Tessellations coming from long geodesics on surfaces

Jenya Sapir

SUNY - Binghamton

April 14, 2020

Our setting

Joint work with Jayadev Athreya, Steve Lalley and Matt Wroten.

Our setting

Joint work with Jayadev Athreya, Steve Lalley and Matt Wroten.

S - closed, hyperbolic surface

Our setting

Joint work with Jayadev Athreya, Steve Lalley and Matt Wroten.

α - geodesic on S

How do typical geodesics look?

- $T_{1} S$ - unit tangent bundle

How do typical geodesics look?

- $T_{1} S$ - unit tangent bundle
- g_{t} - geodesic flow

How do typical geodesics look?

- $T_{1} S$ - unit tangent bundle
- g_{t} - geodesic flow is ergodic

How do typical geodesics look?

- $T_{1} S$ - unit tangent bundle
- g_{t} - geodesic flow is ergodic

Theorem (Birkhoff Ergodic theorem)

For almost every $v \in T_{1} S$, and any integrable $f: T_{1} S \rightarrow \mathbb{R}$,

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f\left(g_{t}(v)\right) d t=\frac{1}{2 \pi \operatorname{Area}(S)} \int_{T_{1} S} f(v) d \lambda
$$

How do typical geodesics fill?

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f\left(g_{t}(v)\right) d t=\frac{1}{2 \pi \operatorname{Area}(S)} \int_{T_{1} S} f(v) d \lambda
$$

How do typical geodesics fill?

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f\left(g_{t}(v)\right) d t=\frac{1}{2 \pi \operatorname{Area}(S)} \int_{T_{1} S} f(v) d \lambda
$$

Choose f - indicator function of $U \subset T_{1} S$.

How do typical geodesics fill?

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f\left(g_{t}(v)\right) d t=\frac{1}{2 \pi \operatorname{Area}(S)} \int_{T_{1} S} f(v) d \lambda
$$

Choose f - indicator function of $U \subset T_{1} S$. Then,
Time spent in $U \asymp$ volume of U

First conclusion

Almost all long arcs eventually cut \mathcal{S} into simply connected regions

First conclusion

Almost all long arcs eventually cut \mathcal{S} into simply connected regions

- $g_{t}(v)$ enters U from all directions equally

Sequence of tessellations

Question

Arc α gives tessellation on S. How does it cut up the surface?

Sequence of tessellations

Question

Arc α gives tessellation on S. How does it cut up the surface?

- Proportions of triangles, quadrilaterals, ... , n-gons

Sequence of tessellations

Question

Arc α gives tessellation on S. How does it cut up the surface?

- Proportions of triangles, quadrilaterals, ... , n-gons
- Distribution of edge lengths, angles

Vertices

α_{ℓ} - random arc, length ℓ

Vertices

α_{ℓ} - random arc, length ℓ with tessellation T_{ℓ}

Vertices

α_{ℓ} - random arc, length ℓ with tessellation T_{ℓ} with $v(\ell)$ vertices.

Vertices

α_{ℓ} - random arc, length ℓ with tessellation T_{ℓ} with $v(\ell)$ vertices.
Then,

$$
v(\ell) \sim \frac{1}{4 \pi^{2}(g-1)} \ell^{2}
$$

where $A(\ell) \sim B(\ell)$ if $A / B \rightarrow 1, g=$ genus.

Why ℓ^{2} self-intersections?

A length ℓ arc will cross any region $\approx \ell$ times:

Why ℓ^{2} self-intersections?

A length ℓ arc will cross any region $\approx \ell$ times:

all different crossing angles

Why ℓ^{2} self-intersections?

A length ℓ arc will cross any region $\approx \ell$ times:

all different crossing angles
\Longrightarrow most pairs intersect

Why ℓ^{2} self-intersections?

A length ℓ arc will cross any region $\approx \ell$ times:

all different crossing angles
\Longrightarrow most pairs intersect
$\Longrightarrow \approx \ell^{2}$ intersections

Edges and faces

All complementary regions are polygons w.p.1!

If T_{ℓ} has $v(\ell)$ vertices, $e(\ell)$ edges, $f(\ell)$ faces,

Edges and faces

All complementary regions are polygons w.p.1!

If T_{ℓ} has $v(\ell)$ vertices, $e(\ell)$ edges, $f(\ell)$ faces, then

$$
v(\ell) \sim \frac{1}{2} e(\ell) \sim f(\ell)
$$

Edges and faces

All complementary regions are polygons w.p.1!

