Lusternik–Schnirelmann theory

Ana Žegarac

10.05.2021

Literature:

- W. Klingenberg: "Lectures on closed geodesics" (1978);
- V. Ginzburg: lecture notes for the course Morse theory (2021).

How many closed geodesics are there on a Riemannian manifold?

- On a **closed surface of negative curvature** every curve that is not null-homotopic can be deformed into a closed geodesic (Hadamard, 1898).
- On a **simply connected** compact surface there exist at least three closed geodesics without self-intersections (Lusternik and Schnirelmann, 1929).

• On a **compact Riemannian manifold** there exists at least one closed geodesic (Lusternik and Fet, 1951).

Let (M,g) be a compact Riemannian manifold. We denote by

$$\Lambda M \coloneqq H^1(S^1, M).$$

In other words, $c\in\Lambda M$ are maps $c:S^1\to M$ that are absolutely continuous and

$$\int_0^1 g(\dot{c}(t), \dot{c}(t)) \,\mathrm{d}t < \infty.$$

We define the energy integral by

$$E: \Lambda M \to \mathbb{R}, \qquad E(c) \coloneqq \frac{1}{2} \int_0^1 g(\dot{c}(t), \dot{c}(t)) \,\mathrm{d}t.$$

Theorem

A curve $c \in \Lambda M$ is a closed geodesic or a constant map if and only if it is a critical point of E.

We denote by $\phi_t : \Lambda M \to \Lambda M$ the negative gradient flow of E for time t.

Properties of the negative gradient flow of E

Important property of the negative gradient flow ϕ of E:

We denote $\Lambda^{\kappa}M \coloneqq \{c \in \Lambda M \mid E(c) \le \kappa\} \qquad \Lambda^{\kappa-}M \coloneqq \{c \in \Lambda M \mid E(c) < \kappa\}$

- A $\phi\text{-}\mathbf{family}$ is non-empty set \mathscr{A} of subsets $A\subset\Lambda M$ such that
 - 1. $A \neq \emptyset$;
 - 2. $E|_A$ is bounded;
 - 3. if $A \in \mathscr{A}$, then $\phi_s(A) \in \mathscr{A}$ for all $s \ge 0$.

Examples of *A*:

(a) $\mathscr{A} = \{\{\phi_t c\} \mid t \ge 0\};\$

- A $\phi\text{-}\mathbf{family}$ is non-empty set \mathscr{A} of subsets $A\subset\Lambda M$ such that
 - 1. $A \neq \emptyset$;
 - 2. $E|_A$ is bounded;
 - 3. if $A \in \mathscr{A}$, then $\phi_s(A) \in \mathscr{A}$ for all $s \ge 0$.

Examples of *A*:

(b) $\mathscr{A} = \{ \text{set of all elements in a connected component of } \Lambda M \};$

- A $\phi\text{-}\mathbf{family}$ is non-empty set \mathscr{A} of subsets $A\subset\Lambda M$ such that
 - 1. $A \neq \emptyset$;
 - 2. $E|_A$ is bounded;
 - 3. if $A \in \mathscr{A}$, then $\phi_s(A) \in \mathscr{A}$ for all $s \ge 0$.

Examples of *A*:

(c) $\mathscr{A} = \{ |u| \mid u \in w \}.$ union of images of singular simplices of u Let $\alpha \in \mathbb{R}$ and choose ε such that there are no critical values of E in $(\alpha, \alpha + \varepsilon]$.

A $\phi\text{-family mod }\Lambda^\alpha M$ is non-empty set \mathscr{A} of subsets $A\subset\Lambda M$ such that

- 1. $A \neq \emptyset$;
- 2. $E|_A$ is bounded;
- 3. if $A \in \mathscr{A}$, then $\phi_s(A) \in \mathscr{A}$ for all $s \ge 0$;
- 4. if $A \in \mathscr{A}$, then $A \not\subset \Lambda^{\alpha + \varepsilon} M$.

We define the critical value of a ϕ -family \mathscr{A} of $\Lambda M \mod \Lambda^{\alpha} M$ by

Theorem

It holds $\kappa_{\mathscr{A}} > \alpha$ and there exists a critical point c of E with $E(c) = \kappa_{\mathscr{A}}$.

To show existence of a closed geodesic on M, we need this critical value $\kappa_{\mathscr{A}}$ to be greater than zero.

Proof: showing $\kappa_{\mathscr{A}} > \alpha$

- Recall if $A \in \mathscr{A}$, then $A \not\subset \Lambda^{\alpha + \varepsilon} M$.
- Assume $\alpha \geq \kappa_{\mathscr{A}} \coloneqq \inf_{A} \sup E|_{A}$.
- Then $\exists A \in \mathscr{A}$ such that $\sup E|_A \leq \alpha$.
- Thus $A \subset \Lambda^{\alpha} M \subset \Lambda^{\alpha+\varepsilon} M$.
- Contradiction.

Proof of the theorem

Proof: showing existence of critical point c of E with $E(c) = \kappa_{\mathscr{A}}$.

- Assume c is **not** a critical point of E with $E(c) = \kappa_{\mathscr{A}}$.
- Recall
 - 1. $\kappa_{\mathscr{A}} \coloneqq \inf_{A \in \mathscr{A}} \sup E|_A;$
 - 2. if $A \in \mathscr{A}$, then $\phi_s(A) \in \mathscr{A}$ for all $s \ge 0$.
- By definition of $\kappa_{\mathscr{A}}$, for every $\varepsilon > 0$ there exists $A \subset \Lambda^{\kappa_{\mathscr{A}} + \varepsilon}$.

Lemma. If κ is not a critical value of E, then $\kappa > 0$ and there exist $\varepsilon > 0$ and $s_0 \ge 0$ such that

$$\phi_{s_0}\left(\Lambda^{(\kappa+\varepsilon)}M\right)\subset\Lambda^{(\kappa-\varepsilon)-}M$$

- Thus by Lemma, $\exists A \in \mathscr{A}$ such that $\sup E|_{\phi_{s_0}A} \leq \kappa_{\mathscr{A}} \varepsilon < \kappa_{\mathscr{A}}$.
- But then $\kappa_{\mathscr{A}} \coloneqq \inf_A \sup E|_A < \kappa_{\mathscr{A}}$.
- Contradiction.

We saw basics of Lusternik–Schnierelmann theory on ΛM :

- Definition of ϕ -family \mathscr{A} of $\Lambda M \pmod{\Lambda^{\alpha} M}$;
- Critical value of *A*:

$$\kappa = \inf_{A \in \mathscr{A}} \sup E|_A;$$

- **Theorem**: κ is an actual critical value of E.
- Possible application: existence of a closed geodesic on a compact Riemannian manifold.

Thank you!