Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
000000000					

Tessellations coming from long geodesics on surfaces

Jenya Sapir

SUNY - Binghamton

April 14, 2020

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
o●oooooooo	0000	00	00	0000000	O
Our setti	ng				

Joint work with Jayadev Athreya, Steve Lalley and Matt Wroten.

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
000000000		00	00	0000000	O
Our setti	ng				

Joint work with Jayadev Athreya, Steve Lalley and Matt Wroten.

S - closed, hyperbolic surface

・ロット (雪) (日) (日)

3

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
o●oooooooo	0000	00	00	0000000	O
Our setti	ng				

Joint work with Jayadev Athreya, Steve Lalley and Matt Wroten.

 α - geodesic on ${\it S}$

ヘロト ヘロト ヘビト ヘビト

э.

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
000000000					

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q @

• T_1S - unit tangent bundle

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
000000000					

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q @

- T_1S unit tangent bundle
- g_t geodesic flow

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
000000000					

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q ()

- T_1S unit tangent bundle
- g_t geodesic flow is ergodic

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
000000000	0000	00	00	0000000	0

- T_1S unit tangent bundle
- g_t geodesic flow is ergodic

Theorem (Birkhoff Ergodic theorem)

For almost every $v \in T_1S$, and any integrable $f : T_1S \to \mathbb{R}$,

$$\lim_{t\to\infty}\frac{1}{t}\int_0^t f(g_t(v))dt = \frac{1}{2\pi Area(S)}\int_{T_1S}f(v)d\lambda$$

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
000000000	0000	00	00	0000000	0

How do typical geodesics fill?

$$\lim_{t\to\infty}\frac{1}{t}\int_0^t f(g_t(v))dt = \frac{1}{2\pi Area(S)}\int_{T_1S}f(v)d\lambda$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Long Arcs	On the plane	Back to the surface	An incorrect proof 00	Fixes 0000000	Future ideas 0

How do typical geodesics fill?

$$\lim_{t\to\infty}\frac{1}{t}\int_0^t f(g_t(v))dt = \frac{1}{2\pi Area(S)}\int_{T_1S}f(v)d\lambda$$

Choose f - indicator function of $U \subset T_1 S$.

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
000000000	0000	00	00	0000000	0

How do typical geodesics fill?

$$\lim_{t\to\infty}\frac{1}{t}\int_0^t f(g_t(v))dt = \frac{1}{2\pi Area(S)}\int_{T_1S}f(v)d\lambda$$

Choose f - indicator function of $U \subset T_1S$. Then,

Time spent in $U \asymp$ volume of U

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	00	00	0000000	O
First con	clusion				

Almost all long arcs eventually cut ${\mathcal S}$ into simply connected regions

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000⊕00000	0000	00	00	0000000	O
First con	clusion				

Almost all long arcs eventually cut ${\mathcal S}$ into simply connected regions

• $g_t(v)$ enters U from all directions equally

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q ()

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000		00	00	0000000	0

ヘロト ヘ部ト ヘヨト ヘヨト

æ

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
00000●0000	0000	00	00	0000000	0

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶

æ

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	00	00	0000000	0

ヘロト ヘ部ト ヘヨト ヘヨト

æ

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
00000●0000		00	00	0000000	0

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000		00	00	0000000	0

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
00000●0000		00	00	0000000	0

Question

Arc α gives tessellation on S. How does it cut up the surface?

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
00000●0000		00	00	0000000	0

Question

Arc α gives tessellation on S. How does it cut up the surface?

• Proportions of triangles, quadrilaterals, ... , n-gons

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
00000●0000		00	00	0000000	0

Question

Arc α gives tessellation on S. How does it cut up the surface?

- Proportions of triangles, quadrilaterals, ... , n-gons
- Distribution of edge lengths, angles

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	00	00	0000000	O
Vertices					

 α_ℓ - random arc, length ℓ

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
	0000	00	00	0000000	0
Vertices					

 $lpha_\ell$ - random arc, length ℓ with tessellation \mathcal{T}_ℓ

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	00	00	0000000	O
Vertices					

 α_{ℓ} - random arc, length ℓ with tessellation T_{ℓ} with $v(\ell)$ vertices.

