Spectral Invariants and Irie's Theorem

Alessio Pellegrini

ETH Zürich

May 10, 2021

Alessio Pellegrini (ETH Zürich) Spectral Invariants and Irie's Theorem

æ

Overview

1 Hamiltonian LS Theory: Spectral Invariants

- Motivation and Definition
- Basic Properties
- Spectrality Axiom
- 2 Hofer-Zehnder Capacity
 - Definition of the Capicity
 - Dynamical consequences

(3) Spectral Invariants for Symplectic Homology: Irie's Theorem

- Symplectic Homology
- Irie's Theorem

• Classical Lusternik-Schnirelmann theory requires a nice action functional $\mathcal{E}.$

æ

-

- Classical Lusternik-Schnirelmann theory requires a nice action functional \mathcal{E} .
- In Floer theory we have the Hamiltonian action functional \mathcal{A}_H on the loop space $\mathcal{L}M$:

$$\mathcal{A}_H \colon \mathcal{L}M \to \mathbb{R}, \ \mathcal{A}_H(\gamma) = -\int_D \bar{\gamma}^* \omega - \int_0^1 H_t(\gamma(t)) \, dt.$$

- Classical Lusternik-Schnirelmann theory requires a nice action functional \mathcal{E} .
- In Floer theory we have the Hamiltonian action functional \mathcal{A}_H on the loop space $\mathcal{L}M$:

$$\mathcal{A}_H \colon \mathcal{L}M \to \mathbb{R}, \ \mathcal{A}_H(\gamma) = -\int_D \bar{\gamma}^* \omega - \int_0^1 H_t(\gamma(t)) \, dt.$$

• We cannot apply the classical LS theory.

• E • .

- Classical Lusternik-Schnirelmann theory requires a nice action functional \mathcal{E} .
- In Floer theory we have the Hamiltonian action functional \mathcal{A}_H on the loop space $\mathcal{L}M$:

$$\mathcal{A}_H \colon \mathcal{L}M \to \mathbb{R}, \ \mathcal{A}_H(\gamma) = -\int_D \bar{\gamma}^* \omega - \int_0^1 H_t(\gamma(t)) \, dt.$$

- We cannot apply the classical LS theory.
- However, there is still a well-defined notion of min-max values, called **spectral invariants**.

• • • • • • • • •

Definition

For $\beta \in \operatorname{HF}_{\bullet}(H) \setminus \{0\}$ we define the **spectral invariant** $c_{\beta}(H)$ as

$$c_{\beta}(H) = \inf_{\sum_{i} n_{i} x_{i} \in \beta} \max_{n_{i} \neq 0} \mathcal{A}_{H}(x_{i}).$$

-

1 (P) + (P)

Definition

For $\beta \in \operatorname{HF}_{\bullet}(H) \setminus \{0\}$ we define the **spectral invariant** $c_{\beta}(H)$ as

$$c_{\beta}(H) = \inf_{\sum_{i} n_{i} x_{i} \in \beta} \max_{n_{i} \neq 0} \mathcal{A}_{H}(x_{i}).$$

• For $\beta = 0$ we set $c_{\beta}(H) = -\infty$.

(4月) イヨト イヨト

- 32

Definition

For $\beta \in \operatorname{HF}_{\bullet}(H) \setminus \{0\}$ we define the spectral invariant $c_{\beta}(H)$ as

$$c_{\beta}(H) = \inf_{\sum_{i} n_{i} x_{i} \in \beta} \max_{n_{i} \neq 0} \mathcal{A}_{H}(x_{i}).$$

• For
$$\beta = 0$$
 we set $c_{\beta}(H) = -\infty$.

• Moreover

$$c_{\beta}(H) = \inf\{a \mid \beta \in \operatorname{im}(i_a)\} = \inf\{a \mid j_a(\beta) = 0\},\$$

where $i_a: \operatorname{HF}_{\bullet}^{<a}(H) \to \operatorname{HF}_{\bullet}(H)$ and $j_a: \operatorname{HF}_{\bullet}(H) \to \operatorname{HF}_{\bullet}^{\geq a}(H)$.

