Symplectic Reduction: Ideas, Examples and Related Constructions

Reto Kaufmann

E-mail: reto.kaufmann@math.ethz.ch

28.03.2023

Recall. Let $\psi : G \to \text{Diff}(M)$ be a smooth action of a Lie group G on a symplectic manifold (M, ω) . ψ is called a *Hamiltonian action* if there exists a map

$$\Phi: M \to \mathfrak{g}^*$$

satisfying two conditions:

- Note the following standard constructions:
 - 1. Φ gives a function on M by considering the component Φ^X of Φ along $X \in \mathfrak{g}$: $\Phi^X(p) = \langle \Phi(p), X \rangle$.
 - 2. The action gives a vector field for each $X \in \mathfrak{g}$ via the infinitesimal action: $X^{\sharp} \in \mathfrak{X}(M)$ is defined pointwise as $X_p^{\sharp} = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \psi_{\exp(tX)}(p)$.
 - 3. The symplectic form gives a way of defining a 1-form for each vector field: For $Y \in \mathfrak{X}(M)$, the 1-form is given by $-\iota_Y \omega \in \Omega^1(M)$.
 - 4. Exterior differentiation applied to a function $f \in C^{\infty}(M)$ is a 1-form df.

The first condition is now that these operations are compatible with each other i.e. that the following diagram commutes:

In other words, for each $X \in \mathfrak{g}$, the component of Φ along X is a Hamiltonian function for the fundamental vector field X^{\sharp} .

• The second condition is that Φ is (ψ, Ad^*) -equivariant i.e. the following diagram commutes for all $g \in G$:

 (M, ω, G, Φ) is called a Hamiltonian G-space and Φ is called a moment map.

Example. Equip \mathbb{C}^d with the standard symplectic form $\omega = \frac{i}{2} \sum dz_i \wedge d\bar{z}_i = \sum dx_i \wedge dy_i = \sum r_i dr_i \wedge d\theta_i$ and act with the *d*-torus as

$$(e^{iX_1}, ..., e^{iX_d}) \cdot (z_1, ..., z_d) = (e^{iX_1}z_1, ..., e^{iX_d}z_d)$$

or in polar coordinates:

$$(e^{iX_1}, ..., e^{iX_d}) \cdot (r_1, \theta_1, ..., r_d, \theta_d) = (r_1, \theta_1 + X_1, ..., r_d, \theta_d + X_d).$$

Using these polar coordinates, the vector field generated by this action can then immediately be identified as

$$X^{\sharp} = X_1 \frac{\partial}{\partial \theta_1} + X_2 \frac{\partial}{\partial \theta_2} + \ldots + X_d \frac{\partial}{\partial \theta_d}.$$

Consider then the map

$$\Phi : \mathbb{C}^d \to (\mathbb{R}^d)^* \cong \mathbb{R}^d$$
$$(z_1, ..., z_d) \mapsto \frac{1}{2} \sum |z_i|^2 + \text{const} = \frac{1}{2} \sum r_i^2 + \text{const}$$

Then we can easily compute that

$$\iota_{X^{\sharp}}\omega = -\sum X_i r_i \mathrm{d}r_i = -\frac{1}{2}\sum X_i \mathrm{d}r_i^2 = \mathrm{d}\left(-\frac{1}{2}\sum X_i r_i^2\right) = -\mathrm{d}\langle\Phi(r_i,\theta_i),X\rangle$$

and so this is indeed a moment map.

Remark. We will come back to this example and make use of the liberty to choose the constant.

Lemma. Let (M, ω, G, Φ) be a hamiltonian G-space. Then for every $p \in M$ we have

$$\ker(\mathrm{d}\Phi_p) = (T_p(\mathcal{O}_p))^{\omega} \quad and \quad \operatorname{im}(\mathrm{d}\Phi_p) = (\mathfrak{g}_p)^0$$

Proof. By the first condition in the definition of a moment map we have

$$\langle \mathrm{d}\Phi_p[v], X \rangle = \omega_p(v, X_p^{\sharp}) \quad \text{for all} \quad X \in \mathfrak{g}, \ v \in T_p M$$

Claim. It holds that

$$\mathrm{d}\Phi_p[v] = 0 \quad \Longleftrightarrow \quad \omega_p(v, X_p^\sharp) = 0, \ \forall X \in \mathfrak{g}.$$

Proof of Claim. If $d\Phi_p[v] = 0$, then for all $X \in \mathfrak{g}$

$$\omega_p(v, X_p^{\sharp}) = \langle \mathrm{d}\Phi_p[v], X \rangle = 0.$$

Reversely, assume that $\omega_p(v, X_p^{\sharp}) = 0$ for all $X \in \mathfrak{g}$. Then this holds in particular for the elements of any basis for \mathfrak{g} . If $d\Phi_p[v]$ vanishes on all basis elements, it is identically zero.