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	00	00	0000000	O
Vertices					

 α_{ℓ} - random arc, length ℓ with tessellation T_{ℓ} with $v(\ell)$ vertices. Then,

$$u(\ell) \sim rac{1}{4\pi^2(g-1)}\ell^2$$

where $A(\ell) \sim B(\ell)$ if $A/B \rightarrow 1$, g = genus.

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
00000000000	0000	00	00	0000000	0
Why ℓ ² s	elf_interse	ections?			

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
00000000000		00	00	0000000	0
Why ℓ^2 s	elf-interse	ections?			

all different crossing angles

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
00000000000		00	00	0000000	0
Why ℓ^2 s	elf-interse	ections?			

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

all different crossing angles \implies most pairs intersect

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
00000000000		00	00	0000000	0
Why ℓ^2 s	elf-interse	ections?			

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q ()

 $\begin{array}{l} \mbox{all different crossing angles} \\ \implies \mbox{most pairs intersect} \\ \implies \approx \ell^2 \mbox{ intersections} \end{array}$

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
00000000€0	0000	00	00	0000000	O
Edges an	d faces				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

If T_{ℓ} has $v(\ell)$ vertices, $e(\ell)$ edges, $f(\ell)$ faces,

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
00000000000	0000	00	00	0000000	O
Edges an	d faces				

If T_{ℓ} has $v(\ell)$ vertices, $e(\ell)$ edges, $f(\ell)$ faces, then

$$v(\ell) \sim \frac{1}{2}e(\ell) \sim f(\ell)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
00000000000	0000	00	00	0000000	0
Edges an	d faces				

If T_ℓ has $v(\ell)$ vertices, $e(\ell)$ edges, $f(\ell)$ faces, then

$$v(\ell) \sim \frac{1}{2}e(\ell) \sim f(\ell)$$

By Euler characteristic: $v - e + f = \chi(S)$; and 2e = 4v.

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
00000000●0	0000	00	00	0000000	0
Edges an	d faces				

If T_{ℓ} has $v(\ell)$ vertices, $e(\ell)$ edges, $f(\ell)$ faces, then

$$v(\ell) \sim rac{1}{2} e(\ell) \sim f(\ell) \sim rac{1}{4\pi^2(g-1)} \ell^2$$

By Euler characteristic: $v - e + f = \chi(S)$; and 2e = 4v.

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
000000000	0000	00	00	0000000	0

Geometry of the tessellation

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^2 .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

Long Arcs 000000000	On the plane	Back to the surface	An incorrect proof 00	Fixes 0000000	Future ideas 0

Geometry of the tessellation

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^2 .

- E.g. w.p.1,
 - The proportion of *n*-gons in T_{ℓ} approaches $\tau_n > 0$ as $\ell \to \infty$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
00000000●	0000	00	00	0000000	0

Geometry of the tessellation

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^2 .

- E.g. w.p.1,
 - The proportion of *n*-gons in T_{ℓ} approaches $\tau_n > 0$ as $\ell \to \infty$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

•
$$\tau_3 \to 2 - \pi^2/6 \approx .355$$

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
00000000●	0000	00	00	0000000	0

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^2 .

- E.g. w.p.1,
 - The proportion of *n*-gons in T_{ℓ} approaches $\tau_n > 0$ as $\ell \to \infty$.

- $\tau_3
 ightarrow 2 \pi^2/6 pprox .355$
- τ_n difficult to compute.

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
000000000					

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^2 .

- E.g. w.p.1,
 - The proportion of *n*-gons in T_{ℓ} approaches $\tau_n > 0$ as $\ell \to \infty$.

- $\tau_3 \rightarrow 2 \pi^2/6 \approx .355$
- τ_n difficult to compute.
- 4 = expected number of sides

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
000000000					

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^2 .

- E.g. w.p.1,
 - The proportion of *n*-gons in T_{ℓ} approaches $\tau_n > 0$ as $\ell \to \infty$.
 - $\tau_3 \to 2 \pi^2/6 \approx .355$
 - τ_n difficult to compute.
 - 4 = expected number of sides
 - Edge lengths and intersection angles \rightarrow limiting distributions.

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
000000000					

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^2 .

- E.g. w.p.1,
 - The proportion of *n*-gons in T_{ℓ} approaches $\tau_n > 0$ as $\ell \to \infty$.
 - $\tau_3 \to 2 \pi^2/6 \approx .355$
 - τ_n difficult to compute.
 - 4 = expected number of sides
 - Edge lengths and intersection angles \rightarrow limiting distributions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Angles mutually independent with prob. density $\frac{1}{2}\sin\theta$

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
000000000					

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^2 .

