b-Contact Structures on Symplectic Hyperboloids

Michael Vogel, Jagna Wiśniewska

ETH, Zurich

June 7th, 2021, Junior Symplectic Geometry Seminar

Consider $(T^*\mathbb{R}^n, \omega_0 = dq \wedge dp)$ and a Hamiltonian

$$H(x) = \frac{1}{2}x^T A x - 1, \quad x = (q, p) \in T^* \mathbb{R}^n,$$

where A is non-degenerate and symmetric

Consider $(T^*\mathbb{R}^n, \omega_0 = dq \wedge dp)$ and a Hamiltonian

$$H(x) = \frac{1}{2}x^T A x - 1, \quad x = (q, p) \in T^* \mathbb{R}^n,$$

where A is non-degenerate and symmetric

Definition

A representative of an equivalence class of the action of the Sp(*n*) on the set $\{ H^{-1}(0) \mid H(x) = \frac{1}{2}x^T A x - 1, A \in Sym(2n) \cap Gl(2n) \}$ is called:

프 (프)

Consider $(T^*\mathbb{R}^n, \omega_0 = dq \wedge dp)$ and a Hamiltonian

$$H(x) = \frac{1}{2}x^T A x - 1, \quad x = (q, p) \in T^* \mathbb{R}^n,$$

where A is non-degenerate and symmetric

Definition

A representative of an equivalence class of the action of the Sp(n) on the set $\{ H^{-1}(0) \mid H(x) = \frac{1}{2}x^T A x - 1, A \in \text{Sym}(2n) \cap \text{Gl}(2n) \}$ is called: • symplectic ellipsoid when A is positive definite, $H^{-1}(0) \simeq S^{2n-1}$:

Consider $(T^*\mathbb{R}^n, \omega_0 = dq \wedge dp)$ and a Hamiltonian

$$H(x) = \frac{1}{2}x^T A x - 1, \quad x = (q, p) \in T^* \mathbb{R}^n,$$

where A is non-degenerate and symmetric

Definition

A representative of an equivalence class of the action of the Sp(*n*) on the set $\{ H^{-1}(0) \mid H(x) = \frac{1}{2}x^T A x - 1, A \in Sym(2n) \cap Gl(2n) \}$ is called:

- symplectic ellipsoid when A is positive definite, $H^{-1}(0) \simeq S^{2n-1}$;
- symplectic hyperboloid when sgn(A) = (k, 2n k) with $1 \le k \le 2n 1$, $H^{-1}(0) \simeq S^{k-1} \times \mathbb{R}^{2n-k}$.

< 3 > < 3 >

For a symmetric, non-degenerate matrix A

- ∢ ≣ ▶

For a symmetric, non-degenerate matrix A there exists a matrix $B \in Sp(n)$, such that B^TAB is a block matrix

For a symmetric, non-degenerate matrix A there exists a matrix $B \in \text{Sp}(n)$, such that $B^T A B$ is a block matrix consisting of blocks of one of the following types,

For a symmetric, non-degenerate matrix A there exists a matrix $B \in \text{Sp}(n)$, such that $B^T A B$ is a block matrix consisting of blocks of one of the following types, which are uniquely determined by the Jordan decomposition of J_0A .

Where
$$J_0 := \left(egin{array}{cc} 0 & \mathsf{Id} \ -\,\mathsf{Id} & 0 \end{array}
ight)$$

For a symmetric, non-degenerate matrix A there exists a matrix $B \in \text{Sp}(n)$, such that $B^T A B$ is a block matrix consisting of blocks of one of the following types, which are uniquely determined by the Jordan decomposition of J_0A .

Where
$$J_0 := \left(egin{array}{cc} 0 & \mathsf{Id} \ -\,\mathsf{Id} & 0 \end{array}
ight)$$

Note: If α is an eigenvalue of J_0A , then $-\alpha$ and $\overline{\alpha}$ are too.

a) Real eigenvalues of J_0A , $\lambda, -\lambda$ with $\lambda > 0$.

Ξ.

a) Real eigenvalues of J_0A , $\lambda, -\lambda$ with $\lambda > 0$.

$$\left(\begin{array}{cccc} & \lambda & & \\ & & 1 & \ddots & \\ & & & 1 & \lambda \\ \lambda & 1 & & & \\ & \ddots & 1 & & \\ & & \lambda & & \end{array}\right)$$

Signature (m, m).

▶ ★ 国 ▶ …

Hörmander classification

b) Eigenvalues of J_0A with non-zero both real and imaginary parts, $\pm \lambda_1 \pm i \lambda_2$ with $\lambda_1, \lambda_2 > 0$.

Hörmander classification

b) Eigenvalues of J_0A with non-zero both real and imaginary parts, $\pm \lambda_1 \pm i \lambda_2$ with $\lambda_1, \lambda_2 > 0$.

Signature (2m, 2m).