- 同下 - 三下 - 三下

Definition

For $\beta \in \operatorname{HF}_{\bullet}(H) \setminus \{0\}$ we define the spectral invariant $c_{\beta}(H)$ as

$$c_{\beta}(H) = \inf_{\sum_{i} n_{i} x_{i} \in \beta} \max_{n_{i} \neq 0} \mathcal{A}_{H}(x_{i}).$$

• For
$$\beta = 0$$
 we set $c_{\beta}(H) = -\infty$.

• Moreover

$$c_{\beta}(H) = \inf\{a \mid \beta \in \operatorname{im}(i_a)\} = \inf\{a \mid j_a(\beta) = 0\},\$$

where $i_a \colon \mathrm{HF}_{\bullet}^{\leq a}(H) \to \mathrm{HF}_{\bullet}(H)$ and $j_a \colon \mathrm{HF}_{\bullet}(H) \to \mathrm{HF}_{\bullet}^{\geq a}(H)$. • If $d < c_{\beta}(H)$ then $\beta \notin \operatorname{im}(i_d)$ and $j_d(\beta) \neq 0$.

A (1) < A (2) < A (2) </p>

• If *H* is autonomous and *C*²-small, then $c_{\beta}(H) = c_{\beta}^{\text{LS}}(-H)$ where $\beta \in \text{HF}_{\bullet}(H) \cong \text{HM}_{\bullet}(-H) \cong H_{\bullet}(M)$.

3 . 3

< 🗇 🕨

- If *H* is autonomous and *C*²-small, then $c_{\beta}(H) = c_{\beta}^{\text{LS}}(-H)$ where $\beta \in \text{HF}_{\bullet}(H) \cong \text{HM}_{\bullet}(-H) \cong H_{\bullet}(M)$.
- In particular, for H as above and $\beta = [M]$:

$$c_{[M]}(H) = c_{[M]}^{\text{LS}}(-H) = \max(-H) = -\min H.$$

A 3 b

-

5 / 16

- If *H* is autonomous and *C*²-small, then $c_{\beta}(H) = c_{\beta}^{\text{LS}}(-H)$ where $\beta \in \text{HF}_{\bullet}(H) \cong \text{HM}_{\bullet}(-H) \cong H_{\bullet}(M)$.
- In particular, for H as above and $\beta = [M]$:

$$c_{[M]}(H) = c_{[M]}^{\text{LS}}(-H) = \max(-H) = -\min H.$$

• For two (non-degenerate) Hamiltonians $H_t, G_t \colon M \to \mathbb{R}$ we have

$$|c_{\beta}(H) - c_{\beta}(G)| \le ||H - G||_{C^{0}(S^{1} \times M)}.$$

5 / 16

- If *H* is autonomous and *C*²-small, then $c_{\beta}(H) = c_{\beta}^{\text{LS}}(-H)$ where $\beta \in \text{HF}_{\bullet}(H) \cong \text{HM}_{\bullet}(-H) \cong H_{\bullet}(M)$.
- In particular, for H as above and $\beta = [M]:$

$$c_{[M]}(H) = c_{[M]}^{\text{LS}}(-H) = \max(-H) = -\min H.$$

• For two (non-degenerate) Hamiltonians $H_t, G_t \colon M \to \mathbb{R}$ we have $|c_\beta(H) - c_\beta(G)| \le ||H - G||_{C^0(S^1 \times M)}.$

• For degenerate Hamiltonians K:

$$c_{\beta}(K) = \lim_{n \to \infty} c_{\beta}(H_n), \quad H_n \xrightarrow{C^2} K.$$

- 同下 - 三下 - 三下

Spectrality Axiom

• In the classical LS-theory we have seen that the min-max values are critical values. The same holds in the Hamiltonian setting:

Spectrality Axiom

• In the classical LS-theory we have seen that the min-max values are critical values. The same holds in the Hamiltonian setting:

Theorem (Oh, Usher)

Let H be a (non)-degenerate Hamiltonian. Then for every non-zero β we have

$$c_{\beta}(H) = \mathcal{A}_H(x),$$

for some Hamiltonian orbit $x: S^1 \to M$ (i.e. $\dot{x} = X_H(x)$).