Using this claim and that $T_p(\mathcal{O}_p)$ is spanned by the fundamental vector fields we conclude

$$\ker(\mathrm{d}\Phi_p) = \left\{ v \in T_p M \mid \omega_p(v, X_p^{\sharp}) = 0 \; \forall X \in \mathfrak{g} \right\} = (T_p(\mathcal{O}_p))^{\omega_p}.$$

Next, we observe that

$$\dim (\ker(\mathrm{d}\Phi_p)) = \dim ((T_p\mathcal{O})^{\omega_p})$$
$$= \dim (T_pM) - \dim (T_p\mathcal{O})$$
$$= \dim (M) - \dim (\mathcal{O})$$
$$= \dim (M) - (\dim (G) - \dim (G_p))$$

so that

$$\dim (\operatorname{im}(\mathrm{d}\Phi_p)) = \dim (T_p M) - \dim (\operatorname{ker}(\mathrm{d}\Phi_p))$$
$$= \dim (G) - \dim (G_p)$$
$$= \dim (\mathfrak{g}) - \dim (\mathfrak{g}_p)$$
$$= \dim ((\mathfrak{g}_p)^0).$$

Hence to prove the second result it suffices to show one inclusion. But it is clear that $\operatorname{im}(\mathrm{d}\Phi_p) \subset (\mathfrak{g}_p)^0$ since for $v \in T_p M$ and any $X \in \mathfrak{g}_p$ we observe

$$\langle \mathrm{d}\Phi_p[v], X \rangle = \omega_p(v, X_p^{\sharp}) = \omega_p(v, 0) = 0$$

as $\mathfrak{g}_p = \{ X \in \mathfrak{g} \mid X_p^{\sharp} = 0 \}.$

Corollary. Let (M, ω, G, Φ) be a hamiltonian G-space and let $p \in M$ be a point. Then p is a regular point of Φ if and only if G acts locally freely at p.

Proof. Using the lemma we get

$$p \text{ regular point of } \Phi \iff d\Phi_p \text{ surjective.}$$
$$\iff (\mathfrak{g}_p)^0 = \mathfrak{g}^*$$
$$\iff \mathfrak{g}_p = 0$$

Hence, $\varphi \in \mathfrak{g}^*$ is a regular value of the moment map Φ if and only if $\mathfrak{g}_p = 0$ for all $p \in \Phi^{-1}(\varphi)$. If this is the case, then the implicit function theorem gives that $\Phi^{-1}(\varphi)$ is an embedded submanifold of dimension dim(M)-dim (\mathfrak{g}^*) = dim(M)-dim(G). Moreover, the tangent space to a point $p \in \Phi^{-1}(\varphi)$ is given by $T_p(\Phi^{-1}(\varphi)) = \ker(\mathrm{d}\Phi_p) = (T_p(\mathcal{O}_p))^{\omega}$. However, since we want to study symplectic actions, we now have two major issues: 1. $\Phi^{-1}(\varphi)$ is in general not invariant under the group action. Indeed, by the second condition of the moment map: for $p \in \Phi^{-1}(\varphi)$ and $g \in G$

$$\Phi \circ \psi_q(p) = \mathrm{Ad}_q^* \circ \Phi(p) = \mathrm{Ad}_q^*(\varphi)$$

and so $\psi_g(p)$ lies in $\Phi^{-1}(\varphi)$ if and only if φ is fixed by the coadjoint action. There are two main cases where this holds and which are of interest to us:

