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Recall. Let ¢ : G — Diff (M) be a smooth action of a Lie group G on a symplectic manifold (M, w).

1 is called a Hamiltonian action if there exists a map
d:M—g*

satisfying two conditions:
e Note the following standard constructions:

1. ® gives a function on M by considering the component ®* of ® along X € g: ®X(p) =
(@(p), X).

2. The action gives a vector field for each X € g via the infinitesimal action: X* € X(M) is
defined pointwise as Xf) = % ‘t:0¢exp(tx) (p).

3. The symplectic form gives a way of defining a 1-form for each vector field: For Y € X(M),
the 1-form is given by —iyw € QY(M).

4. Exterior differentiation applied to a function f € C°°(M) is a 1-form df.

The first condition is now that these operations are compatible with each other i.e. that the

following diagram commutes:

In other words, for each X € g, the component of ® along X is a Hamiltonian function for the

fundamental vector field X*.
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e The second condition is that ® is (¢, Ad*)-equivariant i.e. the following diagram commutes for

all g € G:
M2 g
Yy Ady
M -2 g

(M,w,G,®) is called a Hamiltonian G-space and ® is called a moment map.

Example. Equip C? with the standard symplectic form w = % Yo dzindz; = > dxiAdy; = D ridr; Ad;

and act with the d-torus as
(X1, et Xa) (21, ., 29) = (€K1 21, .0, €54 2g)
or in polar coordinates:
(X1 e Xa) (1,01, .1, 00) = (11,01 + X1, .y mq, 04+ X4g).

Using these polar coordinates, the vector field generated by this action can then immediately be
identified as

Xt=X i+X i+ + Xg=

o0, T 00, T 00,
Consider then the map
d:C% - (RY* = R?
1 1
(21, .oy 24) §Z\zi|2+const: 5 2 + const.

Then we can easily compute that

1 1
LxtW = — ZXiTidri = —5 ZXZdrf =d <—2 ZXJ’?) = —d<(I)(Ti,9i),X>

and so this is indeed a moment map.

Remark. We will come back to this example and make use of the liberty to choose the constant.

Lemma. Let (M,w,G,®) be a hamiltonian G-space. Then for every p € M we have
ker(d®p) = (T,(0p))* and im(d®,) = (gp)o-
Proof. By the first condition in the definition of a moment map we have
(d®,[v], X) = wy(v,X}) forall X €g, veT,M.

Claim. It holds that
dPpl] =0 <=  wy(v,X5) =0, VX €g.



Proof of Claim. If d®,[v] = 0, then for all X € g
Wp(U’Xg) = (d®p[v], X) = 0.

Reversely, assume that w,(v, X,g) =0 for all X € g. Then this holds in particular for the elements of

any basis for g. If d®,[v] vanishes on all basis elements, it is identically zero.

Using this claim and that T},(O,) is spanned by the fundamental vector fields we conclude
ker(d®,) = {U € T,M | wy(v, X5) = 0 VX € g} = (T,(0,))*".

Next, we observe that

dim (ker(d®,)) = dim ((7,0)“?)
= dim (TPM) — dim (TPO)
= dim (M) — dim (O)
= dim (M) — (dim (G) — dim (G,))

so that
dim (im(d®,)) = dim (T,M) — dim (ker(d®,))
= dim (G) — dim (G,)
= dim (g) — dim (gp)
= dim ((g,)°) -

Hence to prove the second result it suffices to show one inclusion. But it is clear that im(d®,) C (g,)°

since for v € T, M and any X € g, we observe

(d®y[v], X) = Wp(Uan) = wp(v,0) =0
as g, ={X €g| X} =0} |
Corollary. Let (M,w,G,®) be a hamiltonian G-space and let p € M be a point. Then p is a reqular
point of ®© if and only if G acts locally freely at p.

Proof. Using the lemma we get

p regular point of & <= d®, surjective.
= () =g

— gp,=0 u

Hence, ¢ € g* is a regular value of the moment map ® if and only if g, = 0 for all p € = 1(p). If
this is the case, then the implicit function theorem gives that ®~!(¢) is an embedded submanifold of
dimension dim(M ) —dim(g*) = dim(M)—dim(G). Moreover, the tangent space to a point p € ®~1(¢)
is given by T,(®~1(p)) = ker(d®,) = (T,(0,))~. However, since we want to study symplectic actions,

we now have two major issues:



1. @ !(¢p) is in general not invariant under the group action. Indeed, by the second condition of

the moment map: for p € ®~1(¢) and g € G
P o1py(p) = Ady o @(p) = Ady(p)

and so 14 (p) lies in @~ 1(¢p) if and only if ¢ is fixed by the coadjoint action. There are two main

cases where this holds and which are of interest to us:

e If ¢ =0, then Ady(p) = ¢ regardless of of G.

e If G is abelian, the coadjoint representation is trivial and so Ady(p) = ¢ for any ¢ € g*.