Spectrality Axiom

• In the classical LS-theory we have seen that the min-max values are critical values. The same holds in the Hamiltonian setting:

Theorem (Oh, Usher)

Let H be a (non)-degenerate Hamiltonian. Then for every non-zero β we have

$$c_{\beta}(H) = \mathcal{A}_H(x),$$

for some Hamiltonian orbit $x: S^1 \to M$ (i.e. $\dot{x} = X_H(x)$).

• Phrased "differently",

$$c_{\beta}(H) \in \mathcal{P}(H) := \{\mathcal{A}_H(x) \mid x \in \mathcal{L}M, \dot{x} = X_H(x)\}.$$

• Now let (W, ω) be a symplectic manifold, possibly with boundary $\partial W = \Sigma \neq \emptyset$. Roughly speaking, $C_{\text{HZ}}(W, \omega) \in [0, +\infty]$ is the biggest possible oscillation of $F: W \to \mathbb{R}$.

- Now let (W, ω) be a symplectic manifold, possibly with boundary $\partial W = \Sigma \neq \emptyset$. Roughly speaking, $C_{\text{HZ}}(W, \omega) \in [0, +\infty]$ is the biggest possible oscillation of $F: W \to \mathbb{R}$.
- We say that $F: W \to \mathbb{R}$ is admissible if:

- Now let (W, ω) be a symplectic manifold, possibly with boundary $\partial W = \Sigma \neq \emptyset$. Roughly speaking, $C_{\text{HZ}}(W, \omega) \in [0, +\infty]$ is the biggest possible oscillation of $F: W \to \mathbb{R}$.
- We say that $F: W \to \mathbb{R}$ is admissible if:

•
$$F \leq 0$$
,

- Now let (W, ω) be a symplectic manifold, possibly with boundary $\partial W = \Sigma \neq \emptyset$. Roughly speaking, $C_{\text{HZ}}(W, \omega) \in [0, +\infty]$ is the biggest possible oscillation of $F: W \to \mathbb{R}$.
- We say that $F: W \to \mathbb{R}$ is **admissible** if:
 - $F \leq 0$,
 - there exists an open set $V \subseteq W$ such that $F|_V \equiv \min F$ and

- Now let (W, ω) be a symplectic manifold, possibly with boundary $\partial W = \Sigma \neq \emptyset$. Roughly speaking, $C_{\text{HZ}}(W, \omega) \in [0, +\infty]$ is the biggest possible oscillation of $F: W \to \mathbb{R}$.
- We say that $F: W \to \mathbb{R}$ is **admissible** if:
 - $F \leq 0$,
 - there exists an open set $V \subseteq W$ such that $F|_V \equiv \min F$ and
 - there exists a compact set $K \subseteq W$ such that $F(W \setminus K) \equiv 0$.

- 同 ト - 日 ト - 4 日 ト

- Now let (W, ω) be a symplectic manifold, possibly with boundary $\partial W = \Sigma \neq \emptyset$. Roughly speaking, $C_{\text{HZ}}(W, \omega) \in [0, +\infty]$ is the biggest possible oscillation of $F: W \to \mathbb{R}$.
- We say that $F: W \to \mathbb{R}$ is **admissible** if:
 - $\blacktriangleright \ F \leq 0,$
 - there exists an open set $V \subseteq W$ such that $F|_V \equiv \min F$ and
 - there exists a compact set $K \subseteq W$ such that $F(W \setminus K) \equiv 0$.
- Picture:

- 同 ト - 日 ト - 4 日 ト

• If additionally the *contractible* periodic orbits $x: [0,T] \to W$ of X_F are either trivial (i.e. T = 0) or of period strictly greater than 1 (i.e. T > 1), we shall call F Hofer-Zehnder admissible.

8 / 16

• If additionally the *contractible* periodic orbits $x: [0,T] \to W$ of X_F are either trivial (i.e. T = 0) or of period strictly greater than 1 (i.e. T > 1), we shall call F Hofer-Zehnder admissible.

Definition

We define the Hofer-Zehnder capacity as

 $C_{\mathrm{HZ}}(W,\omega) = \sup \left\{ -\min F \mid F: W \to \mathbb{R} \text{ is Hofer-Zehnder admissible} \right\}.$

• If additionally the *contractible* periodic orbits $x: [0,T] \to W$ of X_F are either trivial (i.e. T = 0) or of period strictly greater than 1 (i.e. T > 1), we shall call F Hofer-Zehnder admissible.