If T_{ℓ} has $v(\ell)$ vertices, $e(\ell)$ edges, $f(\ell)$ faces, then

$$
v(\ell) \sim \frac{1}{2} e(\ell) \sim f(\ell)
$$

By Euler characteristic: $v-e+f=\chi(S)$; and $2 e=4 v$.

Edges and faces

All complementary regions are polygons w.p.1!

If T_{ℓ} has $v(\ell)$ vertices, $e(\ell)$ edges, $f(\ell)$ faces, then

$$
v(\ell) \sim \frac{1}{2} e(\ell) \sim f(\ell) \sim \frac{1}{4 \pi^{2}(g-1)} \ell^{2}
$$

By Euler characteristic: $v-e+f=\chi(S)$; and $2 e=4 v$.

Geometry of the tessellation

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^{2}.

Geometry of the tessellation

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^{2}.
E.g. w.p.1,

- The proportion of n-gons in T_{ℓ} approaches $\tau_{n}>0$ as $\ell \rightarrow \infty$.

Geometry of the tessellation

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^{2}.
E.g. w.p.1,

- The proportion of n-gons in T_{ℓ} approaches $\tau_{n}>0$ as $\ell \rightarrow \infty$.
- $\tau_{3} \rightarrow 2-\pi^{2} / 6 \approx .355$

Geometry of the tessellation

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^{2}.
E.g. w.p.1,

- The proportion of n-gons in T_{ℓ} approaches $\tau_{n}>0$ as $\ell \rightarrow \infty$.
- $\tau_{3} \rightarrow 2-\pi^{2} / 6 \approx .355$
- τ_{n} difficult to compute.

Geometry of the tessellation

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^{2}.
E.g. w.p.1,

- The proportion of n-gons in T_{ℓ} approaches $\tau_{n}>0$ as $\ell \rightarrow \infty$.
- $\tau_{3} \rightarrow 2-\pi^{2} / 6 \approx .355$
- τ_{n} difficult to compute.
- $4=$ expected number of sides

Geometry of the tessellation

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^{2}.
E.g. w.p.1,

- The proportion of n-gons in T_{ℓ} approaches $\tau_{n}>0$ as $\ell \rightarrow \infty$.
- $\tau_{3} \rightarrow 2-\pi^{2} / 6 \approx .355$
- τ_{n} difficult to compute.
- $4=$ expected number of sides
- Edge lengths and intersection angles \rightarrow limiting distributions.

Geometry of the tessellation

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^{2}.
E.g. w.p.1,

- The proportion of n-gons in T_{ℓ} approaches $\tau_{n}>0$ as $\ell \rightarrow \infty$.
- $\tau_{3} \rightarrow 2-\pi^{2} / 6 \approx .355$
- τ_{n} difficult to compute.
- $4=$ expected number of sides
- Edge lengths and intersection angles \rightarrow limiting distributions.
- Angles mutually independent with prob. density $\frac{1}{2} \sin \theta$

Geometry of the tessellation

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^{2}.
E.g. w.p.1,

- The proportion of n-gons in T_{ℓ} approaches $\tau_{n}>0$ as $\ell \rightarrow \infty$.
- $\tau_{3} \rightarrow 2-\pi^{2} / 6 \approx .355$
- τ_{n} difficult to compute.
- $4=$ expected number of sides
- Edge lengths and intersection angles \rightarrow limiting distributions.
- Angles mutually independent with prob. density $\frac{1}{2} \sin \theta$ Large angles preferred

Geometry of the tessellation

Theorem (Athreya-Lalley-S-Wroten)

W.p.1, the statistics of T_{ℓ} approach those of a Poisson line process on \mathbb{R}^{2}.
E.g. w.p.1,

- The proportion of n-gons in T_{ℓ} approaches $\tau_{n}>0$ as $\ell \rightarrow \infty$.
- $\tau_{3} \rightarrow 2-\pi^{2} / 6 \approx .355$
- τ_{n} difficult to compute.
- $4=$ expected number of sides
- Edge lengths and intersection angles \rightarrow limiting distributions.
- Angles mutually independent with prob. density $\frac{1}{2} \sin \theta$ Large angles preferred
- Self-intersection times \rightarrow Poisson point process of intensity $\frac{1}{\text { Area }(S)}$