★ ∃ → ∃

c) Purely imaginary eigenvalues of J_0A , $i\mu$, $-i\mu$ with $\mu > 0$.

c) Purely imaginary eigenvalues of J_0A , $i\mu$, $-i\mu$ with $\mu > 0$.

$$\pm \left(egin{array}{ccccc} & \mu & & & \ & \ddots & 1 & & \ & \mu & 1 & & \ & & & 1 & \mu \ & & & 1 & \ddots & \ & & & \mu & & \end{array}
ight)$$

Signature (m, m) if m is even, $(m \pm 1, m \mp 1)$ if m odd.

→ ∃ > ∃

Consider a Hamiltonian

$$H(x,y) := \frac{1}{2} (x^{\mathsf{T}} A_0 x + y^{\mathsf{T}} A_1 y) - 1, \qquad x \in \mathcal{T}^* \mathbb{R}^k, y \in \mathcal{T}^* \mathbb{R}^{n-k}$$

Consider a Hamiltonian

$$H(x,y) := rac{1}{2}(x^T A_0 x + y^T A_1 y) - 1, \qquad x \in T^* \mathbb{R}^k, y \in T^* \mathbb{R}^{n-k}$$

where A_0 is positive definite

Consider a Hamiltonian

$$H(x,y) := rac{1}{2}(x^T A_0 x + y^T A_1 y) - 1, \qquad x \in T^* \mathbb{R}^k, y \in T^* \mathbb{R}^{n-k}$$

where A_0 is positive definite and A_1 is such that J_0A_1 is hyperbolic

Consider a Hamiltonian

$$H(x,y) := rac{1}{2}(x^T A_0 x + y^T A_1 y) - 1, \qquad x \in T^* \mathbb{R}^k, y \in T^* \mathbb{R}^{n-k}$$

where A_0 is positive definite and A_1 is such that J_0A_1 is hyperbolic and $A_1 = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix}$ with $B + B^T$ positive definite.

글 🖌 🖌 글 🛌

Consider a Hamiltonian

$$H(x,y) := rac{1}{2}(x^T A_0 x + y^T A_1 y) - 1, \qquad x \in T^* \mathbb{R}^k, y \in T^* \mathbb{R}^{n-k}$$

where A_0 is positive definite and A_1 is such that J_0A_1 is hyperbolic and $A_1 = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix}$ with $B + B^T$ positive definite. Then the Rabinowitz Floer homology of $\Sigma := H^{-1}(0)$ is well defined.

글 에 세 글 에 다

∃ 990

Definition

A *b*-manifold is a pair (M, Z),

문에 비용에 다

Definition

A *b*-manifold is a pair (M, Z), where M is a manifold and $Z \subseteq M$ is a hypersurface called the singular set.

Definition

A *b*-manifold is a pair (M, Z), where M is a manifold and $Z \subseteq M$ is a hypersurface called the singular set.

A *b*-vector field is a vector field on M tangent to Z.

Definition

A *b*-manifold is a pair (M, Z), where M is a manifold and $Z \subseteq M$ is a hypersurface called the singular set.

A *b*-vector field is a vector field on M tangent to Z.

A *b*-tangent space ${}^{b}TM$ is a vector bundle, which sections are *b*-vector fields.

-

Definition

A *b*-manifold is a pair (M, Z), where M is a manifold and $Z \subseteq M$ is a hypersurface called the singular set.

A *b*-vector field is a vector field on M tangent to Z.

A *b*-tangent space ${}^{b}TM$ is a vector bundle, which sections are *b*-vector fields.

An element of ${}^{b}\Omega^{k}(M)$ is a k-form on ${}^{b}TM$.

Definition

A *b*-manifold is a pair (M, Z), where M is a manifold and $Z \subseteq M$ is a hypersurface called the singular set.

A *b*-vector field is a vector field on M tangent to Z.

A *b*-tangent space ${}^{b}TM$ is a vector bundle, which sections are *b*-vector fields.

An element of ${}^{b}\Omega^{k}(M)$ is a k-form on ${}^{b}TM$.

Note: ${}^{b}TM \subseteq TM$, but $\Omega^{k}(M) \subseteq {}^{b}\Omega^{k}(M)$.

Definition

A *b*-manifold is a pair (M, Z), where M is a manifold and $Z \subseteq M$ is a hypersurface called the singular set.

A *b*-vector field is a vector field on M tangent to Z.

A *b*-tangent space ${}^{b}TM$ is a vector bundle, which sections are *b*-vector fields.

An element of ${}^{b}\Omega^{k}(M)$ is a k-form on ${}^{b}TM$.

Note: ${}^{b}TM \subseteq TM$, but $\Omega^{k}(M) \subseteq {}^{b}\Omega^{k}(M)$.

Definition

In local coordinates $(x_1, \ldots x_n)$ we have $Z = x_1^{-1}(0)$. The vector fields spanned by $(x_1^m \partial_{x_1}, \partial_{x_2}, \ldots \partial_{x_n})$ are called b^m -vector fields.