Definition

We define the Hofer-Zehnder capacity as

 $C_{\mathrm{HZ}}(W,\omega) = \sup\left\{-\min F \mid F: W \to \mathbb{R} \text{ is Hofer-Zehnder admissible}\right\}.$

• The finiteness of Hofer-Zehnder Capacity has striking dynamical implications.

Finiteness of Hofer-Zehnder Capacity

Theorem (Hofer-Zehnder)

Let $H: W \to \mathbb{R}$ be a Hamiltonian with $S_0 := H^{-1}(0)$ a compact hypersurface. Assume that there exists an open neighbourhood U of S_0 such that

$$C_{HZ}(U,\omega) < +\infty.$$

Then there exists a dense set of nearby hypersurfaces S_{λ} that carry a non-trivial periodic Hamiltonian orbit x of X_H .

Proof:

• Define an auxiliary function $f: \mathbb{R} \to \mathbb{R}, V = H^{-1}\left(-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}\right)$, $K = H^{-1}[-\varepsilon, \varepsilon]$ and $F := f \circ H \colon W \to \mathbb{R}$ as follows:

- Definition of F and HZ capacity: $y: [0,T] \to W$, $T \in (0, 1), \dot{y} = X_F(y).$
- Chain rule: $(f' \circ H) \cdot X_H = X_F$. Consequently $\frac{\partial}{\partial t} H(y(t)) = 0$, hence $H(y) \equiv \lambda$.
- Nontriviality of $y \implies f'(\lambda) = f'(H(y)) \neq 0$, thus $\tau := f'(\lambda) \in \left(-\varepsilon, -\frac{\varepsilon}{2}\right) \cup \left(\frac{\varepsilon}{2}, \varepsilon\right) \implies |\lambda| < \varepsilon.$
- Then $x: [0, T\tau] \to W, x(t) = y(T\tau^{-1})$ satisfies $\dot{x} = X_H(x)$ and $H(x) = \lambda.$

• Let $(W, -d\lambda)$ be a Liouville domain, $\Sigma = \partial W$, and $(M, -d(r \cdot \lambda))$ its symplectic completion.

↓ ∃ ▶

A (1) < A (1)</p>

э

- Let $(W, -d\lambda)$ be a Liouville domain, $\Sigma = \partial W$, and $(M, -d(r \cdot \lambda))$ its symplectic completion.
- Example: $W = D_1^*Q$, $\lambda = p \, dq$, $M = T^*Q$, $\omega = -dp \wedge dq$.

(3)

A (1) < A (1)</p>

- Let $(W, -d\lambda)$ be a Liouville domain, $\Sigma = \partial W$, and $(M, -d(r \cdot \lambda))$ its symplectic completion.
- Example: $W = D_1^*Q$, $\lambda = p \, dq$, $M = T^*Q$, $\omega = -dp \wedge dq$.

Definition

The symplectic homology $\mathrm{SH}_{\bullet}(W)$ is defined as the direct limit (for $\tau \to \infty$) of the groups $\mathrm{HF}_{\bullet}(H^{\tau})$, where $H^{\tau} \colon M \to \mathbb{R}$ are Hamiltonians that are linear at infinity with slope τ .

- Let $(W, -d\lambda)$ be a Liouville domain, $\Sigma = \partial W$, and $(M, -d(r \cdot \lambda))$ its symplectic completion.
- Example: $W = D_1^*Q$, $\lambda = p \, dq$, $M = T^*Q$, $\omega = -dp \wedge dq$.

Definition

The symplectic homology $\mathrm{SH}_{\bullet}(W)$ is defined as the direct limit (for $\tau \to \infty$) of the groups $\mathrm{HF}_{\bullet}(H^{\tau})$, where $H^{\tau} \colon M \to \mathbb{R}$ are Hamiltonians that are linear at infinity with slope τ .

