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Recall. Let ψ : G→ Diff (M) be a smooth action of a Lie group G on a symplectic manifold (M,ω).

ψ is called a Hamiltonian action if there exists a map

Φ :M → g∗

satisfying two conditions:

• Note the following standard constructions:

1. Φ gives a function on M by considering the component ΦX of Φ along X ∈ g: ΦX(p) =

⟨Φ(p), X⟩.

2. The action gives a vector field for each X ∈ g via the infinitesimal action: X♯ ∈ X(M) is

defined pointwise as X♯
p =

d
dt

∣∣
t=0

ψexp(tX)(p).

3. The symplectic form gives a way of defining a 1-form for each vector field: For Y ∈ X(M),

the 1-form is given by −ιY ω ∈ Ω1(M).

4. Exterior differentiation applied to a function f ∈ C∞(M) is a 1-form df .

The first condition is now that these operations are compatible with each other i.e. that the

following diagram commutes:

ΦX ∈ C∞(M)

X ∈ g −ιX♯ω = dΦX ∈ Ω1(M)

X♯ ∈ X(M)

d
Φ

ψ
ω

In other words, for each X ∈ g, the component of Φ along X is a Hamiltonian function for the

fundamental vector field X♯.
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• The second condition is that Φ is (ψ,Ad∗)-equivariant i.e. the following diagram commutes for

all g ∈ G:

M g∗

M g∗

Φ

ψg Ad∗g

Φ

(M,ω,G,Φ) is called a Hamiltonian G-space and Φ is called a moment map.

Example. Equip Cd with the standard symplectic form ω = i
2

∑
dzi∧dz̄i =

∑
dxi∧dyi =

∑
ridri∧dθi

and act with the d-torus as

(eiX1 , ..., eiXd) · (z1, ..., zd) = (eiX1z1, ..., e
iXdzd)

or in polar coordinates:

(eiX1 , ..., eiXd) · (r1, θ1, ..., rd, θd) = (r1, θ1 +X1, ..., rd, θd +Xd).

Using these polar coordinates, the vector field generated by this action can then immediately be

identified as

X♯ = X1
∂

∂θ1
+X2

∂

∂θ2
+ ...+Xd

∂

∂θd
.

Consider then the map

Φ : Cd → (Rd)∗ ∼= Rd

(z1, ..., zd) 7→
1

2

∑
|zi|2 + const =

1

2

∑
r2i + const.

Then we can easily compute that

ιX♯ω = −
∑

Xiridri = −1

2

∑
Xidr

2
i = d

(
−1

2

∑
Xir

2
i

)
= −d⟨Φ(ri, θi), X⟩

and so this is indeed a moment map.

Remark. We will come back to this example and make use of the liberty to choose the constant.

Lemma. Let (M,ω,G,Φ) be a hamiltonian G-space. Then for every p ∈M we have

ker(dΦp) = (Tp(Op))
ω and im(dΦp) = (gp)

0.

Proof. By the first condition in the definition of a moment map we have

⟨dΦp[v], X⟩ = ωp(v,X
♯
p) for all X ∈ g, v ∈ TpM.

Claim. It holds that

dΦp[v] = 0 ⇐⇒ ωp(v,X
♯
p) = 0, ∀X ∈ g.
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Proof of Claim. If dΦp[v] = 0, then for all X ∈ g

ωp(v,X
♯
p) = ⟨dΦp[v], X⟩ = 0.

Reversely, assume that ωp(v,X
♯
p) = 0 for all X ∈ g. Then this holds in particular for the elements of

any basis for g. If dΦp[v] vanishes on all basis elements, it is identically zero.

Using this claim and that Tp(Op) is spanned by the fundamental vector fields we conclude

ker(dΦp) =
{
v ∈ TpM | ωp(v,X♯

p) = 0 ∀X ∈ g
}
= (Tp(Op))

ωp .

