlemann-Thompson, 1994; Scharlemann-Schultens-Saito, 2016

Scharlemann-Thompson, 1994; Scharlemann-Schultens-Saito, 2016

3-dimensional torus $\mathbb{T}^3 = \mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1$

Scharlemann-Thompson, 1994; Scharlemann-Schultens-Saito, 2016

Scharlemann-Thompson, 1994; Scharlemann-Schultens-Saito, 2016

 $g(\partial)$: 0

Scharlemann-Thompson, 1994; Scharlemann-Schultens-Saito, 2016

 $g(\partial)$: 0 1

Scharlemann-Thompson, 1994; Scharlemann-Schultens-Saito, 2016

 $g(\partial)$: 0 1 2

Scharlemann-Thompson, 1994; Scharlemann-Schultens-Saito, 2016

 $g(\partial)$: 0 1 2 3

Scharlemann-Thompson, 1994; Scharlemann-Schultens-Saito, 2016

$g(\partial)$: 0 1 2 3 2

Scharlemann-Thompson, 1994; Scharlemann-Schultens-Saito, 2016

 $g(\partial)$: 0 1 2 3 2 1
Scharlemann-Thompson, 1994; Scharlemann-Schultens-Saito, 2016

 $g(\partial)$: 0 1 2 3 2 1 0

Scharlemann-Thompson, 1994; Scharlemann-Schultens-Saito, 2016

 $g(\partial)$: 0 1 2 3 2 1 0

Scharlemann-Thompson, 1994; Scharlemann-Schultens-Saito, 2016

 $g(\partial)$: 0 1 2 3 2 1 0 \rightsquigarrow Heegaard splitting of genus 3

Scharlemann-Thompson, 1994; Scharlemann-Schultens-Saito, 2016

 $g(\partial)$: 0 1 2 3 2 1 0 \rightsquigarrow Heegaard splitting of genus 3

Scharlemann-Thompson, 1994; Scharlemann-Schultens-Saito, 2016

14

Scharlemann-Thompson, 1994; Scharlemann-Schultens-Saito, 2016

Theorem 1 (H–Spreer–Wagner, 2019). Let \mathcal{M} be closed, orientable, irreducible, non-Haken. Then we have $\mathfrak{g}(\mathcal{M}) \leq 18 (\mathsf{tw}(\mathcal{M}) + 1)$.

Strategy Triangulation \mathcal{T} of $\mathcal{M} \rightsquigarrow$ Heegaard splitting with small genus.

Theorem 1 (H–Spreer–Wagner, 2019). Let \mathcal{M} be closed, orientable, irreducible, non-Haken. Then we have $\mathfrak{g}(\mathcal{M}) \leq 18 (\mathsf{tw}(\mathcal{M}) + 1)$.

Strategy Triangulation \mathcal{T} of $\mathcal{M} \rightsquigarrow$ Heegaard splitting with small genus.

Theorem 1 (H–Spreer–Wagner, 2019). Let \mathcal{M} be closed, orientable, irreducible, non-Haken. Then we have $\mathfrak{g}(\mathcal{M}) \leq 18 (\mathsf{tw}(\mathcal{M}) + 1)$.

Strategy Triangulation \mathcal{T} of $\mathcal{M} \rightsquigarrow$ Heegaard splitting with small genus.

 $\begin{aligned} \mathcal{H}_1 &= \{\text{0-handles}\} \cup \{\text{1-handles}\} \\ \mathcal{H}_2 &= \{\text{2-handles}\} \cup \{\text{3-handles}\} \end{aligned}$

Theorem 1 (H–Spreer–Wagner, 2019). Let \mathcal{M} be closed, orientable, irreducible, non-Haken. Then we have $\mathfrak{g}(\mathcal{M}) \leq 18 (\mathsf{tw}(\mathcal{M}) + 1)$.

Strategy Triangulation \mathcal{T} of $\mathcal{M} \rightsquigarrow$ Heegaard splitting with small genus.

Theorem 1 (H–Spreer–Wagner, 2019). Let \mathcal{M} be closed, orientable, irreducible, non-Haken. Then we have $\mathfrak{g}(\mathcal{M}) \leq 18 (\mathsf{tw}(\mathcal{M}) + 1)$.

Strategy Triangulation \mathcal{T} of $\mathcal{M} \rightsquigarrow$ Heegaard splitting with small genus.

Problem If \mathcal{T} has *n* tetrahedra, then $g(\mathcal{S}) = n + 1 \Rightarrow$ Too large!

Theorem 1 (H–Spreer–Wagner, 2019). Let \mathcal{M} be closed, orientable, irreducible, non-Haken. Then we have $\mathfrak{g}(\mathcal{M}) \leq 18 (\mathsf{tw}(\mathcal{M}) + 1)$.

1. \mathcal{T} : tw ($\Gamma(\mathcal{T})$) = tw (\mathcal{M})

- **1.** \mathcal{T} : tw ($\Gamma(\mathcal{T})$) = tw (\mathcal{M}) \Downarrow [Bienstock 1990]
- 2. Low-congestion layout

Theorem 5 (H, 2020+). There exists a universal constant C' > 0, such that, for every closed hyperbolic 3-manifold $pw(\mathcal{M}) \leq C' \cdot vol(\mathcal{M})$.

Theorem 5 (H, 2020+). There exists a universal constant C' > 0, such that, for every closed hyperbolic 3-manifold $pw(\mathcal{M}) \leq C' \cdot vol(\mathcal{M})$.

 $\mathcal{N}_1 \ \mathcal{S}_1 \ \mathcal{K}_1 \ \mathcal{R} \ \mathcal{N}_2 \ \mathcal{S}_2 \ \mathcal{K}_2$

3.

 \rightarrow

0. Hyperbolic 3-manifold \mathcal{M} [Kazhdan-Margulis 1968] **1.** Thick-thin decomposition [Jørgensen–Thurston 1979] [Kobayashi-Rieck 2011] 2. Gen. Heegaard splitting [Schultens 1993] [Bachman et al. 2017] **3.** Heegaard splitting Theorem 2 Triangulation \mathcal{T} 4.

17

Thank you for your attention!

