A fundamental (topological) question:

Consider an n-dimensional manifold M^{n}.
Q: Can M^{n} be realized as a boundary of some $(n+1)$-dim'I manifold W^{n+1} ?

A fundamental (topological) question:

Consider an n-dimensional manifold M^{n}.
Q: Can M^{n} be realized as a boundary of some $(n+1)$-dim'I manifold W^{n+1} ?
A: Yes!

$$
\text { Simply consider } M \times[1,2)
$$

Same question with adjectives:

Consider an n-dimensional closed manifold M.

Q: Can M be realized as the boundary of a compact $(n+1)$-dim'I manifold W ?

nonorientable

A: No!

Ex: $X\left(\mathbb{C} \mathbb{P}^{2 n}\right)=2 n+1$
Ex: $\{p t\}$ is not the ∂ of any compact W^{1}
$A: N O$!
Ex: $\mathbb{R} \mathbb{P}^{2 n}$ since $X\left(\mathbb{R} \mathbb{P}^{2 n}\right)=1$
(Recall, $\mathbb{R} \mathbb{P}^{n}$ is onentable when $n=$ odd)

What's a filling?
Simply put,

$$
\text { Filling of } M^{n}:=
$$

$(n+1)-\operatorname{din}^{\prime} 1$
$=$ manifold W whose boundary is M.
$W=$ filling of M
M = fillable manifold
Examples:

Today's fundamental question:

Question

Are all (compact) contact manifolds (symplectically) fillable?
(Somewhat) equivalently;

Question

Can all (compact) contact manifolds be realized as the "boundary" of some symplectic manifold?

Answer within the dichotomy: Overtwisted vs. Tight

Overtwisted (OT)
(M, ξ) is $0 T$ if $\exists D \subset M$ with $\xi_{p}=T_{p} D \quad \forall p \in \partial D$ emf.

${ }^{1}$ Overtwisted disk in \mathbb{R}^{3}

Tight (not OT)

Answer within the dichotomy: Overtwisted vs. Tight

$1_{\text {Source: Patrick Mascot }}$

Symplectic fillabilty: Flavors

Weak filling: $\left.\omega\right|_{\xi}>0$ in dimension three.
Example: Consider $T^{3}=T^{2} x S^{\prime},(x, y, \theta) \in T^{2} \times S^{\prime}$
$\left(T^{3}, \xi_{n}=\operatorname{ker}\left(\alpha_{n}\right)\right)$ where $\alpha_{n}=\cos (n \theta) d x+\sin (n \theta) d y$ and $n \in \mathbb{Z}^{+}$
Consider $\beta_{t}=d \theta+t \alpha_{n}$ and verify $\beta_{t} \wedge d \beta_{t}>0$ i.e. β_{t} is contact for $t>0$ Key idea
Corresponding hyperplanes Z_{t} are contact $\forall t>0$ \& converges to ξ_{n} as $t \rightarrow \infty \Rightarrow \xi_{n}$ and τ_{t} are contact isotopic
$\left(T^{3}, \xi_{n}\right)$ is weakly fillable by $\left(T^{2} \times \mathbb{D}^{2}, d x \wedge d y+\omega_{\mathbb{D}^{2}}\right)$ since $\omega(\partial x, \partial y)=1$
i.e. $\left.\omega\right|_{\tau_{0}}>0 \ll \omega{\tau_{t}}>0$ for $t-$ small

First classification result due to Gromov' 85
$\left(\mathbb{D}^{4}, \omega_{\text {std }}\right)$ is the unique weak symplectic filling of $\left(S^{3}, \xi_{\text {std }}\right) /$ blowup

* since 3D is when w can be positive on the 2D contact planes.

Symplectic fillabilty: Flavors

- Weak filling: $\left.\omega\right|_{\xi}>0$ in dimension three.
- Strong filling: $\exists \lambda \in \Omega^{1}(M)$ s. t. $\omega=d \lambda$ on a mhd of ∂W and $\xi=\operatorname{ker}\left(\left.\lambda\right|_{\partial W}\right)$

Equivalently, \exists Liouville vf. $Z\left(\mathcal{L}_{z} w=w\right)$ defined near ∂W $\hbar \partial W$ and $\xi=\operatorname{ker}\left(L_{z} \omega /_{\partial W}\right)$

Symplectic fillabilty: Flavors

- Weak filling: $\left.\omega\right|_{\xi}>0$ in dimension three.
- Strong filling. $\exists \lambda \in \Omega^{1}(M)$ s. t. $\omega=d \lambda$ on a mhd of ∂W and $\xi=\operatorname{ker}\left(\left.\lambda\right|_{\partial W}\right)$

Example: Consider $\omega_{s t d}=d x_{1} \wedge d y_{1}+d x_{2} \wedge d y_{2}$ on \mathbb{R}^{4} in cords $\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$
Let $\lambda:=\frac{1}{2}\left[x_{1} d y_{1}-y_{1} d x_{1}+x_{2} d y_{2}-y_{2} d x_{2}\right]$ be the primitive of w_{s+d}, i.e. $w_{\text {std }}=d \lambda$
Then $\xi_{s t d}$ on $S^{3} \subset \mathbb{R}^{4}$ is $\xi_{s t d}=\operatorname{ker} \alpha$ where $\alpha=\left.\lambda\right|_{s^{3}}$
The vector field $z=x_{1} \frac{\partial}{\partial x_{1}}+y_{1} \frac{\partial}{\partial y_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+y_{2} \frac{\partial}{\partial y_{2}}$ is a Liouville v.f. for $w_{s t 1}$
$\Rightarrow\left(\mathbb{D}^{4}, \omega_{\text {sta }}\right)$ is a strong symp. filling of $\left(S^{3}, \xi_{s t d}\right)$