Tessellations on the plane

How to model a long geodesic

- Birkhoff: geodesics look locally like random collections of lines

Tessellations on the plane

How to model a long geodesic

- Birkhoff: geodesics look locally like random collections of lines
- Rotation invariant

Tessellations on the plane

How to model a long geodesic

- Birkhoff: geodesics look locally like random collections of lines
- Rotation invariant
- Independent of choice of ball ("translation invariant")

Tessellations on the plane

How to model a long geodesic

- Birkhoff: geodesics look locally like random collections of lines
- Rotation invariant
- Independent of choice of ball ("translation invariant")

Tessellations on the plane

How to model a long geodesic

- Birkhoff: geodesics look locally like random collections of lines
- Rotation invariant
- Independent of choice of ball ("translation invariant")
- Let's look at random collections of lines in the plane.

Tessellations on the plane

How to model a long geodesic

- Birkhoff: geodesics look locally like random collections of lines
- Let's look at random collections of lines in the plane. Want: rotation and translation invariant

Poisson line process

- Draw lines at angle θ_{i}, distance r_{i} from $(0,0)$.

Poisson line process

- Draw lines at angle θ_{i}, distance r_{i} from $(0,0)$.
- Choose sequence $\theta_{1}, \ldots, \theta_{n}$ at random in $[0,2 \pi]$

Poisson line process

- Draw lines at angle θ_{i}, distance r_{i} from $(0,0)$.
- Choose sequence $\theta_{1}, \ldots, \theta_{n}$ at random in $[0,2 \pi]$
- Choose $r_{1}<\cdots<r_{n} \in \mathbb{R}$ with Poisson distribution with intensity λ

$$
P\left(\#\left\{r_{i} \in[0, \ell]\right\}=n\right)=\frac{(\lambda \ell)^{n}}{n!} e^{-\lambda \ell}
$$

Poisson line process

Get tesselation of \mathbb{R}^{2}.

Poisson line process

Get tesselation of \mathbb{R}^{2}. Miles ('64): statistics for frequencies of n-gons, side lengths, angles, etc in Poisson line process.

Poisson line process

Get tesselation of \mathbb{R}^{2}. Miles ('64): statistics for frequencies of n-gons, side lengths, angles, etc in Poisson line process.
We show: statistics on surface same as for Poisson line process on \mathbb{R}^{2}.

Back to the surface

Look at length ℓ arc in ball of size A / ℓ (+ rescale, map to plane.)

Back to the surface

Look at length ℓ arc in ball of size A / ℓ (+ rescale, map to plane.)

Back to the surface

Look at length ℓ arc in ball of size A / ℓ (+ rescale, map to plane.)

Back to the surface

Look at length ℓ arc in ball of size A / ℓ (+ rescale, map to plane.)

Back to the surface

Look at length ℓ arc in ball of size A / ℓ (+ rescale, map to plane.)

Back to the surface

Look at length ℓ arc in ball of size A / ℓ (+ rescale, map to plane.)

By Birkhoff, α_{ℓ} expected to cross $B(x, A / \ell) \approx A$ times

Back to the surface

Look at length ℓ arc in ball of size A / ℓ (+ rescale, map to plane.)

By Birkhoff, α_{ℓ} expected to cross $B(x, A / \ell) \approx A$ times As $\ell \rightarrow \infty$, looks like Euclidean lines in Euclidean disk!

Theorem (Athreya-Lalley-S-Wroten)

As $\ell \rightarrow \infty$, the tesselations of $B(x, A / \ell)$ approach a Poisson line process.

Theorem (Athreya-Lalley-S-Wroten)

As $\ell \rightarrow \infty$, the tesselations of $B(x, A / \ell)$ approach a Poisson line process.

Theorem (Athreya-Lalley-S-Wroten)

Given two points x, x^{\prime}, tesselations in $B(x, A / \ell) \cup B\left(x^{\prime}, A / \ell\right)$ approach independent pair of Poisson line processes.

An incorrect (but illuminating) idea.

Random length ℓ arc in $B(x, A / \ell)$: distribution of crossing number

An incorrect (but illuminating) idea.

Random length ℓ arc in $B(x, A / \ell)$: distribution of crossing number

- Divide length $\ell \in \mathbb{N}$ arc into length 1 segments $\alpha_{1}, \ldots, \alpha_{\ell}$

An incorrect (but illuminating) idea.

