b-Contact Structures on Symplectic Hyperboloids

Michael Vogel, Jagna Wiśniewska

ETH, Zurich

June 7th, 2021, Junior Symplectic Geometry Seminar

Symplectic hyperboloids

Consider $\left(T^{*} \mathbb{R}^{n}, \omega_{0}=d q \wedge d p\right)$ and a Hamiltonian

$$
H(x)=\frac{1}{2} x^{T} A x-1, \quad x=(q, p) \in T^{*} \mathbb{R}^{n},
$$

where A is non-degenerate and symmetric

Symplectic hyperboloids

Consider $\left(T^{*} \mathbb{R}^{n}, \omega_{0}=d q \wedge d p\right)$ and a Hamiltonian

$$
H(x)=\frac{1}{2} x^{T} A x-1, \quad x=(q, p) \in T^{*} \mathbb{R}^{n},
$$

where A is non-degenerate and symmetric

Definition

A representative of an equivalence class of the action of the $\operatorname{Sp}(n)$ on the set $\left\{H^{-1}(0) \left\lvert\, H(x)=\frac{1}{2} x^{\top} A x-1\right., \quad A \in \operatorname{Sym}(2 n) \cap \mathrm{GI}(2 n)\right\}$ is called:

Symplectic hyperboloids

Consider $\left(T^{*} \mathbb{R}^{n}, \omega_{0}=d q \wedge d p\right)$ and a Hamiltonian

$$
H(x)=\frac{1}{2} x^{T} A x-1, \quad x=(q, p) \in T^{*} \mathbb{R}^{n},
$$

where A is non-degenerate and symmetric

Definition

A representative of an equivalence class of the action of the $\operatorname{Sp}(n)$ on the set $\left\{H^{-1}(0) \left\lvert\, H(x)=\frac{1}{2} x^{\top} A x-1\right., \quad A \in \operatorname{Sym}(2 n) \cap \mathrm{Gl}(2 n)\right\}$ is called:

- symplectic ellipsoid when A is positive definite, $H^{-1}(0) \simeq S^{2 n-1}$;

Symplectic hyperboloids

Consider $\left(T^{*} \mathbb{R}^{n}, \omega_{0}=d q \wedge d p\right)$ and a Hamiltonian

$$
H(x)=\frac{1}{2} x^{T} A x-1, \quad x=(q, p) \in T^{*} \mathbb{R}^{n},
$$

where A is non-degenerate and symmetric

Definition

A representative of an equivalence class of the action of the $\operatorname{Sp}(n)$ on the set $\left\{H^{-1}(0) \left\lvert\, H(x)=\frac{1}{2} x^{\top} A x-1\right., \quad A \in \operatorname{Sym}(2 n) \cap \mathrm{Gl}(2 n)\right\}$ is called:

- symplectic ellipsoid when A is positive definite, $H^{-1}(0) \simeq S^{2 n-1}$;
- symplectic hyperboloid when $\operatorname{sgn}(A)=(k, 2 n-k)$ with $1 \leq k \leq 2 n-1, H^{-1}(0) \simeq S^{k-1} \times \mathbb{R}^{2 n-k}$.

Hörmander classification

Theorem: Hörmander 1995

For a symmetric, non-degenerate matrix A

Hörmander classification

Theorem: Hörmander 1995

For a symmetric, non-degenerate matrix A there exists a matrix $B \in \operatorname{Sp}(n)$, such that $B^{T} A B$ is a block matrix

Hörmander classification

Theorem: Hörmander 1995

For a symmetric, non-degenerate matrix A there exists a matrix
$B \in \operatorname{Sp}(n)$, such that $B^{T} A B$ is a block matrix consisting of blocks of one of the following types,

Hörmander classification

Theorem: Hörmander 1995

For a symmetric, non-degenerate matrix A there exists a matrix
$B \in \operatorname{Sp}(n)$, such that $B^{T} A B$ is a block matrix consisting of blocks of one of the following types, which are uniquely determined by the Jordan decomposition of $J_{0} A$.