- If $\varphi = 0$, then $\operatorname{Ad}_q^*(\varphi) = \varphi$ regardless of G.
- If G is abelian, the coadjoint representation is trivial and so $\operatorname{Ad}_g^*(\varphi) = \varphi$ for any $\varphi \in \mathfrak{g}^*$.
- 2. The tangent space $T_p(\Phi^{-1}(\varphi)) = (T_p(\mathcal{O}_p))^{\omega}$ is in general not a symplectic subspace of T_pM so a priori we do not have a symplectic form on it. However, in the two cases described above, equivariance reduces to invariance meaning that Φ is constant on the orbits. In particular its differential thus maps the tangent space to the orbits to zero:

$$T_p(\mathcal{O}_p) \subset \ker(\mathrm{d}\Phi_p) = (T_p(\mathcal{O}_p))^{\omega}$$

so that $T_p(\mathcal{O}_p) \subset T_pM$ may not be a symplectic subspace, but an isotropic subspace. Hence we can apply the following:

Lemma. Let (V, ω) be a symplectic vector space and suppose that $U \subset V$ is an isotropic subspace i.e. $U \subset U^{\omega}$ or equivalently $\omega|_{U \times U} = 0$. Then ω induces a canonical symplectic form $\bar{\omega}$ on U^{ω}/U such that

$$\pi^*\bar{\omega} = i^*\omega \quad \text{where} \quad \begin{cases} i: U^\omega \hookrightarrow U \text{ is the inclusion and} \\ \pi: U^\omega \to U^\omega/U \text{ is the projection.} \end{cases}$$

Proof. ([1], Lemma 23.3.) Let $v, w \in U^{\omega}$ and write $[v], [w] \in U^{\omega}/U$ for their equivalence classes. Define then a 2-form on the quotient as

$$\bar{\omega}: U^{\omega}/U \times U^{\omega}/U \to \mathbb{R}$$
$$([v], [w]) \mapsto \omega(v, w)$$

and check that this is

1. well-defined since for any $u, u' \in U$

$$\omega(v+u,w+u') = \omega(v,w) + \underbrace{\omega(v,u')}_{=0} + \underbrace{\omega(u,w)}_{=0} + \underbrace{\omega(u,u')}_{=0} = \omega(v,w)$$

by definition of the symplectic orthocomplement and

2. non-degenerate: If $v \in U^{\omega}$ is such that $\omega(v, w) = 0$ for all $w \in U^{\omega}$, then $v \in (U^{\omega})^{\omega} = U$ so that [v] = 0 in the quotient.

The idea is thus to get the quotient of $T_p(\Phi^{-1}(\varphi)) = (T_p(\mathcal{O}_p))^{\omega_p}$ by $T_p(\mathcal{O}_p)$ as tangent space. It would therefore be natural to consider the orbit space $\Phi^{-1}(\varphi)/G$. However, for this to be a manifold, we need a stronger hypothesis: If we assume that the action restricted to $\Phi^{-1}(\varphi)$ is free, not only locally free, the quotient $\Phi^{-1}(\varphi)/G$ is actually a manifold. Assembling all those arguments, one can then prove the following theorem:

Theorem (Marsden-Weinstein, Meyer). Let (M, ω, G, Φ) be a hamiltonian G-space for a compact Lie group G and take $\varphi \in \Phi(M)$. Assume that $\varphi = 0$ or that G is Abelian. Let $i : \Phi^{-1}(\varphi) \hookrightarrow M$ denote the inclusion map and assume further that G acts freely on $\Phi^{-1}(\varphi)$. Then

- 1. the orbit space $M_{red} = \Phi^{-1}(\varphi)/G$ is a manifold,
- 2. $\Pi: \Phi^{-1}(\varphi) \to M_{red}$ is a principal G-bundle and
- 3. there is a symplectic form ω_{red} on M_{red} satisfying $i^*\omega = \Pi^*\omega_{red}$.

Definition. The pair (M_{red}, ω_{red}) is called the *symplectic reduction* or the *symplectic quotient* of (M, ω) by G and Φ .

Example. Let $\omega = \frac{i}{2} \sum dz_i \wedge d\bar{z}_i = \sum dx_i \wedge dy_i = \sum r_i dr_i \wedge d\theta_i$ be the standard symplectic form on \mathbb{C}^{n+1} . Consider then the action of S^1 on $(\mathbb{C}^{n+1}, \omega)$ given by multiplication, meaning rotation in each factor by the angle corresponding to $e^{i\theta} \in S^1$. Then we can consider $\Phi^{-1}(\frac{1}{2}) = S^{2n+1}$ and since the action is free everyhere except at the origin, we can apply the reduction theorem:

$$\Phi^{-1}(0)/S^1 = S^{2n+1}/U(1) = \mathbb{CP}^r$$

One checks that the induced form is exactly the Fubini-Study symplectic form.