2. The tangent space T,(®1(¢)) = (T,(0,))* is in general not a symplectic subspace of T,M so
a priori we do not have a symplectic form on it. However, in the two cases described above,
equivariance reduces to invariance meaning that ® is constant on the orbits. In particular its

differential thus maps the tangent space to the orbits to zero:
Tp(Op) C ker(d®p) = (T,,(0p))”

so that 7,(O,) C T, M may not be a symplectic subspace, but an isotropic subspace. Hence we

can apply the following:

Lemma. Let (V,w) be a symplectic vector space and suppose that U C V is an isotropic subspace i.e.
U C U¥ or equivalently wlyxy = 0. Then w induces a canonical symplectic form @ on U¥ /U such

that

N 1:U% <= U 1s the inclusion and
T'w=1w where
7 : U¥ — U /Uis the projection.

Proof. ([1], Lemma 23.3.) Let v,w € U“ and write [v],[w] € U¥/U for their equivalence classes.

Define then a 2-form on the quotient as
w:UY/UxUY/U—=R
([v], [w]) = w(v, w)
and check that this is

1. well-defined since for any u,u € U

w+u,w+u) =w,w) +w, ) +wlu,w)+wu,u) =wlv,w)
0 0 0

by definition of the symplectic orthocomplement and

2. non-degenerate: If v € U¥ is such that w(v,w) = 0 for all w € U¥, then v € (U¥)* = U so that
[v] = 0 in the quotient. [ ]



The idea is thus to get the quotient of T,(®~1(p)) = (T,(Op))“r by T,(0O,) as tangent space. It
would therefore be natural to consider the orbit space ®~1()/G. However, for this to be a manifold,
we need a stronger hypothesis: If we assume that the action restricted to ®~1(y) is free, not only
locally free, the quotient ®~!(¢)/G is actually a manifold. Assembling all those arguments, one can

then prove the following theorem:

Theorem (Marsden-Weinstein, Meyer). Let (M,w, G, ®) be a hamiltonian G-space for a compact Lie
group G and take p € ®(M). Assume that ¢ = 0 or that G is Abelian. Let i : ®1(p) < M denote
the inclusion map and assume further that G acts freely on ®~1(p). Then

1. the orbit space Myeq = ®1(0)/G is a manifold,
2. T : @ 1(p) — M,eq is a principal G-bundle and
3. there is a symplectic form wyeq on M,eq satisfying i*w = [T*wyeq. .

Definition. The pair (M;cq,wreq) is called the symplectic reduction or the symplectic quotient of
(M,w) by G and .

Ezample. Let w = % dodzi Adz; = > da; Ady; = D ridr; A dB; be the standard symplectic form on
C"*t1. Consider then the action of S' on (C"*!,w) given by multiplication, meaning rotation in each

factor by the angle corresponding to ¢ € S'. Then we can consider q)_l(%) = §2"+1 and since the

action is free everyhere except at the origin, we can apply the reduction theorem:
<I>_1(O)/S1 = S2”+1/U(1) =CP"

One checks that the induced form is exactly the Fubini-Study symplectic form.

Example. Consider now Cn** (we assume k < n) and equip it again with the standard symplectic
structure. We might think of C"** as the space of complex n x k-matrices and act on it by U(k)
with multiplication on the right. Recall then that the Lie algebra u(k) is given by the skew-hermitian
k x k-matrices and that it can be identified with its dual via the inner product (A, B) = Tr(A*B).
The map

®:C™F (k) = u(k)*

?

2

is a moment map for this action. ®~1(0) is the set of matrices A € C™** with AA* = 1, that is the

Stiefel manifold V}(C™) corresponding to the set of k-frames in C". Since multiplication on the right

i
Ay Laar
3

acts freely, we can apply the symplectic reduction theorem and obtain
7H(0)/U (k) = Vi(C")/U (k) = Gre(k,n)

the Grassmannian. Further the Reduction-theorem tells us that the projection = : V4 (C") —
Gre(k,n) is a principal U(k)-bundle. Passing to the limit n — oo, this becomes the universal
bundle for U (k).