Where $J_{0}:=\left(\begin{array}{cc}0 & \text { Id } \\ -\mathrm{Id} & 0\end{array}\right)$

Hörmander classification

Theorem: Hörmander 1995

For a symmetric, non-degenerate matrix A there exists a matrix $B \in \operatorname{Sp}(n)$, such that $B^{T} A B$ is a block matrix consisting of blocks of one of the following types, which are uniquely determined by the Jordan decomposition of $J_{0} A$.

Where $J_{0}:=\left(\begin{array}{cc}0 & \text { Id } \\ -\mathrm{Id} & 0\end{array}\right)$
Note: If α is an eigenvalue of $J_{0} A$, then $-\alpha$ and $\bar{\alpha}$ are too.

Hörmander classification

a) Real eigenvalues of $J_{0} A, \lambda,-\lambda$ with $\lambda>0$.

Hörmander classification

a) Real eigenvalues of $J_{0} A, \lambda,-\lambda$ with $\lambda>0$.

$$
\left(\begin{array}{cccccc}
& & & \lambda & & \\
& & & 1 & \ddots & \\
& & & & 1 & \lambda \\
\lambda & 1 & & & & \\
& \ddots & 1 & & & \\
& & \lambda & & &
\end{array}\right)
$$

Signature (m, m).

Hörmander classification

b) Eigenvalues of $J_{0} A$ with non-zero both real and imaginary parts, $\pm \lambda_{1} \pm i \lambda_{2}$ with $\lambda_{1}, \lambda_{2}>0$.

Hörmander classification

b) Eigenvalues of $J_{0} A$ with non-zero both real and imaginary parts, $\pm \lambda_{1} \pm i \lambda_{2}$ with $\lambda_{1}, \lambda_{2}>0$.

Signature ($2 m, 2 m$).

Hörmander classification

c) Purely imaginary eigenvalues of $J_{0} A, i \mu,-i \mu$ with $\mu>0$.

Hörmander classification

c) Purely imaginary eigenvalues of $J_{0} A, i \mu,-i \mu$ with $\mu>0$.

$$
\pm\left(\begin{array}{cccccc}
& & & \mu & & \\
& & . & & \\
& & \cdot & 1 & & \\
\\
\mu & 1 & & & & \\
& & & & 1 & \mu \\
& & & & 1 & .
\end{array}\right)
$$

Signature (m, m) if m is even, $(m \pm 1, m \mp 1)$ if m odd.

Theorem: Pasquotto - van der Vorst - W. 2017
Consider a Hamiltonian

$$
H(x, y):=\frac{1}{2}\left(x^{T} A_{0} x+y^{T} A_{1} y\right)-1, \quad x \in T^{*} \mathbb{R}^{k}, y \in T^{*} \mathbb{R}^{n-k}
$$

Theorem: Pasquotto - van der Vorst - W. 2017
Consider a Hamiltonian

$$
H(x, y):=\frac{1}{2}\left(x^{T} A_{0} x+y^{T} A_{1} y\right)-1, \quad x \in T^{*} \mathbb{R}^{k}, y \in T^{*} \mathbb{R}^{n-k}
$$

where A_{0} is positive definite

Theorem: Pasquotto - van der Vorst - W. 2017
Consider a Hamiltonian

$$
H(x, y):=\frac{1}{2}\left(x^{T} A_{0} x+y^{T} A_{1} y\right)-1, \quad x \in T^{*} \mathbb{R}^{k}, y \in T^{*} \mathbb{R}^{n-k}
$$

where A_{0} is positive definite and A_{1} is such that $J_{0} A_{1}$ is hyperbolic

Theorem: Pasquotto - van der Vorst - W. 2017
Consider a Hamiltonian

$$
H(x, y):=\frac{1}{2}\left(x^{T} A_{0} x+y^{T} A_{1} y\right)-1, \quad x \in T^{*} \mathbb{R}^{k}, y \in T^{*} \mathbb{R}^{n-k}
$$

where A_{0} is positive definite and A_{1} is such that $J_{0} A_{1}$ is hyperbolic and $A_{1}=\left(\begin{array}{cc}0 & B \\ B^{T} & 0\end{array}\right)$ with $B+B^{T}$ positive definite.