Random length ℓ arc in $B(x, A / \ell)$: distribution of crossing number

- Divide length $\ell \in \mathbb{N}$ arc into length 1 segments $\alpha_{1}, \ldots, \alpha_{\ell}$
- Birkhoff: expect $c(A)$ total crossings

An incorrect (but illuminating) idea.

Random length ℓ arc in $B(x, A / \ell)$: distribution of crossing number

- Divide length $\ell \in \mathbb{N}$ arc into length 1 segments $\alpha_{1}, \ldots, \alpha_{\ell}$
- Birkhoff: expect $c(A)$ total crossings
- Incorrect assumption: Segments all independent

An incorrect (but illuminating) idea.

Random length ℓ arc in $B(x, A / \ell)$: distribution of crossing number

- Divide length $\ell \in \mathbb{N}$ arc into length 1 segments $\alpha_{1}, \ldots, \alpha_{\ell}$
- Birkhoff: expect $c(A)$ total crossings
- Incorrect assumption: Segments all independent
- Thus, $P\left(\alpha_{i}\right.$ crosses $\left.B(x, A / \ell)\right) \approx c(A) / \ell$

An incorrect (but illuminating) idea.

Random length ℓ arc in $B(x, A / \ell)$: distribution of crossing number

- Divide length $\ell \in \mathbb{N}$ arc into length 1 segments $\alpha_{1}, \ldots, \alpha_{\ell}$
- Birkhoff: expect $c(A)$ total crossings
- Incorrect assumption: Segments all independent
- Thus, $P\left(\alpha_{i}\right.$ crosses $\left.B(x, A / \ell)\right) \approx c(A) / \ell$
- Binomial distribution of crossings:
$P\left(\#\left\{\alpha_{i} \operatorname{crosses} B(x, A / \ell)\right\}=n\right)={ }_{\ell} C_{n}\left(\frac{c(A)}{\ell}\right)^{n}\left(1-\frac{c(A)}{\ell}\right)^{\ell-n}$
- Binomial distribution of crossings:

$$
P\left(\#\left\{\alpha_{i} \text { crosses } B(x, A / \ell)\right\}=n\right)=\ell_{n}\left(\frac{c(A)}{\ell}\right)^{n}\left(1-\frac{c(A)}{\ell}\right)^{\ell-n}
$$

- As $\ell \rightarrow \infty$, this approaches Poisson distribution of intensity $c(A)$ in ball of radius 1 !
- Binomial distribution of crossings:

$$
P\left(\#\left\{\alpha_{i} \text { crosses } B(x, A / \ell)\right\}=n\right)=\ell_{n}\left(\frac{c(A)}{\ell}\right)^{n}\left(1-\frac{c(A)}{\ell}\right)^{\ell-n}
$$

- As $\ell \rightarrow \infty$, this approaches Poisson distribution of intensity $c(A)$ in ball of radius 1 !

$$
\lim _{\ell \rightarrow \infty} P\left(\#\left\{\alpha_{i} \text { crosses } B(x, A / \ell)\right\}=n\right)=\frac{(c(A))^{n}}{n!} e^{-c(A)}
$$

The problem:

- Length 1 subarcs aren't really independent

The problem:

- Length 1 subarcs aren't really independent

The solution:

- Two subarcs "far enough apart" are close to independent.

The problem:

- Length 1 subarcs aren't really independent

The solution:

- Two subarcs "far enough apart" are close to independent.
- A random geodesic "forgets" its past after some time

The problem:

- Length 1 subarcs aren't really independent

The solution:

- Two subarcs "far enough apart" are close to independent.
- A random geodesic "forgets" its past after some time
- Unlikely to return to very small ball quickly.

Bowen-Series symbolic dynamics

- Choose fundamental domain for S
- Tile universal cover, \tilde{S}

Bowen-Series symbolic dynamics

- Choose fundamental domain for S
- Tile universal cover, \tilde{S}
- Geodesic trajectory \rightarrow sequence of f.d. edge crossings

Bowen-Series symbolic dynamics

- Choose fundamental domain for S
- Tile universal cover, \tilde{S}
- Geodesic trajectory \rightarrow sequence of f.d. edge crossings
- Most sequences \rightarrow (unique) geodesic

Bowen-Series symbolic dynamics

- Choose fundamental domain for S
- Tile universal cover, \tilde{S}
- Geodesic trajectory \rightarrow sequence of f.d. edge crossings
- Most sequences \rightarrow (unique) geodesic

