Morse-Bott Functions from Moment Maps

Reto Kaufmann
E-mail: reto.kaufmann@math.ethz.ch

November 3, 2022

Contents

1 Morse-Bott Functions 1
2 Morse-Bott Functions from Moment Maps 2
3 Application: Preimage of a Facet of a Moment Polytope 3

1 Morse-Bott Functions

We follow the definitions and presentation of [2].
Let M be a smooth manifold, $f: M \rightarrow \mathbb{R}$ a smooth function and $\operatorname{Crit}(f)=\left\{p \in M \mid \mathrm{d} f_{p}=0\right\}$ its set of critical points.

Definition. The Hessian $\mathrm{H}_{p}(f)$ of f at a critical point $p \in \operatorname{Crit}(f)$ is the symmetric bilinear form given by

$$
\left[\mathrm{H}_{p}(f)\right]\left(X_{p}, Y_{p}\right)=X_{p}(Y(f))
$$

where $X_{p}, Y_{p} \in T_{p} M$ are tangent vectors and $Y \in \mathfrak{X}(M)$ is any vector field on M such that $Y(p)=Y_{p}$.
If $C \subset \operatorname{Crit}(f)$ is a submanifold of positive dimension, for any $Y \in \mathfrak{X}(M)$ we have $\left.Y(f)\right|_{C}=$ $\left.\mathrm{d} f(Y)\right|_{C}=0$. Hence if $X_{p} \in T_{p} C$ it follows that

$$
\left[\mathrm{H}_{p}(f)\right]\left(X_{p}, Y_{p}\right)=X_{p}(Y(f))=0
$$

and thus $T_{p} C \subset \operatorname{ker}\left(\mathrm{H}_{p}(f)\right)$.
Definition. $f: M \rightarrow \mathbb{R}$ is called a Morse-Bott function if

1. Crit (f) is a disjoint union of connected submanifolds and
2. for each connected submanifold $C \subset \operatorname{Crit}(f)$ and each $p \in C$ we have $\operatorname{ker}\left(\mathrm{H}_{p}\right)=T_{p} C$.

Remark. The non-degeneracy condition can be equivalently phrased as follows: Denote νC the normal bundle of C with fiber $\nu_{p} C=T_{p} M / T_{p} C$ at $p \in C$. Note that from a(ny) Riemannian metric on M we get a splitting

$$
\left.T M\right|_{C}=T C \oplus \nu C
$$

As $T_{p} C \subset \operatorname{ker}\left(\mathrm{H}_{p}(f)\right), \mathrm{H}_{p}(f)$ induces a symmetric bilinear form $\mathrm{H}_{p}^{\nu}(f)$ on $\nu_{p} C$. The non-degeneracy condition is then equivalent to $\mathrm{H}_{p}^{\nu}(f)$ being non-degenerate for all $p \in C$.

Lemma (Morse-Bott Lemma). Let $f: M \rightarrow \mathbb{R}$ be a Morse-Bott function and $C \subset$ Crit (f) be a connected component. For any $p \in C$ there is a local chart of M around p and a local splitting $\nu C=\nu^{-} C \oplus \nu^{+} C$ identifying a point $q \in M$ with (u, v, w) where $u \in C, v \in \nu^{-} C$ and $w \in \nu^{+} C$ such that within this chart f assumes the form

$$
f(q)=f(u, v, w)=f(C)-|v|^{2}+|w|^{2}
$$

Definition. The Morse-Bott index of a connected component C is the dimension of $\nu^{-} C$.
Example. Consider the height function $f: T \rightarrow \mathbb{R}$ on the laying doughnut. This is a Morse-Bott function with two critical submanifolds, both isomorphic to S^{1}. The circle on top has Morse-Bott index 1 and the circle on the bottom has Morse-index 0 .

Example. Consider the square $f=h^{2}: S^{n} \rightarrow \mathbb{R}$ of height function $h: S^{n} \rightarrow \mathbb{R}$. This is a Morse-Bott function with 3 critical submanifolds: the north and southpole have dimension 0 but the equator is sphere of dimension $n-1$ i.e. S^{n-1}. The north pole and the southpole have index n while the equator has index 0 .

2 Morse-Bott Functions from Moment Maps

Theorem. Let G be a compact Lie group and let (M, ω, G, μ) be a hamiltonian G-space. For any $X \in \mathfrak{g}$, the component of μ along X given by

$$
\begin{aligned}
\mu^{X}: M & \rightarrow \mathbb{R} \\
p & \mapsto \mu^{X}(p)=\langle\mu(p), X\rangle
\end{aligned}
$$

is a Morse-Bott function and the critical manifolds are symplectic submanifolds and the indices are all even.