Theorem: Pasquotto - van der Vorst - W. 2017
Consider a Hamiltonian

$$
H(x, y):=\frac{1}{2}\left(x^{T} A_{0} x+y^{T} A_{1} y\right)-1, \quad x \in T^{*} \mathbb{R}^{k}, y \in T^{*} \mathbb{R}^{n-k}
$$

where A_{0} is positive definite and A_{1} is such that $J_{0} A_{1}$ is hyperbolic and $A_{1}=\left(\begin{array}{cc}0 & B \\ B^{T} & 0\end{array}\right)$ with $B+B^{T}$ positive definite. Then the Rabinowitz Floer homology of $\Sigma:=H^{-1}(0)$ is well defined.

b-manifolds

Guillemin-Miranda-Pires (2014), Oms (2020)

b-manifolds

Guillemin-Miranda-Pires (2014), Oms (2020)
Definition
A b-manifold is a pair (M, Z),

b-manifolds

Guillemin-Miranda-Pires (2014), Oms (2020)

Definition

A b-manifold is a pair (M, Z), where M is a manifold and $Z \subseteq M$ is a hypersurface called the singular set.

b-manifolds

Guillemin-Miranda-Pires (2014), Oms (2020)

Definition

A b-manifold is a pair (M, Z), where M is a manifold and $Z \subseteq M$ is a hypersurface called the singular set.
A b-vector field is a vector field on M tangent to Z.

b-manifolds

Guillemin-Miranda-Pires (2014), Oms (2020)

Definition

A b-manifold is a pair (M, Z), where M is a manifold and $Z \subseteq M$ is a hypersurface called the singular set.
A b-vector field is a vector field on M tangent to Z.
A b-tangent space ${ }^{b} T M$ is a vector bundle, which sections are b-vector fields.

b-manifolds

Guillemin-Miranda-Pires (2014), Oms (2020)

Definition

A b-manifold is a pair (M, Z), where M is a manifold and $Z \subseteq M$ is a hypersurface called the singular set.
A b-vector field is a vector field on M tangent to Z.
A b-tangent space ${ }^{b} T M$ is a vector bundle, which sections are b-vector fields.
An element of ${ }^{b} \Omega^{k}(M)$ is a k-form on ${ }^{b} T M$.

b-manifolds

Guillemin-Miranda-Pires (2014), Oms (2020)

Definition

A b-manifold is a pair (M, Z), where M is a manifold and $Z \subseteq M$ is a hypersurface called the singular set.
A b-vector field is a vector field on M tangent to Z.
A b-tangent space ${ }^{b} T M$ is a vector bundle, which sections are b-vector fields.
An element of ${ }^{b} \Omega^{k}(M)$ is a k-form on ${ }^{b} T M$.

Note: ${ }^{b} T M \subseteq T M$, but $\Omega^{k}(M) \subseteq{ }^{b} \Omega^{k}(M)$.

b-manifolds

Guillemin-Miranda-Pires (2014), Oms (2020)

Definition

A b-manifold is a pair (M, Z), where M is a manifold and $Z \subseteq M$ is a hypersurface called the singular set.
A b-vector field is a vector field on M tangent to Z.
A b-tangent space ${ }^{b} T M$ is a vector bundle, which sections are b-vector fields.
An element of ${ }^{b} \Omega^{k}(M)$ is a k-form on ${ }^{b} T M$.

Note: ${ }^{b} T M \subseteq T M$, but $\Omega^{k}(M) \subseteq{ }^{b} \Omega^{k}(M)$.

Definition

In local coordinates $\left(x_{1}, \ldots x_{n}\right)$ we have $Z=x_{1}^{-1}(0)$. The vector fields spanned by ($x_{1}^{m} \partial_{x_{1}}, \partial_{x_{2}}, \ldots \partial_{x_{n}}$) are called b^{m}-vector fields.

Definition

A b-symplectic manifold is a triple (M, Z, ω), where (M, Z) is a b-manifold and $\omega \in{ }^{b} \Omega^{2}(M)$ is closed and non-degenerate i.e. $\omega^{n} \neq 0 \in{ }^{b} \Omega^{2 n}(M)$.

Definition

A b-symplectic manifold is a triple (M, Z, ω), where (M, Z) is a b-manifold and $\omega \in{ }^{b} \Omega^{2}(M)$ is closed and non-degenerate i.e. $\omega^{n} \neq 0 \in{ }^{b} \Omega^{2 n}(M)$.
A Liouville b-vector field is a b-vector field Y, such that $d\left(\iota_{\curlyvee} \omega\right)=\omega$.