Next, we observe that

dim (ker(dΦp)) = dim ((TpO)ωp)

= dim (TpM)− dim (TpO)

= dim (M)− dim (O)

= dim (M)− (dim (G)− dim (Gp))

so that

dim (im(dΦp)) = dim (TpM)− dim (ker(dΦp))

= dim (G)− dim (Gp)

= dim (g)− dim (gp)

= dim
(
(gp)

0
)
.

Hence to prove the second result it suffices to show one inclusion. But it is clear that im(dΦp) ⊂ (gp)
0

since for v ∈ TpM and any X ∈ gp we observe

⟨dΦp[v], X⟩ = ωp(v,X
♯
p) = ωp(v, 0) = 0

as gp = {X ∈ g | X♯
p = 0}. ■

Corollary. Let (M,ω,G,Φ) be a hamiltonian G-space and let p ∈M be a point. Then p is a regular

point of Φ if and only if G acts locally freely at p.

Proof. Using the lemma we get

p regular point of Φ ⇐⇒ dΦp surjective.

⇐⇒ (gp)
0 = g∗

⇐⇒ gp = 0 ■

Hence, φ ∈ g∗ is a regular value of the moment map Φ if and only if gp = 0 for all p ∈ Φ−1(φ). If

this is the case, then the implicit function theorem gives that Φ−1(φ) is an embedded submanifold of

dimension dim(M)−dim(g∗) = dim(M)−dim(G). Moreover, the tangent space to a point p ∈ Φ−1(φ)

is given by Tp(Φ
−1(φ)) = ker(dΦp) = (Tp(Op))

ω. However, since we want to study symplectic actions,

we now have two major issues:
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1. Φ−1(φ) is in general not invariant under the group action. Indeed, by the second condition of

the moment map: for p ∈ Φ−1(φ) and g ∈ G

Φ ◦ ψg(p) = Ad∗g ◦ Φ(p) = Ad∗g(φ)

and so ψg(p) lies in Φ−1(φ) if and only if φ is fixed by the coadjoint action. There are two main

cases where this holds and which are of interest to us:

• If φ = 0, then Ad∗g(φ) = φ regardless of of G.

• If G is abelian, the coadjoint representation is trivial and so Ad∗g(φ) = φ for any φ ∈ g∗.

2. The tangent space Tp(Φ
−1(φ)) = (Tp(Op))

ω is in general not a symplectic subspace of TpM so

a priori we do not have a symplectic form on it. However, in the two cases described above,

equivariance reduces to invariance meaning that Φ is constant on the orbits. In particular its

differential thus maps the tangent space to the orbits to zero:

Tp(Op) ⊂ ker(dΦp) = (Tp(Op))
ω

so that Tp(Op) ⊂ TpM may not be a symplectic subspace, but an isotropic subspace. Hence we

can apply the following:

Lemma. Let (V, ω) be a symplectic vector space and suppose that U ⊂ V is an isotropic subspace i.e.

U ⊂ Uω or equivalently ω|U×U = 0. Then ω induces a canonical symplectic form ω̄ on Uω/U such

that

π∗ω̄ = i∗ω where

i : Uω ↪→ U is the inclusion and

π : Uω → Uω/U is the projection.

.

Proof. ([1], Lemma 23.3.) Let v, w ∈ Uω and write [v], [w] ∈ Uω/U for their equivalence classes.

Define then a 2-form on the quotient as

ω̄ : Uω/U × Uω/U → R

([v], [w]) 7→ ω(v, w)

and check that this is

1. well-defined since for any u, u′ ∈ U

ω(v + u,w + u′) = ω(v, w) + ω(v, u′)︸ ︷︷ ︸
=0

+ω(u,w)︸ ︷︷ ︸
=0

+ω(u, u′)︸ ︷︷ ︸
=0

= ω(v, w)

by definition of the symplectic orthocomplement and

2. non-degenerate: If v ∈ Uω is such that ω(v, w) = 0 for all w ∈ Uω, then v ∈ (Uω)ω = U so that