- E.g. w.p.1,
 - The proportion of *n*-gons in T_{ℓ} approaches $\tau_n > 0$ as $\ell \to \infty$.
 - $\tau_3 \to 2 \pi^2/6 \approx .355$
 - τ_n difficult to compute.
 - 4 = expected number of sides
 - Edge lengths and intersection angles \rightarrow limiting distributions.
 - Angles mutually independent with prob. density $\frac{1}{2}\sin\theta$ Large angles preferred

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
000000000					

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^2 .

- E.g. w.p.1,
 - The proportion of *n*-gons in T_{ℓ} approaches $\tau_n > 0$ as $\ell \to \infty$.
 - $\tau_3 \to 2 \pi^2/6 \approx .355$
 - τ_n difficult to compute.
 - 4 = expected number of sides
 - Edge lengths and intersection angles \rightarrow limiting distributions.
 - Angles mutually independent with prob. density $\frac{1}{2}\sin\theta$ Large angles preferred

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Self-intersection times \rightarrow Poisson point process of intensity $\frac{1}{\textit{Area}(S)}$

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	●000	00	00	0000000	0
Tessellet					

Tessellations on the plane

How to model a long geodesic

• Birkhoff: geodesics look locally like random collections of lines

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	●000	00	00	0000000	0
Terrellet	:				

Tessellations on the plane

How to model a long geodesic

• Birkhoff: geodesics look locally like random collections of lines

• Rotation invariant

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	●000	00	00	0000000	O
Tessellat	ions on th	e plane			

How to model a long geodesic

• Birkhoff: geodesics look locally like random collections of lines

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q ()

- Rotation invariant
- Independent of choice of ball ("translation invariant")

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	●000	00	00	0000000	O
Tessellat	ions on th	e plane			

How to model a long geodesic

• Birkhoff: geodesics look locally like random collections of lines

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q ()

- Rotation invariant
- Independent of choice of ball ("translation invariant")

	On the plane	Back to the surface 00	An incorrect proof 00	Fixes 0000000	Future ideas 0
Tessellation	. 1				

Tessellations on the plane

How to model a long geodesic

• Birkhoff: geodesics look locally like random collections of lines

- Rotation invariant
- Independent of choice of ball ("translation invariant")
- Let's look at random collections of lines in the plane.

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	00	00	0000000	0
Tessellat	ions on th	e plane			

How to model a long geodesic

- Birkhoff: geodesics look locally like random collections of lines
- Let's look at random collections of lines in the plane. Want: rotation and translation invariant

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
	0000				

• Draw lines at angle θ_i , distance r_i from (0, 0).

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	00	00	0000000	0

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q ()

- Draw lines at angle θ_i , distance r_i from (0, 0).
- Choose sequence $\theta_1, \ldots, \theta_n$ at random in $[0, 2\pi]$

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	00	00	0000000	0

- Draw lines at angle θ_i , distance r_i from (0, 0).
- Choose sequence $\theta_1, \ldots, \theta_n$ at random in $[0, 2\pi]$
- Choose $r_1 < \cdots < r_n \in \mathbb{R}$ with Poisson distribution with intensity λ

$$P(\#\{r_i \in [0,\ell]\} = n) = \frac{(\lambda\ell)^n}{n!} e^{-\lambda\ell}$$

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
	0000				

Get tesselation of \mathbb{R}^2 .

On the plane 000●	Back to the surface 00	An incorrect proof	Fixes 0000000	Future ideas 0

Get tesselation of \mathbb{R}^2 .

Miles ('64): statistics for frequencies of *n*-gons, side lengths, angles, etc in Poisson line process.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q ()

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	000●	00	00	0000000	0

Get tesselation of \mathbb{R}^2 .

Miles ('64): statistics for frequencies of *n*-gons, side lengths, angles, etc in Poisson line process.