Symplectic fillabilty: Flavors

$$
\partial W=M \text { as oriented manifolds }
$$

- Weak filling: $\left.\omega\right|_{\xi}>0$ in dimension three.
- Strong filling: $\exists \lambda \in \Omega^{1}(M)$ s. t. $\omega=d \lambda$ on a nhd of ∂W and $\xi=\operatorname{ker}\left(\left.\lambda\right|_{\partial W}\right)$
- Exact filling: $\exists \lambda \in \Omega^{1}(M)$ s. t. $\omega=d \lambda$ on all of ∂W and $\xi=\operatorname{ker}\left(\left.\lambda\right|_{\partial W}\right)$ (also known as Liouville domain)

Symplectic fillabilty: Flavors

- Weak filling: $\left.\omega\right|_{\xi}>0$ in dimension three.
- Strong filling: $\exists \lambda \in \Omega^{1}(M)$ s. t. $\omega=d \lambda$ on a mhd of ∂W and $\xi=\operatorname{ker}\left(\left.\lambda\right|_{\partial W}\right)$
- Exact filling: $\exists \lambda \in \Omega^{1}(M)$ s. t. $\omega=d \lambda$ on all of ∂W and $\xi=\operatorname{ker}\left(\left.\lambda\right|_{\partial W}\right)$
- Stein filling: $(\underbrace{W, J}_{\text {complex }}, \phi)$ manifold J-convex ($W_{p}>0$ on complex lines in TW) $\omega /$ boundary $\phi: W \rightarrow \mathbb{R}$ s.t. N is a regular revel set.
Recall the prev. ex:
Ex: Consider $J_{\text {std }}$ on $\mathbb{R}^{4} ; J_{s \text { td }}\left(\frac{\partial}{\partial x_{J}}\right)=\frac{\partial}{\partial y_{J}}$ \& $J_{\text {std }}\left(\frac{\partial}{\partial y}\right)=-\frac{\partial}{\partial x_{J}}$ for $J=1,2$
Let $\left.\phi: \mathbb{R}^{4} \rightarrow \mathbb{R},\right\}$ Observe that ϕ is an exhausting J-conve xfuc ($\left.\left.x_{1}, y_{1}, x_{2}, y_{2}\right) \mapsto x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}\right\}$ on \mathbb{R}^{4} where s^{3} is a regular level set.
$\Rightarrow\left(\mathbb{D}^{4}, J, \phi\right)$ is a Stein filling of $\left(S^{3}, \xi_{s+d}\right)$

Symplectic fillabilty: Flavors
$V_{\left(\omega_{1}^{2 n}, \omega\right)}^{(\pi, i n)}, \partial W=M$ as oriented manifolds

- Weak filling: $\left.\omega\right|_{\xi}>0$ in dimension three.
- Strong filling: $\exists \lambda \in \Omega^{1}(M)$ s. t. $\omega=d \lambda$ on a mhd of ∂W and $\xi=\operatorname{ker}\left(\left.\lambda\right|_{\partial W}\right)$
- Exact filling: $\exists \lambda \in \Omega^{1}(M)$ s. t. $\omega=d \lambda$ on all of ∂W and $\xi=\operatorname{ker}\left(\left.\lambda\right|_{\partial W}\right)$
- Stein filling: (W, J, ϕ) Liouville v.f.

Weinstein filling $(W, d \lambda, Z, \phi) \longrightarrow$ gen. Morse function

Ex: Take any (smoothed) link of singularity

$$
\{f=0\} \cap S^{2 n+1}
$$

Then $W=\{f=0\} \cap B^{2 n+2}$

Symplectic fillabilty: Flavors

A tree with a loop?

From open books to Lefschetz fibrations via fillability

Theorem (WendI)

$$
\begin{aligned}
\left(5^{3}, \xi_{s t d}\right)= & O B\left(\mathbb{D}^{2}, i d\right) . \\
& \text { page } \\
& \text { planar } \\
& \text { surf. }
\end{aligned}
$$

From open books to Lefschetz fibrations via fillability

Theorem

An important consequence of this theorem:

$$
\begin{aligned}
& \text { Strongly }=\text { Stein } \\
& \text { tillable when tillable } \\
& \text { (} M^{3} \text {, } \xi \text {) is } \\
& \text { planar }
\end{aligned}
$$

From Lefschetz-Bott fibrations to open books

Lefschetz-Bott fibrations = "complexified Morse-Bott functions"

Example: Let $f_{1}: W_{1} \rightarrow \mathbb{D}^{2}$ be any fibration and $f_{2}: W_{2} \rightarrow \mathbb{D}^{2}$ be a LF.
Then the fiber product $f_{1} x_{\mathbb{D}^{2}} f_{2}: W_{1} \times \mathbb{D}^{2} \rightarrow \mathbb{D}^{2}$ is a $L B$ - fibration

From Lefschetz-Bott fibrations to open books
(Oba). Total space of a symplectic LB fibration serves as a strong symplectic filling of a contact mid.

- Also constructs strong symp. fillings using links of A_{k} - singularity $=\left\{z_{0}^{2}+\ldots+z_{n}^{2}+z_{n+1}^{k+1}=0\right\}$ and $L B$ fibrations