Given $v \in T_{1} S$, get g_{v} in \tilde{S}

Geodesic trajectories

Given $v \in T_{1} S$, get g_{v} in \tilde{S}
\rightsquigarrow bi-infinite word $\ldots x_{-1} x_{0} x_{1} \ldots$

Geodesic trajectories

Given $v \in T_{1} S$, get g_{v} in \tilde{S}
\rightsquigarrow bi-infinite word $\ldots x_{-1} x_{0} x_{1} \ldots$
Length / trajectory from v

Given $v \in T_{1} S$, get g_{v} in \tilde{S}
\rightsquigarrow bi-infinite word $\ldots x_{-1} x_{0} x_{1} \ldots$
Length / trajectory from v
\rightsquigarrow subword $x_{0} x_{1} \ldots x_{n(\ell)}$

Given $v \in T_{1} S$, get g_{v} in \tilde{S}
\rightsquigarrow bi-infinite word $\ldots x_{-1} x_{0} x_{1} \ldots$
Length / trajectory from v
\rightsquigarrow subword $x_{0} x_{1} \ldots x_{n(\ell)}$
Next: Encode crossing of ball with subwords

Solutions to our problems

Small disk crossings

Fix crossing direction in \mathbb{R}^{2}.

Solutions to our problems

Small disk crossings

Fix crossing direction in \mathbb{R}^{2}. Get crossing pattern of $B\left(x, \frac{A}{\ell}\right)$ for each ℓ.

Solutions to our problems

Small disk crossings

Use edge crossing to encode disc crossings:

Solutions to our problems

Small disk crossings

Use edge crossing to encode disc crossings:

- Crossing $B(x, A / \ell) \leftrightarrow$ length $\log ^{2}(\ell)$ subwords

Solutions to our problems

Why geodesics "forget their past"

Geodesic $\gamma \quad \leftrightarrow \quad \ldots x_{-1} x_{0} x_{1} \ldots$ word in f.d. edges

Solutions to our problems

Why geodesics "forget their past"

Geodesic $\gamma \quad \leftrightarrow \quad \ldots x_{-1} x_{0} x_{1} \ldots$ word in f.d. edges cut into indep., ident. distr. subwords! (Lalley)

Solutions to our problems

Why geodesics "forget their past"

Geodesic $\gamma \quad \leftrightarrow \quad \ldots x_{-1} x_{0} x_{1} \ldots$ word in f.d. edges
Forgetting the past \leftarrow cut into indep., ident. distr. subwords! (Lalley)

Solutions to our problems

Why geodesics "forget their past"

Geodesic $\gamma \quad \leftrightarrow \quad \ldots x_{-1} x_{0} x_{1} \ldots$ word in f.d. edges Forgetting the past \leftarrow cut into indep., ident. distr. subwords! (Lalley)

- Cut length ℓ word into i.i.d. chunks of length $\log ^{3}(\ell)$

Solutions to our problems

Why geodesics "forget their past"

Geodesic $\gamma \quad \leftrightarrow \quad \ldots x_{-1} x_{0} x_{1} \ldots$ word in f.d. edges Forgetting the past \leftarrow cut into indep., ident. distr. subwords! (Lalley)

- Cut length ℓ word into i.i.d. chunks of length $\log ^{3}(\ell)$
- Look for length $\log ^{2}(\ell)$ subwords

Solutions to our problems

One word per chunk

Solutions to our problems

One word per chunk

- Disc crossings occur far apart

Solutions to our problems

One word per chunk

- Disc crossings occur far apart
- Look at nearby lifts of $B(x, A / \ell)$ (in $\approx \log ^{3} \ell$ radius)

Solutions to our problems

One word per chunk

- Disc crossings occur far apart
- Look at nearby lifts of $B(x, A / \ell)$ (in $\approx \log ^{3} \ell$ radius)
- Measure of arcs returning quickly goes to 0

Future ideas

The same theorems should hold for

Future ideas

The same theorems should hold for

- Variable negative curvature

Future ideas

The same theorems should hold for

- Variable negative curvature
- Closed geodesics

Future ideas

The same theorems should hold for

- Variable negative curvature
- Closed geodesics

Questions:

- What about geodesics that don't equidistribute, but still fill?

Future ideas

The same theorems should hold for

- Variable negative curvature
- Closed geodesics

Questions:

- What about geodesics that don't equidistribute, but still fill?
- What about typical geodesics in flat metrics?

