Consider an *n*-dimensional manifold M^n .

Q: Can M^n be realized as a **boundary** of some (n + 1)-dim'l manifold W^{n+1} ?

Consider an *n*-dimensional manifold M^n .

Q: Can M" be realized as a boundary of some (n+1)-dim'l manifold W"+1? A: Yes! Simply consider M × [1,2) Consider an *n*-dimensional **closed** manifold *M*.

What's a filling?

Simply put,
Filling of
$$M^{n} :=$$
 $W \uparrow cobordism = (n+1) \cdot dim'l$
manifold W whose
boundary is M .
 $W = filling \circ f M$
 $M = filloble manifold$
 $T^{3} = S' \times S' \times S'$

 D^2 , $T^*T^2 = T^2 \times D^2$

Э

イロト イポト イヨト イヨト

Question

Are all (compact) contact manifolds (symplectically) fillable?

(Somewhat) equivalently;

Question

Can all (compact) contact manifolds be realized as the boundary of some symplectic manifold?

Answer within the dichotomy: Overtwisted vs. Tight

Tight (not OT)

¹Source: Patrick Massot

Bahar Acu (ETH Zürich)

Answer within the dichotomy: Overtwisted vs. Tight

(Later shown to be true in all dims.)

¹Source: Patrick Massot

Tight (not OT)

Symplectically ⊂ Tight Fillable ≠ (Etnyre-Honda)

 $\partial W = M$ as oriented manifolds

• Weak filling: $\omega|_{\xi} > 0$ in dimension three.

Example: Consider $T_{3=}^{3}T_{X}S'$, $(x,y,\theta)\in T_{X}S'$ $(T^3, \overline{5}_n = \ker(\alpha_n))$ where $\alpha_n = \cos(n\theta) dx + \sin(n\theta) dy$ and $n \in \mathbb{Z}^+$ Consider $\beta_1 = d\theta + t\alpha_n$ and verify $\beta_1 \wedge d\beta_1 > 0$ i.e. β_1 is contact for t > 0. Key idea Corresponding hyperplanes [are contact $\forall t70$ & converges to Ξ_n as $t \rightarrow \infty \Rightarrow \Xi_n$ and Z_k are contact (T³, Ξ_n) is weakly fillable by (T²KD², dx Ady + WD²) since w(dx, dy) -1 i.e. w(z, 70 <=) w(z, 20 for t-small

* since 3D is when w can be positive on the 2D contact planes.

くロト く得ト くヨト くヨト

(W, w)(W, w)(W, w)(W, w)

• Weak filling: $\omega|_{\xi} > 0$ in dimension three.

• Strong filling: $\exists \lambda \in \Omega^{1}(M)$ s. t. $\omega = d\lambda$ on a **nhd** of ∂W and $\xi = ker(\lambda|_{\partial W})$ Equivolently, \exists Liouville v.f. Z ($\int_{Z} \omega = \omega$) defined near ∂W (1) ∂W and $\exists = ker(\iota_{Z} w/)$ • Weak filling: $\omega|_{\xi} > 0$ in dimension three.

• Strong filling: $\exists \lambda \in \Omega^1(M)$ s. t. $\omega = d\lambda$ on a **nhd** of ∂W and $\xi = ker(\lambda|_{\partial W})$ Example: Consider wstd = dx1Ady1+dx2Ady2 on R4 in coords (x1,y1,x21, y2) Let $\lambda := \frac{1}{2} [x_1 dy_1 - y_1 dx_1 + x_2 dy_2 - y_2 dx_2]$ be the primitive of wstal, i.e. $w_{stal} = d\lambda$ Then \mathbb{F}_{std} on $S^3 \subset \mathbb{R}^4$ is $\mathbb{F}_{std} = \ker \alpha$ where $\alpha = \lambda |_{s^3}$ The vector field $Z = x_1 \frac{\partial}{\partial x_1} + y_1 \frac{\partial}{\partial y_1} + x_2 \frac{\partial}{\partial x_2} + y_2 \frac{\partial}{\partial y_2}$ is a Liouville v.f. for w_{star} is a Liouville v.f. for w_{star} \Rightarrow (D⁴, ustal) is a strong symp. filling of (S³, \mathbb{E}_{std})

イロト 不得 とくほ とくほ とうしょう

- Weak filling: $\omega|_{\xi} > 0$ in dimension three.
- Strong filling: $\exists \lambda \in \Omega^1(M)$ s. t. $\omega = d\lambda$ on a **nhd** of ∂W and $\xi = ker(\lambda|_{\partial W})$
- Exact filling: $\exists \lambda \in \Omega^1(M)$ s. t. $\omega = d\lambda$ on all of ∂W and $\xi = ker(\lambda|_{\partial W})$ (also known as Liouville domain)

• Weak filling: $\omega|_{\xi} > 0$ in dimension three.

- Strong filling: $\exists \ \lambda \in \Omega^1(M)$ s. t. $\omega = d\lambda$ on a **nhd** of ∂W and $\xi = ker(\lambda|_{\partial W})$
- Exact filling: $\exists \ \lambda \in \Omega^1(M)$ s. t. $\omega = d\lambda$ on all of ∂W and $\xi = ker(\lambda|_{\partial W})$

Stein filling:
$$(W, J, \phi)$$

complex
manifold
w/ boundary
Ex: Consider J_{std} on \mathbb{R}^{4} ; J_{std} $(\frac{\partial}{\partial x_{3}}) = \frac{\partial}{\partial Y_{3}} \& J_{std}(\frac{\partial}{\partial y}) = -\frac{\partial}{\partial x_{3}}$ for $J = h2$
Let $\phi : \mathbb{R}^{4} \to \mathbb{R}$
 $(x_{1}, x_{1}, x_{2}, y_{2}) \mapsto x_{1}^{2} + y_{2}^{2} + y_{2}^{2}$ Observe that ϕ is an exhausting J-convex fix
 $(x_{1}, y_{1}, x_{2}, y_{2}) \mapsto x_{1}^{2} + y_{1}^{2} + x_{2}^{2} + y_{2}^{2}$ On \mathbb{R}^{4} where S^{3} is a regular level set.
 $\Rightarrow (D^{4}, J, \phi)$ is a Stein filling of (S^{3}, ξ_{3})

- Weak filling: $\omega|_{\xi} > 0$ in dimension three.
- Strong filling: $\exists \ \lambda \in \Omega^1(M)$ s. t. $\omega = d\lambda$ on a **nhd** of ∂W and $\xi = ker(\lambda|_{\partial W})$
- Exact filling: $\exists \ \lambda \in \Omega^1(M)$ s. t. $\omega = d\lambda$ on all of ∂W and $\xi = ker(\lambda|_{\partial W})$

A tree with a loop?

< □ > < 同 > < 三 >

From open books to Lefschetz fibrations via fillability

From open books to Lefschetz fibrations via fillability

An important consequence of this theorem:

From Lefschetz-Bott fibrations to open books

Lefschetz-Bott fibrations = "complexified Marse-Bott functions"

Example: Let
$$f_1: W_1 \rightarrow D^2$$
 be any fibration
and $f_2: W_2 \rightarrow D^2$ be a LF.
Then the fiber product $f_1 \times_{D^2} f_2: W_1 \times W_2 \rightarrow D^2$ is a
LB-fibration

.

From Lefschetz-Bott fibrations to open books