We show: statistics on surface same as for Poisson line process on $\ensuremath{\mathbb{R}}^2.$

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	●0	00	0000000	0
Back to	the surfac	е			

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	●0	00	0000000	0
Back to	the surfac	е			

・ロト ・四ト ・ヨト ・ヨト

æ

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	●0	00	0000000	0
Back to	the surfac	е			

・ロト ・四ト ・ヨト ・ヨト

- 2

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	●0	00	0000000	0
Back to	the surfac	е			

・ロト ・四ト ・ヨト ・ヨト

- 2

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	●0	00	0000000	0
Back to	the surfac	е			

メロト メロト メヨト メヨト

æ

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	●0	00	0000000	O
Back to	the surfac	е			

By Birkhoff, α_{ℓ} expected to cross $B(x, A/\ell) \approx A$ times

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	●0	00	0000000	O
Back to	the surfac	е			

・ロット (雪) (日) (日) (日)

By Birkhoff, α_{ℓ} expected to cross $B(x, A/\ell) \approx A$ times As $\ell \to \infty$, looks like Euclidean lines in Euclidean disk!

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
		00			

Theorem (Athreya-Lalley-S-Wroten)

As $\ell \to \infty,$ the tesselations of B(x,A/\ell) approach a Poisson line process.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas

Theorem (Athreya-Lalley-S-Wroten)

As $\ell \to \infty$, the tesselations of $B(x, A/\ell)$ approach a Poisson line process.

Theorem (Athreya-Lalley-S-Wroten)

Given two points x, x', tesselations in $B(x, A/\ell) \cup B(x', A/\ell)$ approach independent pair of Poisson line processes.

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	00	●0	0000000	O
An incor	rect (but	illuminating)	idea.		

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000		00	●0	0000000	0
An incor	rect (but	illuminating)	idea.		

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

• Divide length $\ell \in \mathbb{N}$ arc into length 1 segments $\alpha_1, \ldots, \alpha_\ell$

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000		00	●0	0000000	0
An incor	rect (but	illuminating)	idea.		

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

- Divide length $\ell \in \mathbb{N}$ arc into length 1 segments $lpha_1, \dots, lpha_\ell$
- Birkhoff: expect c(A) total crossings

• Divide length $\ell \in \mathbb{N}$ arc into length 1 segments $\alpha_1, \ldots, \alpha_\ell$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- Birkhoff: expect c(A) total crossings
- Incorrect assumption: Segments all independent

• Divide length $\ell \in \mathbb{N}$ arc into length 1 segments $\alpha_1, \ldots, \alpha_\ell$

- Birkhoff: expect c(A) total crossings
- Incorrect assumption: Segments all independent
- Thus, $P(\alpha_i \text{ crosses } B(x, A/\ell)) \approx c(A)/\ell$

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	00	●0	0000000	O
An incor	rect (but	illuminating)	idea.		

- Divide length $\ell \in \mathbb{N}$ arc into length 1 segments $lpha_1, \dots, lpha_\ell$
- Birkhoff: expect c(A) total crossings
- Incorrect assumption: Segments all independent
- Thus, $P(\alpha_i \text{ crosses } B(x, A/\ell)) \approx c(A)/\ell$
- Binomial distribution of crossings:

$$P(\#\{\alpha_i \text{ crosses } B(x, A/\ell)\} = n) = {}_{\ell}C_n \left(\frac{c(A)}{\ell}\right)^n \left(1 - \frac{c(A)}{\ell}\right)^{\ell-n}$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
			00		

• Binomial distribution of crossings:

$$P(\#\{\alpha_i \text{ crosses } B(x, A/\ell)\} = n) = \mathcal{C}_n \left(\frac{c(A)}{\ell}\right)^n \left(1 - \frac{c(A)}{\ell}\right)^{\ell-n}$$

• As $\ell \to \infty$, this approaches Poisson distribution of intensity c(A) in ball of radius 1!

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
			00		

• Binomial distribution of crossings:

$$P(\#\{\alpha_i \text{ crosses } B(x, A/\ell)\} = n) = \mathcal{L}_n\left(\frac{c(A)}{\ell}\right)^n \left(1 - \frac{c(A)}{\ell}\right)^{\ell-n}$$

• As $\ell \to \infty$, this approaches Poisson distribution of intensity c(A) in ball of radius 1!

$$\lim_{\ell \to \infty} P(\#\{\alpha_i \text{ crosses } B(x, A/\ell)\} = n) = \frac{(c(A))^n}{n!} e^{-c(A)}$$

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
				000000	
Problems and solution	ons				

The problem:

• Length 1 subarcs aren't really independent

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
				000000	
Problems and solution	ons				

The problem:

• Length 1 subarcs aren't really independent

The solution:

• Two subarcs "far enough apart" are close to independent.