A *b*-symplectic manifold is a triple (M, Z, ω) , where (M, Z) is a *b*-manifold and $\omega \in {}^{b}\Omega^{2}(M)$ is closed and non-degenerate i.e. $\omega^{n} \neq 0 \in {}^{b}\Omega^{2n}(M)$.

▶ < ∃ > ...

A *b*-symplectic manifold is a triple (M, Z, ω) , where (M, Z) is a *b*-manifold and $\omega \in {}^{b}\Omega^{2}(M)$ is closed and non-degenerate i.e. $\omega^{n} \neq 0 \in {}^{b}\Omega^{2n}(M)$. A Liouville *b*-vector field is a *b*-vector field *Y*, such that $d(\iota_{Y}\omega) = \omega$.

Michael Vogel, Jagna Wiśniewska b-Contact Structures on Symplectic Hyperboloids

A *b*-symplectic manifold is a triple (M, Z, ω) , where (M, Z) is a *b*-manifold and $\omega \in {}^{b}\Omega^{2}(M)$ is closed and non-degenerate i.e. $\omega^{n} \neq 0 \in {}^{b}\Omega^{2n}(M)$. A Liouville *b*-vector field is a *b*-vector field *Y*, such that $d(\iota_{Y}\omega) = \omega$. A *b*-contact-type hypersurface is a hypersurface $\Sigma \subseteq (M, Z)$, such that there exists a Liouville *b*-vector field in the neighborhood of Σ transverse to Σ .

A *b*-symplectic manifold is a triple (M, Z, ω) , where (M, Z) is a *b*-manifold and $\omega \in {}^{b}\Omega^{2}(M)$ is closed and non-degenerate i.e. $\omega^{n} \neq 0 \in {}^{b}\Omega^{2n}(M)$. A Liouville *b*-vector field is a *b*-vector field *Y*, such that $d(\iota_{Y}\omega) = \omega$. A *b*-contact-type hypersurface is a hypersurface $\Sigma \subseteq (M, Z)$, such that there exists a Liouville *b*-vector field in the neighborhood of Σ transverse to Σ . A *b*-contact manifold is a triple $(N, Z, \xi = \ker \alpha)$, where (N, Z) is a

b-manifold and $\alpha \in {}^{b}\Omega^{1}(N)$ such that $\alpha \wedge (d\alpha)^{n} \neq 0 \in {}^{b}\Omega^{2n+1}(N)$.

McGeehe transform

Diffeomorphism $\mathbb{R}^n\setminus\{0\}\to\mathbb{R}_+\times S^{n-1}$ can be lifted to a symplectomorphism

$$\mathcal{T}^*\mathbb{R}^n \setminus \{0\} \ni (q, p) \xrightarrow{\Phi} (r, P_r, \phi, \eta) \in \mathcal{T}^*\mathbb{R}_+ \times \mathcal{T}^*S^{n-1}, \ \Phi^*(dr \wedge dP_r + d\phi \wedge d\eta) = dq \wedge dp.$$

□ > < E > < E > E の < ⊙

McGeehe transform

Diffeomorphism $\mathbb{R}^n\setminus\{0\}\to\mathbb{R}_+\times S^{n-1}$ can be lifted to a symplectomorphism

$$\mathcal{T}^*\mathbb{R}^n \setminus \{0\} \ni (q, p) \xrightarrow{\Phi} (r, P_r, \phi, \eta) \in \mathcal{T}^*\mathbb{R}_+ \times \mathcal{T}^*S^{n-1}, \ \Phi^*(dr \wedge dP_r + d\phi \wedge d\eta) = dq \wedge dp.$$

McGeehe transform

$$X := \mathbb{R}^2 \times T^* S^{n-1} \ni (x, P_r, \phi, \eta), Z := \{x = 0\}$$

$$\tau_{\mathsf{McG}} : X \setminus Z \to T^* \mathbb{R}_+ \times T^* S^{n-1}$$

$$\tau_{\mathsf{McG}} := \left(\frac{2}{x^2}, P_r, \phi, \eta\right)$$

< 注→ < 注→ …

McGeehe transform

$$\begin{aligned} X &:= \mathbb{R}^2 \times T^* S^{n-1} \ni (x, P_r, \phi, \eta), Z := \{x = 0\} \\ \tau_{\mathsf{McG}} &: X \setminus Z \to T^* \mathbb{R}_+ \times T^* S^{n-1} \\ \tau_{\mathsf{McG}} &:= \left(\frac{2}{x^2}, P_r, \phi, \eta\right) \\ (\tau_{\mathsf{McG}})^* (dr \wedge dP_r + \phi \wedge d\eta) &= -\frac{4}{x^3} dx \wedge dP_r + d\phi \wedge d\eta \end{aligned}$$

is a b^3 -symplectic form on (X, Z).

▶ ★ 臣 ▶ …

æ