Example. Consider now $\mathbb{C}^{n \times k}$ (we assume $k \leq n$) and equip it again with the standard symplectic structure. We might think of $\mathbb{C}^{n \times k}$ as the space of complex $n \times k$ -matrices and act on it by U(k) with multiplication on the right. Recall then that the Lie algebra $\mathfrak{u}(k)$ is given by the skew-hermitian $k \times k$ -matrices and that it can be identified with its dual via the inner product $\langle A, B \rangle = \operatorname{Tr}(A^*B)$. The map

$$\Phi: \mathbb{C}^{n \times k} \to \mathfrak{u}(k) \cong \mathfrak{u}(k)^*$$
$$A \mapsto \frac{i}{2}AA^* - \frac{i}{2}$$

is a moment map for this action. $\Phi^{-1}(0)$ is the set of matrices $A \in \mathbb{C}^{n \times k}$ with $AA^* = 1$, that is the Stiefel manifold $V_k(\mathbb{C}^n)$ corresponding to the set of k-frames in \mathbb{C}^n . Since multiplication on the right acts freely, we can apply the symplectic reduction theorem and obtain

$$\Phi^{-1}(0)/U(k) = V_k(\mathbb{C}^n)/U(k) = Gr_{\mathbb{C}}(k,n)$$

the Grassmannian. Further the Reduction-theorem tells us that the projection $\pi : V_k(\mathbb{C}^n) \to Gr_{\mathbb{C}}(k,n)$ is a principal U(k)-bundle. Passing to the limit $n \to \infty$, this becomes the universal bundle for U(k).

Related Construction 1: Delzant's Construction

Let

$$\Delta = \{ x \in (\mathbb{R}^n)^* \mid \langle \varphi, v_i \rangle \le c_i, i = 1, ..., d \}$$

be a Delzant polytope i.e. for any vertex η of the polytope, the v_i such that $\langle \eta, v_i \rangle = c_i$ form a \mathbb{Z} -basis of \mathbb{Z}^n . Then define the map

$$\Pi: \mathbb{R}^d \to \mathbb{R}^n$$
$$e_i \mapsto v_i$$

and note that it is surjective and maps \mathbb{Z}^d onto \mathbb{Z}^n . It follows that this induces a map π on the quotients $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$ and $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$. Writing $K = \ker(\pi)$, we get a short exact sequence

 $0 \longrightarrow K \stackrel{i}{\longrightarrow} \mathbb{T}^d \stackrel{\pi}{\longrightarrow} \mathbb{T}^n \longrightarrow 0.$

Moreover, it follows from the Delzant condition (more precisely the fact that $\Pi(\mathbb{Z}^d) = \mathbb{Z}^n$) that K is a subtorus of \mathbb{T}^d .

We now come back to our example of the moment map from the beginning. Now we choose the constant to be the constants coming from the polytope $(c_1, ..., c_d)$:

$$\Phi : \mathbb{C}^d \to (\mathbb{R}^d)^* \cong \mathbb{R}^d$$
$$(z_1, ..., z_d) \mapsto \frac{1}{2} \sum |z_i|^2 + (c_1, ..., c_d) = \frac{1}{2} \sum r_i^2 + (c_1, ..., c_d)$$

Fact. The subgroup $K \subset \mathbb{T}^d$ inherits a Hamiltonian action on \mathbb{C}^d : its moment map is given by $i^* \circ \Phi$, where i^* is the map dual to the inclusion of the Lie algebras.

Fact. K acts freely on $(i^* \circ \Phi)^{-1}(0)$.

Hence we can apply the reduction theorem and consider the quotient $(i^* \circ \Phi)^{-1}(0)/K$. The result is a symplectic manifold $(M_{\Delta}, \omega_{\Delta})$ which can be equipped with a moment map whose image is exactly Δ . This shows, that to any Delzant-polytope, we can find a Hamiltonian \mathbb{T} -space whose image under the moment map is precisely this polytope. More generally:

Theorem (Delzant). Symplectic toric manifolds are classified up to equivalence by unimodular polytopes up to translation. More specifically, the bijective correspondence between these two sets is given by the moment map:

$$\begin{array}{ccc} \left\{ symplectic \ toric \ manifolds \right\} \Big/_{equiv.} & \stackrel{1-1}{\longrightarrow} & \left\{ unimodular \ polytopes \right\} \Big/_{transl.} \\ \\ \left(M, \omega, \mathcal{T}, \Phi \right) & \mapsto & \Phi(M) \end{array}$$

The main point to keep in mind for the second talk, is that we can construct any symplectic toric manifold as a quotient of \mathbb{C}^d by a given torus K.