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
				000000	
Problems and solution	ons				

The problem:

• Length 1 subarcs aren't really independent

The solution:

- Two subarcs "far enough apart" are close to independent.
 - A random geodesic "forgets" its past after some time

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
				000000	
Problems and solution	ons				

The problem:

• Length 1 subarcs aren't really independent

The solution:

- Two subarcs "far enough apart" are close to independent.
 - A random geodesic "forgets" its past after some time

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

• Unlikely to return to very small ball quickly.

Long Arcs 0000000000	On the plane 0000	Back to the surface 00	An incorrect proof 00	Fixes ○●0○○○○	Future ideas 0
Geodesic trajectories					
_					

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

- Choose fundamental domain for S
- Tile universal cover, \tilde{S}

Long Arcs 0000000000	On the pla	ane Back to the s	surface An incorrect pro 00	of Fixes 000000	Future ideas 0
Geodesic traject	ories				
_	<u> </u>				

- Choose fundamental domain for S
- Tile universal cover, \tilde{S}
- \bullet Geodesic trajectory \rightarrow sequence of f.d. edge crossings

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Long Arcs 0000000000	On the plane 0000	Back to the surface	An incorrect proof 00	Fixes ○●00000	Future ideas 0
Geodesic trajectorie	s				
_					

- Choose fundamental domain for S
- Tile universal cover, \tilde{S}
- \bullet Geodesic trajectory \rightarrow sequence of f.d. edge crossings

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Most sequences \rightarrow (unique) geodesic

Long Arcs 0000000000	On the plane 0000	Back to the surface	An incorrect proof 00	Fixes ○●00000	Future ideas 0
Geodesic trajectorie	s				
_					

- Choose fundamental domain for S
- Tile universal cover, \tilde{S}
- \bullet Geodesic trajectory \rightarrow sequence of f.d. edge crossings

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Most sequences \rightarrow (unique) geodesic

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
				000000	
Geodesic trajectories					

・ロト ・四ト ・ヨト ・ヨト

æ.

Given $v \in T_1S$, get g_v in \tilde{S}

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
				000000	
Geodesic trajectories					

Given $v \in T_1S$, get g_v in \tilde{S} \rightsquigarrow bi-infinite word $\ldots x_{-1}x_0x_1\ldots$

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
				000000	
Geodesic trajectories					

ヘロア ヘロア ヘビア ヘビア

3

Given $v \in T_1S$, get g_v in \tilde{S} \rightsquigarrow bi-infinite word $\dots x_{-1}x_0x_1\dots$ Length *I* trajectory from v

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
				000000	
Geodesic trajectories					

ヘロト 人間 と 人 ヨ と 人 ヨ と

3

Given $v \in T_1S$, get g_v in \tilde{S} \rightsquigarrow bi-infinite word $\dots x_{-1}x_0x_1\dots$ Length *I* trajectory from v \rightsquigarrow subword $x_0x_1\dots x_{n(\ell)}$

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
				000000	
Geodesic trajectories					

・ロット (雪) (日) (日) (日)

Given $v \in T_1S$, get g_v in \tilde{S} \rightsquigarrow bi-infinite word $\ldots x_{-1}x_0x_1\ldots$ Length / trajectory from v \rightsquigarrow subword $x_0x_1\ldots x_{n(\ell)}$ Next: Encode crossing of ball with subwords

	sk crossin	<u>zs</u>			
Solutions to our p	oooo	00	00	0000000	0
Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas

Fix crossing direction in \mathbb{R}^2 .

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
				0000000	
Solutions to our pr	oblems				
C					

Small disk crossings

Fix crossing direction in \mathbb{R}^2 . Get crossing pattern of $B(x, \frac{A}{\ell})$ for each ℓ .