Related Construction 1: Delzant’s Construction

Let
A={zxeR") | (p,v) <¢i=1,..,d}

be a Delzant polytope i.e. for any vertex n of the polytope, the v; such that (n,v;) = ¢; form a Z-basis
of Z™. Then define the map

II:RY - R”

€e; — U;

and note that it is surjective and maps Z? onto Z". It follows that this induces a map 7= on the
quotients T? = R?/Z? and T™ = R"/Z". Writing K = ker(n), we get a short exact sequence

0 y K s Td T T 0.

Moreover, it follows from the Delzant condition (more precisely the fact that II(Z?%) = Z") that K is
a subtorus of T¢.
We now come back to our example of the moment map from the beginning. Now we choose the

constant to be the constants coming from the polytope (c1, ..., ¢q):
$:C?— (RY)* =R
1 1
(21, w0y 24) = 52 |2il* + (1, s ca) = 3 D P+ (er, s ca)-

Fact. The subgroup K C T¢ inherits a Hamiltonian action on C%: its moment map is given by i* o ®,

where ¢* is the map dual to the inclusion of the Lie algebras.
Fact. K acts freely on (i* o ®)~1(0).

Hence we can apply the reduction theorem and consider the quotient (i* o ®)~%(0)/K. The result
is a symplectic manifold (Ma,wa) which can be equipped with a moment map whose image is exactly
A. This shows, that to any Delzant-polytope, we can find a Hamiltonian T-space whose image under

the moment map is precisely this polytope. More generally:

Theorem (Delzant). Symplectic toric manifolds are classified up to equivalence by unimodular poly-
topes up to translation. More specifically, the bijective correspondence between these two sets is given
by the moment map:

{symplectic toric manifolds} / 1=1  {unimodular polytopes} /

_ —
equaD. transl.

(M,w, T,®) — ®(M)

The main point to keep in mind for the second talk, is that we can construct any symplectic toric

manifold as a quotient of C? by a given torus K.



Related Construction 2: Symplectic Cutting

This presentation of the basic construction of symplectic cutting follows [2].
Let (M,w, S, ®)/) be a Hamiltonian S!-space. Parametrise S by 6 € [0,27[ and let o : S' —
Diff (M) denote the action. S!' also acts on the complex plane C with the standard symplectic

structure wy = %dz A dz by multiplication

7: 81 — Diff (C)

O 19:2e Yz

This action is Hamiltonian and the corresponding moment map is

q)ciC%Rgﬁ*
1

z - =z
2

The product M x C is again a Hamiltonian S'-space where the moment map is

dP: MxC—-R

(9, 2) = Bar(p) + 2|l

2

For an arbitrary ¢ € R, the level set is
1
7 (e) = (P57 () x {0}) L |_| <<I>M1(c r) X {2|z]2 = r}) ,
r>0

In other words, for each ¢ € R, the preimage ® !(c) is a disjoint union of two S!-invariant subsets
where the first can be identified with

D3 (e) x {0} = @31 (e) = {p € M | Bps(p) = )

and the second with

_ 1
] (@ch—w x {2|z|2 =}) ~ (pe M| @y (p) < ) x 5"
r>0
If S! acts freely on @X/}(c), then it also acts freely on ®~!(c). Indeed, it also acts freely on the
second part since the S action on C is free except at the origin. It follows that one can find a

symplectic quotient by S! and @ as in the Reduction-Theorem at such a value ¢ € R.

Definition. The resulting space is denoted by (M<.,w<.) and call it the symplectic cut of M below
c with respect to ®,y.

Because the decomposition of ®~!(c) into two disjoint components above was S!-invariant, also
M<. is the union of two disjoint components: The first one can be identified with the symplectic
quotient of M at c € R

@X;(C)/sl =M,

7



and the second with
1
{pe M| Py(p)>ct xS /51 >~ {peM|®y(p) > c} = M.
In conclusion we constructed a new symplectic manifold M<. which is made up of the two disjoint

components:
Mc. =M. UMc..

Remark. A similar construction but with the twisted product symplectic manifold (M; x C, pry;w —
priwo) and the the corresponding moment map yields the symplectic cut M>. = M. U M. of M
above ¢ with respect to ®5;. These two cut spaces can be glued together along the submanifolds M,

to recover the original symplectic manifold (M,w).
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