[v] = 0 in the quotient. ■
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The idea is thus to get the quotient of Tp(Φ
−1(φ)) = (Tp(Op))

ωp by Tp(Op) as tangent space. It

would therefore be natural to consider the orbit space Φ−1(φ)/G. However, for this to be a manifold,

we need a stronger hypothesis: If we assume that the action restricted to Φ−1(φ) is free, not only

locally free, the quotient Φ−1(φ)/G is actually a manifold. Assembling all those arguments, one can

then prove the following theorem:

Theorem (Marsden-Weinstein, Meyer). Let (M,ω,G,Φ) be a hamiltonian G-space for a compact Lie

group G and take φ ∈ Φ(M). Assume that φ = 0 or that G is Abelian. Let i : Φ−1(φ) ↪→ M denote

the inclusion map and assume further that G acts freely on Φ−1(φ). Then

1. the orbit space Mred = Φ−1(φ)/G is a manifold,

2. Π : Φ−1(φ) →Mred is a principal G-bundle and

3. there is a symplectic form ωred on Mred satisfying i∗ω = Π∗ωred. ■.

Definition. The pair (Mred, ωred) is called the symplectic reduction or the symplectic quotient of

(M,ω) by G and Φ.

Example. Let ω = i
2

∑
dzi ∧ dz̄i =

∑
dxi ∧ dyi =

∑
ridri ∧ dθi be the standard symplectic form on

Cn+1. Consider then the action of S1 on (Cn+1, ω) given by multiplication, meaning rotation in each

factor by the angle corresponding to eiθ ∈ S1. Then we can consider Φ−1(12) = S2n+1 and since the

action is free everyhere except at the origin, we can apply the reduction theorem:

Φ−1(0)/S1 = S2n+1/U(1) = CPn

One checks that the induced form is exactly the Fubini-Study symplectic form.

Example. Consider now Cn×k (we assume k ≤ n) and equip it again with the standard symplectic

structure. We might think of Cn×k as the space of complex n × k-matrices and act on it by U(k)

with multiplication on the right. Recall then that the Lie algebra u(k) is given by the skew-hermitian

k × k-matrices and that it can be identified with its dual via the inner product ⟨A,B⟩ = Tr(A∗B).

The map

Φ : Cn×k → u(k) ∼= u(k)∗

A 7→ i

2
AA∗ − i

2

is a moment map for this action. Φ−1(0) is the set of matrices A ∈ Cn×k with AA∗ = 1, that is the

Stiefel manifold Vk(Cn) corresponding to the set of k-frames in Cn. Since multiplication on the right

acts freely, we can apply the symplectic reduction theorem and obtain

Φ−1(0)/U(k) = Vk(Cn)/U(k) = GrC(k, n)

the Grassmannian. Further the Reduction-theorem tells us that the projection π : Vk(Cn) →
GrC(k, n) is a principal U(k)-bundle. Passing to the limit n → ∞, this becomes the universal

bundle for U(k).
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Related Construction 1: Delzant’s Construction

Let

∆ = {x ∈ (Rn)∗ | ⟨φ, vi⟩ ≤ ci, i = 1, ..., d}

be a Delzant polytope i.e. for any vertex η of the polytope, the vi such that ⟨η, vi⟩ = ci form a Z-basis
of Zn. Then define the map

Π : Rd → Rn

ei 7→ vi

and note that it is surjective and maps Zd onto Zn. It follows that this induces a map π on the

quotients Td = Rd/Zd and Tn = Rn/Zn. Writing K = ker(π), we get a short exact sequence

0 K Td Tn 0.i π

Moreover, it follows from the Delzant condition (more precisely the fact that Π(Zd) = Zn) that K is

a subtorus of Td.
We now come back to our example of the moment map from the beginning. Now we choose the

constant to be the constants coming from the polytope (c1, ..., cd):

Φ : Cd → (Rd)∗ ∼= Rd

(z1, ..., zd) 7→
1

2

∑
|zi|2 + (c1, ..., cd) =

1

2

∑
r2i + (c1, ..., cd).

