Open Books and Lefschetz Fibrations

Joël Beimler

May 31, 2021

Joël Beimler

Open Books and Lefschetz Fibrations

May 31, 2021 1 / 19

- Factor manifolds into lower dimensional ones
- Contact invariant
- Can read off some topological properties of a contact manifold from the associated open book decomposition

Definition

An **open book decomposition** of a manifold M^n is a pair (B, π) for

- B^{n-2} a codimension two submanifold with trivial normal bundle;
- $\pi: M \setminus B \to S^1$ a fibration such that on a tubular neighbourhood $B \times \mathbb{D}^2$, we have $\pi(x, re^i \varphi) = \varphi$.

$$M = \mathbb{C}$$

 $B = \{0\}$
 $\pi(z) = rac{z}{|z|}$

<ロト < 四ト < 三ト < 三ト

Easy Ex N= C B = Zaz 70: C(起らー> ら1 $\frac{2}{12} \xrightarrow{2} \frac{2}{12} = e^{i\varphi}$ $= re^{i\varphi}$ pages $\frac{1}{2} = \frac{1}{2} - \frac{1}{2} re^{i\varphi} + \frac{1}{2} re^{i\varphi}$ -17

Let $f : M \to \mathbb{C}$ be a map transverse to the pages of the standard open book on \mathbb{C} so that 0 is in the image of f. Then setting

$$B = f^{-1}(0), \qquad \pi(x) = \frac{f(x)}{|f(x)|}$$

defines an open book decomposition of M.

$$\begin{split} M &= S^3 = \{(z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 = 1\} \\ f &: S^3 \to \mathbb{C}, \quad f(z_1, z_2) = z_1 \\ f^{-1}(0) &= \{(0, z_2) \mid |z_2| = 1\} = S^1 = B \end{split}$$

< 4[™] ▶

Ex 2 $S^{2} = \frac{2}{2}(21, 22) | |21|^{2} + |22|^{2} + \frac{1}{2}$ $f: S^3 \longrightarrow C$ (27,20) -> 21 =) • $\beta = f_{(0)}^{-1} = \langle 0, \pm_z \rangle \in S^3 \xi \leq S^1$ 77 : S' (3 - 7 S') $(\frac{1}{2}, \frac{1}{2}) \longmapsto \frac{2}{|\frac{2}{2}|}$ $\frac{l_{aps}}{l_{aps}} : \pi^{-2}(e) = \xi \left(\overline{l_{as}} + \frac{1}{e^{2}} + \frac{1}{e^{2}} + \frac{1}{e^{2}} \right) \left| \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right|$ S= Rb UEmz

We can reconstruct (up to diffeomorphism) an open book decomposition from the pages and information about how they glue together as they move around the binding:

Definition

An **abstract open book** (F, ψ) consists of a manifold F^n with nonempty boundary and $\psi \in \text{Diff}(F, \partial F)$ equal to id near ∂F . ψ is called the **monodromy**.

Definition

The mapping torus associated to F and $\psi \in \text{Diff}(F)$ is

$$F(\psi) = F \times [0, 2\pi]/((x, 2\pi) \sim (\psi(x), 0)).$$

(日)

Theorem

Given an abstract open book (F^n, ψ) , the (n + 1)-manifold

$$OB(F,\psi) = F(\psi) \cup_{\partial F \times S^1} (\partial F \times \mathbb{D}^2)$$

carries an open book decomposition with binding $B \cong \partial F$, pages $\cong F$.

• Open book on S^3 from before: page D^2 , monodromy id_{D^2} . We'll abuse notation from here on and let $OB(F, \psi)$ refer to both the glued manifold and the open book decomposition induced on it. "Odd-dimensional cousin of symplectic geometry"

Definition

A contact structure ξ on a manifold M^{2n+1} is a codimension-one distribution of TM such that for any $\alpha \in \Omega^1(M)$ locally satisfying $\xi = \ker \alpha$, we have

$$\alpha \wedge (\boldsymbol{d}\alpha)^n \neq 0.$$

Any such α is called a **contact form**.

- (W,ω) a symplectic manifold such that $\omega = d\lambda$ near ∂W
- Vector field $V_\lambda \in \mathfrak{X}(W)$ defined by

$$\imath_{V_{\lambda}}\omega=\lambda$$

is **transverse** to ∂W

Then λ is a contact form on ∂W . We say W has **contact-type** boundary.

Definition

A contact manifold $(M, \xi = \ker \alpha)$ is **supported by** an open book decomposition (B, π) of M if

- $d\alpha$ is symplectic on the pages $\pi^{-1}(\varphi)$;
- α is contact on B.

