Using the folded apartment to deduce cutofif

MICHAEL CHAPMAN

BASED ON JOINT WORK WITH ORI PARZANCHEVSKI

Talk Plan

- Introduce the Bruhat-Tits buildings of type \tilde{A}_{d} and their fundumental apartments.
- Discuss random walks on cells of a simplicial complex and the cutoff phenomenon.
- Define Ramanujan graphs and Ramanujan complexes.
- Review the proof from Lubetzky-Peres' work via the folded apartment of \tilde{A}_{1}.
- Our work on the higher dimensional cases.

The Bruhat Tits building

- Integral lattices: $L=A \cdot \mathbb{Z}^{d}$ for $A \in \mathbb{Z}^{d \times d}$ invertible over \mathbb{Q}.
- Examples:

Google images

Facts about integral lattices

- $A \cdot \mathbb{Z}^{d} \subseteq \mathbb{Z}^{d}$ and $A \cdot \mathbb{Z}^{d}=\mathbb{Z}^{d}$ iff $A \in G L_{d} \mathbb{Z}$
- If $A \cdot \mathbb{Z}^{d}=B \cdot \mathbb{Z}^{d}$ then $A^{-1} B \in G L_{d} \mathbb{Z}$
- co-volume of L is $|\operatorname{det}(A)|$
- L and L^{\prime} are homothetic if $\exists \alpha \in \mathbb{Z}: L=\alpha L^{\prime}$ or $L^{\prime}=\alpha L$. Denote by $L \approx L^{\prime}$.
- L is primitive if $\forall \alpha \in \mathbb{Z}: L / \alpha \nsubseteq \mathbb{Z}^{d}$

Vertices of the building

- Fix a prime p for the rest of the construction.
- $\left(X_{p}^{d}\right)^{0}=$ integral lattices with a p-power co-volume up to homothety $=$ primitive integral lattices with a p-power covolume $=\left\{\left.\left(\begin{array}{ccccc}p^{n_{1}} & & & & \\ & \ddots & & a_{i, j} & \\ & & \ddots & & \\ & 0 & & \ddots & \\ & & & & p^{n_{d}}\end{array}\right) \right\rvert\, \begin{array}{l}0 \leq a_{i, j}<p^{n_{i}}, \quad n_{i} \geq 0 \\ \operatorname{gcd}\left(a_{i, j}, p^{p_{k}}\right)=1\end{array}\right\}$

Adjacency of lattices

- $L, L^{\prime} \in\left(X_{p}^{d}\right)^{0}$ are adjacent if $p L \subseteq L^{\prime} \subseteq L$ or $p L^{\prime} \subseteq L \subseteq L^{\prime}$.
- Examples: Let $p=3,\left(\begin{array}{ll}3 & 1 \\ 0 & 1\end{array}\right) \sim\left(\begin{array}{ll}9 & 1 \\ 0 & 1\end{array}\right)$
- X_{p}^{d} is the clique complex of the graph we got

Examples by Web and OP

Algebraic description of adjacency

- Given A, B in primitive form, $A \sim B$ if there exists N of the form

$$
\left(\begin{array}{ccccc}
p & * & 0 & * & 0 \\
& 1 & 0 & 0 & 0 \\
& & p & * & * \\
& \mathbf{0} & & 1 & 0 \\
& & & & 1
\end{array}\right)
$$

such that either $A \mathbb{Z}^{d} \approx B N \mathbb{Z}^{d}$ or $A N \mathbb{Z}^{d} \approx B \mathbb{Z}^{d}$

Action of $P G L_{d}\left(\mathbb{Q}_{p}\right)$

- Alternative definition of $\left(X_{p}^{d}\right)^{0}$ is $P G L_{d}\left(\mathbb{Q}_{p}\right) / P G L_{d}\left(\mathbb{Z}_{p}\right)$
- If we define the left action of $P G L_{d}\left(\mathbb{Q}_{p}\right)$ on its cosets we get a simplicial action on the building.