Definition

A b-symplectic manifold is a triple (M, Z, ω), where (M, Z) is a b-manifold and $\omega \in{ }^{b} \Omega^{2}(M)$ is closed and non-degenerate i.e. $\omega^{n} \neq 0 \in{ }^{b} \Omega^{2 n}(M)$.
A Liouville b-vector field is a b-vector field Y, such that $d(\iota Y \omega)=\omega$. A b-contact-type hypersurface is a hypersurface $\Sigma \subseteq(M, Z)$, such that there exists a Liouville b-vector field in the neighborhood of Σ transverse to Σ.

Definition

A b-symplectic manifold is a triple (M, Z, ω), where (M, Z) is a b-manifold and $\omega \in{ }^{b} \Omega^{2}(M)$ is closed and non-degenerate i.e. $\omega^{n} \neq 0 \in{ }^{b} \Omega^{2 n}(M)$.
A Liouville b-vector field is a b-vector field Y, such that $d(\iota Y \omega)=\omega$. A b-contact-type hypersurface is a hypersurface $\Sigma \subseteq(M, Z)$, such that there exists a Liouville b-vector field in the neighborhood of Σ transverse to Σ.
A b-contact manifold is a triple $(N, Z, \xi=\operatorname{ker} \alpha)$, where (N, Z) is a b-manifold and $\alpha \in{ }^{b} \Omega^{1}(N)$ such that $\alpha \wedge(d \alpha)^{n} \neq 0 \in{ }^{b} \Omega^{2 n+1}(N)$.

McGeehe transform

Diffeomorphism $\mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}_{+} \times S^{n-1}$ can be lifted to a symplectomorphism

$$
\begin{gathered}
T^{*} \mathbb{R}^{n} \backslash\{0\} \ni(q, p) \xrightarrow{\Phi}\left(r, P_{r}, \phi, \eta\right) \in T^{*} \mathbb{R}_{+} \times T^{*} S^{n-1} \\
\Phi^{*}\left(d r \wedge d P_{r}+d \phi \wedge d \eta\right)=d q \wedge d p
\end{gathered}
$$

McGeehe transform

Diffeomorphism $\mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}_{+} \times S^{n-1}$ can be lifted to a symplectomorphism

$$
\begin{gathered}
T^{*} \mathbb{R}^{n} \backslash\{0\} \ni(q, p) \xrightarrow{\Phi}\left(r, P_{r}, \phi, \eta\right) \in T^{*} \mathbb{R}_{+} \times T^{*} S^{n-1} \\
\Phi^{*}\left(d r \wedge d P_{r}+d \phi \wedge d \eta\right)=d q \wedge d p
\end{gathered}
$$

McGeehe transform

$$
\begin{gathered}
X:=\mathbb{R}^{2} \times T^{*} S^{n-1} \ni\left(x, P_{r}, \phi, \eta\right), Z:=\{x=0\} \\
\tau_{\mathrm{McG}}: X \backslash Z \rightarrow T^{*} \mathbb{R}_{+} \times T^{*} S^{n-1} \\
\tau_{\mathrm{McG}}:=\left(\frac{2}{x^{2}}, P_{r}, \phi, \eta\right)
\end{gathered}
$$

McGeehe transform

McGeehe transform

$$
\begin{gathered}
X:=\mathbb{R}^{2} \times T^{*} S^{n-1} \ni\left(x, P_{r}, \phi, \eta\right), Z:=\{x=0\} \\
\tau_{\mathrm{McG}}: X \backslash Z \rightarrow T^{*} \mathbb{R}_{+} \times T^{*} S^{n-1} \\
\tau_{\mathrm{McG}}:=\left(\frac{2}{x^{2}}, P_{r}, \phi, \eta\right) \\
\left(\tau_{\mathrm{McG}}\right)^{*}\left(d r \wedge d P_{r}+\phi \wedge d \eta\right)=-\frac{4}{x^{3}} d x \wedge d P_{r}+d \phi \wedge d \eta
\end{gathered}
$$

is a b^{3}-symplectic form on (X, Z).