- (W²ⁿ, dλ, V_λ) Liouville domain: compact exact symplectic manifold such that V_λ as in *i*_{V_λ}dλ = λ is outward pointing on ∂W;
- $\psi \in \text{Symp}(W, d\lambda; \partial W)$ equal to id near ∂W ;

Theorem (Giroux)

Then $OB(W, d\lambda; \psi)$ carries a contact structure supported by the open book decomposition.

 $OB(W, d\lambda; \psi)$ is thus a (2n+1)-manifold with

- Liouville domains $(W, d\lambda)$ as pages
- so that λ is contact on the binding $B = \partial W$.

- (Giroux) Every compact contact manifold (M²ⁿ⁺¹, ξ) admits a supporting open book with (2n-dimensional) Liouville domains as pages.
- Contact structures supported by the same open book are isotopic.

Giroux Correspondence

Let M^3 be a closed oriented 3-manifold. There is a bijective correspondence between

{Oriented contact structures on *M* up to isotopy}

and

{Open book decompositions of M up to "positive stabilization" }.

Definition

A Lefschetz fibration $f : W^{2n} \to \mathbb{D}^2$ is a smooth map with finitely many critical points near which there are complex charts in which f can be written as

$$f(z_1,\ldots,z_n)=z_1^2+\ldots+z_n^2.$$

 A Lefschetz fibration is (exact) symplectic if W carries an exact symplectic form dλ making the fibres into Liouville domains.

²Image credit: C. Wendl, Holomorphic Curves in Low Dimensions (\equiv).

	<u> </u>	
	LOIR	
JUEL	тэен	me

Open Books and Lefschetz Fibrations

We consider Lefschetz fibrations whose fibres $F_z = f^{-1}(z)$ have boundary; then W is a manifold with **corners**. ∂W consists of

- $\partial_{v}W := f^{-1}(\partial \mathbb{D}^{2})$; fibre bundle over S^{1} , so of the form $\partial_{v}W \cong F(\psi)$.
- $\partial_h W := \bigcup_{z \in \mathbb{D}^2} \partial F_z$; \mathbb{D}^2 contractible, so $\partial_h W \cong \partial F \times \mathbb{D}^2$.

These components meet in $\partial(\partial_v W) = \partial(\partial_h W) = \bigcup_{z \in \partial \mathbb{D}^2} \partial F_z \cong S^1 \times \partial F$.

$$\implies \quad \partial W = \partial_v W \cup_{S^1 \times \partial F} \partial_h W \\ = F(\psi) \cup_{S^1 \times \partial F} (\partial F \times \mathbb{D}^2).$$

 ψ is in fact the **monodromy** of f (depends on critical points of f).

To sum up:

- $f: (W^{2n+2}, \omega = d\lambda) \rightarrow \mathbb{D}^2$ symplectic Lefschetz fibration, monodromy ψ , fibre F^{2n} with $\partial F \neq \emptyset$
- $\implies \partial W \cong OB(F, d\lambda; \psi)$ is a contact manifold supported by the induced open book.

Definition

A contact manifold (M, ξ) is **fillable** (mod. variations) if there exists (W, ω) such that $\partial W = M$ and ω induces ξ .

 \implies A symplectic Lefschetz fibration induces a certain kind of filling of the boundary of its total space.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- $V = \{(z_0, z_1, z_2) \in \mathbb{C}^3 \mid z_0^2 + z_1^2 + z_2^2 = 1\}$
- $f: V \to \mathbb{C}$ given by $f(z_0, z_1, z_2) = z_0$ is a Lefschetz fibration
- Restrict to $W = V \cap \mathbb{D}^6 \cong V \cap (\mathbb{D}^2 \times \mathbb{D}^4)$, so that $f : W \to \mathbb{D}^2$.

 \implies there is an open book of ∂W .

pages: Annuli

monodromy: "Square of a (right-handed) Dehn twist" $\partial W = V \cap S^5$ is called a **Brieskorn manifold**.

The monodromy of f

э.

æ

・ロト ・日 ・ ・ ヨ ・ ・

Find EX V= \$ 20, 21, 22 | 204 2tr 22=1 } f: V -, C (to, ty til - 2. This is hefsoldtz: Critical points: (±1, 9,0) Consider a which of (1,5,0) in which we can describe I with J: (3,(9) -> V (21, 21) ~> (H-21-22' 21, 22) for, Bzco, -- 2 Bz(1) For & soull, F: Bo(4 -> & will be a coupler charry and W -> 1-w 6 ° € (±7, 2) = 2 1 4 2 1.