Related Construction 2: Symplectic Cutting

This presentation of the basic construction of symplectic cutting follows [2].

Let (M, ω, S^1, Φ_M) be a Hamiltonian S^1 -space. Parametrise S^1 by $\theta \in [0, 2\pi[$ and let $\sigma : S^1 \to$ Diff(M) denote the action. S^1 also acts on the complex plane \mathbb{C} with the standard symplectic structure $\omega_0 = \frac{i}{2} dz \wedge d\bar{z}$ by multiplication

$$\begin{aligned} \tau : S^1 &\to \text{Diff} \, (\mathbb{C}) \\ \theta &\mapsto \tau_{\theta} : z \mapsto e^{-i\theta} z. \end{aligned}$$

This action is Hamiltonian and the corresponding moment map is

$$\Phi_{\mathbb{C}}: \mathbb{C} \to \mathbb{R} \cong \mathfrak{s}^*$$

 $z \mapsto \frac{1}{2} |z|^2.$

The product $M \times \mathbb{C}$ is again a Hamiltonian S¹-space where the moment map is

$$\Phi: M \times \mathbb{C} \to \mathbb{R}$$
$$(p, z) \mapsto \Phi_M(p) + \frac{1}{2} |z|^2.$$

For an arbitrary $c \in \mathbb{R}$, the level set is

$$\Phi^{-1}(c) = \left(\Phi_M^{-1}(c) \times \{0\}\right) \sqcup \bigsqcup_{r>0} \left(\Phi_M^{-1}(c-r) \times \left\{\frac{1}{2}|z|^2 = r\right\}\right).$$

In other words, for each $c \in \mathbb{R}$, the preimage $\Phi^{-1}(c)$ is a disjoint union of two S¹-invariant subsets where the first can be identified with

$$\Phi_M^{-1}(c) \times \{0\} \cong \Phi_M^{-1}(c) = \{p \in M \mid \Phi_M(p) = c\}$$

and the second with

$$\bigsqcup_{r>0} \left(\Phi_M^{-1}(c-r) \times \left\{ \frac{1}{2} |z|^2 = r \right\} \right) \cong \{ p \in M \mid \Phi_M(p) < c \} \times S^1.$$

If S^1 acts freely on $\Phi_M^{-1}(c)$, then it also acts freely on $\Phi^{-1}(c)$. Indeed, it also acts freely on the second part since the S^1 action on \mathbb{C} is free except at the origin. It follows that one can find a symplectic quotient by S^1 and Φ as in the Reduction-Theorem at such a value $c \in \mathbb{R}$.

Definition. The resulting space is denoted by $(M_{\leq c}, \omega_{\leq c})$ and call it the symplectic cut of M below c with respect to Φ_M .

Because the decomposition of $\Phi^{-1}(c)$ into two disjoint components above was S^1 -invariant, also $M_{\leq c}$ is the union of two disjoint components: The first one can be identified with the symplectic quotient of M at $c \in \mathbb{R}$

$$\Phi_M^{-1}(c) \Big/_{S^1} := M_c$$

and the second with

$$\{p \in M \mid \Phi_M(p) > c\} \times S^1 / S^1 \cong \{p \in M \mid \Phi_M(p) > c\} := M_{< c}.$$

In conclusion we constructed a new symplectic manifold $M_{\leq c}$ which is made up of the two disjoint components:

$$M_{$$

Remark. A similar construction but with the twisted product symplectic manifold $(M_1 \times \mathbb{C}, pr_M^* \omega - pr_{\mathbb{C}}^* \omega_0)$ and the the corresponding moment map yields the symplectic cut $M_{\geq c} = M_c \sqcup M_{>c}$ of M above c with respect to Φ_M . These two cut spaces can be glued together along the submanifolds M_c to recover the original symplectic manifold (M, ω) .

References

- Ana Cannas da Silva. Lectures on Symplectic Geometry. Lecture Notes in Mathematics. Springer Berlin Heidelberg, 2004.
- [2] Shubham Dwivedi, Jonathan Herman, Lisa C Jeffrey, and Theo Van den Hurk. *Hamiltonian Group Actions and Equivariant Cohomology*. Springer, 2019.