• Picture:

Some properties

• For $\tau_0 > 0$ small enough and $H^{\tau_0} C^2$ -small on W, one has $\operatorname{HF}(H^{\tau_0}) = \operatorname{HM}(-H^{\tau_0}|_W) = H(W, \partial W).$

A 3 b

< 17 > <

э

Some properties

- For $\tau_0 > 0$ small enough and $H^{\tau_0} C^2$ -small on W, one has $\operatorname{HF}(H^{\tau_0}) = \operatorname{HM}(-H^{\tau_0}|_W) = H(W, \partial W).$
- A Theorem of Viterbo asserts $SH(D_1^*Q) \cong H(\mathcal{L}Q)$ (also see Salamon-Weber, Abbondandolo-Schwarz).

Irie's Theorem

• Denote by β_{τ} the image of the fundamental class [W] under $\operatorname{HF}_{\bullet}(H^{\tau_0}) \to \operatorname{HF}_{\bullet}(H^{\tau})$. As before, we define $c_{\beta}(H^{\tau})$ for $\beta \in \operatorname{HF}_{\bullet}(H^{\tau})$.

- 同下 - 三下 - 三下

3

Irie's Theorem

• Denote by β_{τ} the image of the fundamental class [W] under $\operatorname{HF}_{\bullet}(H^{\tau_0}) \to \operatorname{HF}_{\bullet}(H^{\tau})$. As before, we define $c_{\beta}(H^{\tau})$ for $\beta \in \operatorname{HF}_{\bullet}(H^{\tau})$.

Theorem (Irie 2012)

Let (W, λ) be as above. If there exists a slope $\tau > 0$ such that $\beta_{\tau} = 0$, then

 $C_{HZ}(W^0,\omega) \le \tau < +\infty.$

A (1) < A (2) < A (2) </p>

Irie's Theorem

• Denote by β_{τ} the image of the fundamental class [W] under $\operatorname{HF}_{\bullet}(H^{\tau_0}) \to \operatorname{HF}_{\bullet}(H^{\tau})$. As before, we define $c_{\beta}(H^{\tau})$ for $\beta \in \operatorname{HF}_{\bullet}(H^{\tau})$.

Theorem (Irie 2012)

Let (W, λ) be as above. If there exists a slope $\tau > 0$ such that $\beta_{\tau} = 0$, then

 $C_{HZ}(W^0,\omega) \le \tau < +\infty.$

• Combining this with Hofer and Zehnder's results shows that SH(W) = 0 has strong dynamical implications for compact hypersurfaces of $H: M \to \mathbb{R}$ inside W^0 .

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof

- For contradiction, assume that there is a HZ admissible $H: W^0 \to \mathbb{R}$ with $-\min H > \tau$ (goal: show that $c_{\beta_{\tau}}(H^{\tau}) = -\min H$).
- Extend H to $H_{\varepsilon}^{\delta \tau} \colon M \to \mathbb{R}$, where $H_{\varepsilon}^{\delta \tau}|_{W^0} = \varepsilon \cdot H$.
- Then $c_{\beta_{\delta_{\tau}}}(H_{\varepsilon}^{\delta_{\tau}}) = c_{[W]}(-\varepsilon \cdot H) = -\varepsilon \cdot \min H$, for $\varepsilon, \delta > 0$ small.
- Let $\varepsilon \to 1$: using spectrality one can show $c_{\beta_{\delta_{\tau}}}(H^{\delta_{\tau}}) = -\min H$, for $\delta > 0$ small.
- Since $\tau < -\min H$: $\mathcal{P}(H^{\tau}) \subseteq (-\infty, -\min H]$, thus $c_{\beta_{\tau}}(H^{\tau}) \leq -\min H$.
- Now we show $c_{\beta_{\tau}}(H^{\tau}) \geq -\min H$:

- 김희 지 말 지 않으시 말 같.

Proof

• For small e > 0 and $d := -\min H - e$ we have

- But $j_d(\beta_{\delta\tau}) \neq 0$ (since $d < c_{\beta\tau}(H^{\delta\tau})$), thus $j_d(\beta_{\tau}) \neq 0$, hence $d \leq c_{\beta\tau}(H^{\tau})$.
- Therefore we have shown $c_{\beta_{\tau}}(H^{\tau}) = -\min H$, but $\beta_{\tau} = 0$ by assumption, hence $c_{\beta_{\tau}}(H^{\tau}) = -\infty$. Contradiction.

イボト イラト イラト 一戸

Thanks for listening!

<ロ> (四) (四) (三) (三) (三)

æ