・ロト・西ト・山田・山田・山下

ooooooooooooooooooooooooooooooooooooo	Small disl		5		
Long Arcs On the plane Back to the surface An incorrect proof Fixes Future ideas	000000000	0000			

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Use edge crossing to encode disc crossings:

	isk crossing	σς			
Solutions to our	0000 problems	00	00	0000000	0
Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Use edge crossing to encode disc crossings:

• Crossing $B(x, A/\ell) \leftrightarrow \text{length } \log^2(\ell)$ subwords

Long Arcs 0000000000	On the plane	Back to the surface	An incorrect proof 00	Fixes ○○○○○●○	Future ideas 0
Solutions to our pr	oblems				

Geodesic $\gamma \quad \leftrightarrow \quad \ldots x_{-1}x_0x_1 \ldots$ word in f.d. edges

Long Arcs 0000000000	On the plane 0000	Back to the surface 00	An incorrect proof 00	Fixes ○○○○○●○	Future ideas 0
Solutions to our pr	oblems				
	1 · uc				

Geodesic $\gamma \leftrightarrow \dots x_{-1}x_0x_1\dots$ word in f.d. edges cut into indep., ident. distr. subwords! (Lalley)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Long Arcs 0000000000	On the plane 0000	Back to the surface	An incorrect proof 00	Fixes ○○○○○●○	Future ideas 0
Solutions to our pro	oblems				
NA //	1 · uc		. 11		

Geodesic $\gamma \leftrightarrow \dots x_{-1}x_0x_1\dots$ word in f.d. edges Forgetting the past \leftarrow cut into indep., ident. distr. subwords! (Lalley)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Long Arcs 0000000000	On the plane 0000	Back to the surface	An incorrect proof 00	Fixes ○○○○○●○	Future ideas 0
Solutions to our pro	oblems				
NA //	1 · uc		. 11		

 $\begin{array}{rcl} \mbox{Geodesic } \gamma & \leftrightarrow & \dots x_{-1} x_0 x_1 \dots \mbox{ word in f.d. edges} \\ \mbox{Forgetting the past} & \leftarrow & \mbox{cut into indep., ident. distr. subwords!} \\ & & (Lalley) \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Cut length ℓ word into i.i.d. chunks of length $\log^3(\ell)$

Long Arcs 0000000000	On the plane 0000	Back to the surface 00	An incorrect proof 00	Fixes ○○○○○●○	Future ideas 0
Solutions to our pr	oblems				
	1 · uc				

 $\begin{array}{rcl} \mbox{Geodesic } \gamma & \leftrightarrow & \dots x_{-1} x_0 x_1 \dots \mbox{ word in f.d. edges} \\ \mbox{Forgetting the past} & \leftarrow & \mbox{cut into indep., ident. distr. subwords!} \\ & & (Lalley) \end{array}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Cut length ℓ word into i.i.d. chunks of length $\log^3(\ell)$
- Look for length $\log^2(\ell)$ subwords

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
000000000	0000	00	00	000000	0
Solutions to our pr	oblems				
One wor	d per chu	nk			

Long Arcs 0000000000	On the plane	Back to the surface	An incorrect proof	Fixes ○○○○○○●	Future ideas
Solutions to our pr					
One wor	d per chu	nk			

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Disc crossings occur far apart

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
000000000	0000	00	00	000000	0
Solutions to our pr	oblems				
One wor	d per chu	nk			

- Disc crossings occur far apart
- Look at nearby lifts of $B(x, A/\ell)$ (in $\approx \log^3 \ell$ radius)

Long Arcs 0000000000	On the plane	Back to the surface	An incorrect proof	Fixes ○○○○○○●	Future ideas			
		00	00	0000000	0			
Solutions to our problems								
One word per chunk								

- Disc crossings occur far apart
- Look at nearby lifts of $B(x, A/\ell)$ (in $\approx \log^3 \ell$ radius)
- Measure of arcs returning quickly goes to 0

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas		
0000000000	0000	00	00	0000000	●		
Future ic	Future ideas						

The same theorems should hold for

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas		
0000000000	0000	00	00	0000000	●		
Future ic	Future ideas						

The same theorems should hold for

• Variable negative curvature

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	00	00	0000000	●
Future ic	leas				

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

The same theorems should hold for

- Variable negative curvature
- Closed geodesics

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	00	00	0000000	●
Future id	eas				

The same theorems should hold for

- Variable negative curvature
- Closed geodesics

Questions:

• What about geodesics that don't equidistribute, but still fill?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Long Arcs	On the plane	Back to the surface	An incorrect proof	Fixes	Future ideas
0000000000	0000	00	00	0000000	●
Future id	eas				

The same theorems should hold for

- Variable negative curvature
- Closed geodesics

Questions:

• What about geodesics that don't equidistribute, but still fill?

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q @

• What about typical geodesics in flat metrics?