Interlude - Covering spaces

From Hatcher

Interlude - Quotient spaces

- G a group and X a topological space
- $G \curvearrowright X$ nicely we can define X / G
- If X is a simplicial complex and G acts nicely then X / G is also a simplicial complex
- Example: Every $2 d$-reg graph is a quotient of the $2 d$-reg tree via the action of the rank d free group on it

The apartment and folded apartment

- Since $P G L_{d}\left(\mathbb{Q}_{p}\right) \curvearrowright X_{p}^{d}$, we can ask what is the quotient space w.r.t the stabelizer of a cell.
- If we take any cell of $\operatorname{dim} d-1$ we get an apartment.
- If we take a vertex we get a folded apartment

Examples

Fundumental apartment - Algebraic viewpoint

$$
X_{1}^{d}=\left\{\left.\left(\begin{array}{ccc}
p^{n_{1}} & & \mathbf{0} \\
& \ddots & \\
& & p^{n_{d}}
\end{array}\right) \right\rvert\, \min \left\{n_{1}, \ldots, n_{d}\right\}=0\right\}
$$

$$
\mathcal{S}=\left\{\left(\begin{array}{ll}
p^{\alpha_{1}} & \\
& p^{\alpha_{2}} \\
& \\
& \\
&
\end{array}\right.\right.
$$

$$
\left.\left.\begin{array}{cc}
& 0 \\
p^{\alpha_{d-1}} & \\
& 1
\end{array}\right) \mid \alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{d-1}\right\}
$$

Random walks and the cutoff phenomenon

- Given a d-reg directed graph D we can define the random walk operator P in the following way: if μ is a probability measure on the vertices of the graph, then

$$
\mu P(x)=\frac{1}{d} \sum_{y \rightarrow x} \mu(y) \quad \forall x \in V(D)
$$

- Note that P is a bounded operator on $L^{2}(D)$

SRW and NBRW

- If G is a non-directed reg graph we can define the simple random walk operator by replaceing every non-directed edge by two directed ones and using the previous definition
- For the same graph we can define the Non-backtracking random walk whose vertices are the directed edges we created before and you can move from $u v$ to $v w$ if $u \neq w$

Pictures by OP

Examples

Stationary distribution and mixing time

- If D is a d-reg graph with n vertices and P is ergodic (it has a strictly positive power) one can show that

$$
\mu P^{t} \xrightarrow{t \rightarrow \infty} \frac{1}{n}
$$

where $\frac{1}{n}$ is the uniform distribution on the vertices.

- We define for every $\varepsilon>0$ the total variation ε-mixing time of P to be

$$
t_{m i x}(\varepsilon)=\min \left\{t \geq 1 \mid \forall x \in D,\left\|\delta_{x} P^{t}-\pi\right\|_{1} \leq 2 \varepsilon\right\}
$$

The cutoff phenomenon

- A sequnece $\left\{D_{n}\right\}$ of d-reg directed graphs are said to exhibit cutoff if for every $\varepsilon>0$ we have

$$
\frac{t_{\operatorname{mix}}\left(\varepsilon, \mathcal{D}_{n}\right)}{t_{\operatorname{mix}}\left(1-\varepsilon, \mathcal{D}_{n}\right)} \xrightarrow{n \rightarrow \infty} 1
$$

Pictures from LP

Walks on simplicial complexes

- If X is a simplicial complex, we can define walks on its higher dim (ordered or unordered) cells.
- For example: Move uniformly from a triangle xyz to yzw such that $w \neq x$

Ramanujan graphs and complexes

- "Ramanujan complexes mimic their universal cover spectrally"
- A d-reg graph is Ramanujan if the non-trivial spectrum of the SRW operator on it is contained in that of its covering tree

Ramanujan graphs and complexes

- A finite quotient of the building X_{p}^{d} is Ramanujan if the nontrivial spectrum of any "geometric" operator on cells of the complex is contained in the spectrum of this operator on the building
- Notes:
- The operators we have shown are geometric
- There exist inifinitely many Ramanujan complexes (Fir,Li04,LSV05,EP18) and they are useful and interesting

Apartment analysis - 1 dim case

Apartment analysis - 2 dim case

Thank you