Proof. (Inspired by [4], Theorem 2.2) $X \in \mathfrak{g}$ generates a one-parameter subgroup of G. Its closure is connected, compact since G is and Abelian. Thus it is a torus $\mathcal{T}<G$ of some dimension. By
definition of the moment map, $\mathrm{d} \mu^{X}=-\iota_{X^{\sharp}} \omega$ so that for any $p \in M$

$$
\begin{aligned}
& p \in \operatorname{Crit}\left(\mu^{X}\right) \quad \Longleftrightarrow \quad \mathrm{d}\left(\mu^{X}\right)_{p}=0 \\
& \Longleftrightarrow \quad-\iota_{X_{p}^{\sharp}} \omega_{p}=0 \\
& \Longleftrightarrow \quad X_{p}^{\sharp}=0 \\
& \Longleftrightarrow \quad p \in M^{\mathcal{T}} \text {. }
\end{aligned}
$$

or in other words,

$$
\operatorname{Crit}\left(\mu^{X}\right)=M^{\mathcal{T}}
$$

We thus conclude that the connected components of Crit $\left(\mu^{X}\right)$ are symplectic submanifolds.
To see the non-degeneracy, we look at the moment map μ in a neighbourhood of a point $p \in M^{\mathcal{T}}$ in its local form of the Toric Darboux Theorem

$$
\mu=\mu(p)+\frac{1}{2} \sum_{i=1}^{n}\left|z_{i}\right|^{2} \lambda^{(i)},
$$

where the $\lambda^{(i)}$ are the weights of the isotropy representation. Evaluating at X gives the candidate for the Morse-Bott function in these local coordinates:

$$
\mu^{X}=\langle\mu(p), X\rangle+\frac{1}{2} \sum_{i=1}^{n}\left|z_{i}\right|^{2}\left\langle\lambda^{(i)}, X\right\rangle .
$$

If $\left\langle\lambda^{(i)}, X\right\rangle=0$ then it follows by continuity of the action and the fact that $\exp (\mathbb{R} X)$ is dense in \mathcal{T} that the i-th summand V_{i} in $T_{p} M$ is fixed by \mathcal{T}. It follows that

$$
\left(T_{p} M\right)^{\mathcal{T}}=\bigoplus_{i: \lambda^{(i)}=0} V_{i}=\bigoplus_{i:\left\langle\lambda^{(i)}, X\right\rangle=0} V_{i}=\operatorname{ker}\left(\mu^{X}\right) .
$$

But since we can identify $T_{p}\left(M^{\mathcal{T}}\right)=\left(T_{p} M\right)^{\mathcal{T}}$, this is exactly the non-degeneracy condition. Since $\left|z_{i}\right|^{2}=x_{i}^{2}+y_{i}^{2}$ we also conclude that all the indices are even.

3 Application: Preimage of a Facet of a Moment Polytope

Theorem (Atiyah, Guillemin-Sternberg). Let $(M, \omega, \mathcal{T}, \mu)$ be a compact connected Hamiltonian \mathcal{T} space for a torus \mathcal{T}. Then:

1. the levels of μ are connected;
2. the image of μ is convex;
3. the image of μ is the convex hull of a finite number of points, that are images of the fixed points of the action.

Proof. See e.g. the paper by Atiyah [1] or the one by Guillemin Sternberg [3].
Let Δ be the moment polytope of a Hamiltonian \mathcal{T}-space M :

$$
\mu(M)=\Delta=\bigcap_{i \in \mathcal{I}} \mathbb{H}_{\left(v_{i}, c_{i}\right)}=\left\{\varphi \in \mathfrak{t}^{*} \mid\left\langle\varphi, v_{i}\right\rangle \leq c_{i} \quad \text { for all } \quad i \in \mathcal{I}\right\}
$$

Let F be a facet of Δ, that is, there is a $j \in \mathcal{I}$ such that

$$
F=\left\{\varphi \in \Delta \mid\left\langle\varphi, v_{j}\right\rangle=c_{j}\right\}
$$

and consider its preimage under the moment map $N:=\mu^{-1}(F)$. Since μ is continuous and F is closed, N is closed.
v_{j} determines an S^{1}-subgroup of \mathcal{T} which also acts Hamiltonian way on M with moment map $i^{*} \circ \mu$, where $i: \mathfrak{s} \hookrightarrow \mathfrak{t}$ is the inclusion. We get

$$
\left\langle i^{*} \circ \mu(p), v\right\rangle=\langle\mu(p), i(v)\rangle=\langle\mu(p), v\rangle .
$$

But $\mu(p) \in \Delta$ so that

$$
\left\langle\mu(p), v_{j}\right\rangle=c_{j} \quad \Longleftrightarrow \quad \mu(p) \in F \quad \Longleftrightarrow \quad p \in N
$$

which shows that N is a level set of $\mathrm{d} i_{e}^{*} \circ \mu$. Therefore, by the convexity Theorem N is connected.
We know that $\left(i^{*} \circ \mu\right)^{v_{j}}$ is a Morse-Bott function and the connected components of Crit $\left(\left(i^{*} \circ \mu\right)^{v_{j}}\right)$ are thus symplectic submanifolds. N is by construction such a critical submanifold of $\left(i^{*} \circ \mu\right)^{v_{j}}$. This shows that it is a symplectic submanifold of M.

References

[1] Michael Francis Atiyah. Convexity and commuting hamiltonians. Bulletin of the London Mathematical Society, 14(1):1-15, 1982.
[2] Augustin Banyaga and David E Hurtubise. Cascades and perturbed morse-bott functions. Algebraic \& Geometric Topology, 13(1):237-275, feb 2013.
[3] Victor Guillemin and Shlomo Sternberg. Convexity properties of the moment mapping. Inventiones mathematicae, 67(3):491-513, 1982.
[4] Eckhard Meinrenken. Symplectic geometry. Lecture Notes, University of Toronto, 2000.