Fact. The subgroup K ⊂ Td inherits a Hamiltonian action on Cd: its moment map is given by i∗ ◦Φ,
where i∗ is the map dual to the inclusion of the Lie algebras.

Fact. K acts freely on (i∗ ◦ Φ)−1(0).

Hence we can apply the reduction theorem and consider the quotient (i∗ ◦Φ)−1(0)/K. The result

is a symplectic manifold (M∆, ω∆) which can be equipped with a moment map whose image is exactly

∆. This shows, that to any Delzant-polytope, we can find a Hamiltonian T-space whose image under

the moment map is precisely this polytope. More generally:

Theorem (Delzant). Symplectic toric manifolds are classified up to equivalence by unimodular poly-

topes up to translation. More specifically, the bijective correspondence between these two sets is given

by the moment map:

{symplectic toric manifolds}
/
equiv.

1−1→ {unimodular polytopes}
/
transl.

(M,ω, T ,Φ) 7→ Φ(M)

The main point to keep in mind for the second talk, is that we can construct any symplectic toric

manifold as a quotient of Cd by a given torus K.
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Related Construction 2: Symplectic Cutting

This presentation of the basic construction of symplectic cutting follows [2].

Let (M,ω, S1,ΦM ) be a Hamiltonian S1-space. Parametrise S1 by θ ∈ [0, 2π[ and let σ : S1 →
Diff (M) denote the action. S1 also acts on the complex plane C with the standard symplectic

structure ω0 =
i
2dz ∧ dz̄ by multiplication

τ : S1 → Diff (C)

θ 7→ τθ : z 7→ e−iθz.

This action is Hamiltonian and the corresponding moment map is

ΦC : C → R ∼= s∗

z 7→ 1

2
|z|2.

The product M × C is again a Hamiltonian S1-space where the moment map is

Φ :M × C → R

(p, z) 7→ ΦM (p) +
1

2
|z|2.

For an arbitrary c ∈ R, the level set is

Φ−1(c) =
(
Φ−1
M (c)× {0}

)
⊔

⊔
r>0

(
Φ−1
M (c− r)×

{
1

2
|z|2 = r

})
.

In other words, for each c ∈ R, the preimage Φ−1(c) is a disjoint union of two S1-invariant subsets

where the first can be identified with

Φ−1
M (c)× {0} ∼= Φ−1

M (c) = {p ∈M | ΦM (p) = c}

and the second with⊔
r>0

(
Φ−1
M (c− r)×

{
1

2
|z|2 = r

})
∼= {p ∈M | ΦM (p) < c} × S1.

If S1 acts freely on Φ−1
M (c), then it also acts freely on Φ−1(c). Indeed, it also acts freely on the

second part since the S1 action on C is free except at the origin. It follows that one can find a

symplectic quotient by S1 and Φ as in the Reduction-Theorem at such a value c ∈ R.

Definition. The resulting space is denoted by (M≤c, ω≤c) and call it the symplectic cut of M below

c with respect to ΦM .

Because the decomposition of Φ−1(c) into two disjoint components above was S1-invariant, also

M≤c is the union of two disjoint components: The first one can be identified with the symplectic

quotient of M at c ∈ R
Φ−1
M (c)

/
S1 :=Mc

7



and the second with

{p ∈M | ΦM (p) > c} × S1/
S1

∼= {p ∈M | ΦM (p) > c} :=M<c.

In conclusion we constructed a new symplectic manifoldM≤c which is made up of the two disjoint

components:

M≤c =Mc ⊔M<c.

Remark. A similar construction but with the twisted product symplectic manifold (M1 ×C, pr∗Mω −
pr∗Cω0) and the the corresponding moment map yields the symplectic cut M≥c = Mc ⊔M>c of M

above c with respect to ΦM . These two cut spaces can be glued together along the submanifolds Mc

to recover the original symplectic manifold (M,ω).
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