#### On uniqueness of symmetric union diagrams

Paolo Lisca joint work with Carlo Collari arXiv:1806.04991 arXiv:1901.10270

18 July 2019

Question 1 (Fox):  $K \subset S^3$  slice knot  $\Rightarrow K$  ribbon knot ?

Example of ribbon knot:  $T \# T^*$ 



Question 1 (Fox):  $K \subset S^3$  slice knot  $\Rightarrow K$  ribbon knot ?

Example of ribbon knot:  $T \# T^*$ 



Question 1 (Fox):  $K \subset S^3$  slice knot  $\Rightarrow K$  ribbon knot ? Another example of ribbon knot:  $T \stackrel{\sim}{\#} T^*$ 



Question 1 (Fox):  $K \subset S^3$  slice knot  $\Rightarrow K$  ribbon knot ? Another example of ribbon knot:  $T \widetilde{\#} T^*$ 



#### The trefoil T = T(2,3) is the partial knot

In general: a symmetric union diagram  $^1$  yields a ribbon knot



The partial knot is always defined

Question 2 (The existence problem):  $K \subset S^3$  ribbon knot  $\Rightarrow$  does K have a symmetric union diagram ?

<sup>1</sup>Kinoshita and Terasaka (1957)

Question 3 (The uniqueness problem <sup>2</sup>): If  $K \subset S^3$  has a symmetric union diagram, can K have two "distinct" symmetric union diagrams ?

Example: symmetric union diagrams of the knot 89



Partial knots: figure-8 (left) and T(2,5) (right)

<sup>2</sup>Eisermann and Lamm (2007)

Definition (Eisermann-Lamm): symmetric Reidemeister moves

Reidemeister moves R1, R2, R3 performed symmetrically +



Note: each move preserves the partial knot

refined Jones polynomial (Eisermann and Lamm):

$$\left\langle \left| \left\langle \right\rangle \right\rangle = A^{-1} \left\langle \left| \left\langle \right\rangle \right\rangle + A^{-1} \left\langle \right\rangle \right\rangle \left( \right\rangle$$
$$\left\langle \left| \left\langle \right\rangle \right\rangle = B \left\langle \left| \left\langle \right\rangle \right\rangle + B^{-1} \left\langle \right\rangle \right\rangle \left( \left\langle \right\rangle$$
$$\left\langle \left| \left\langle \right\rangle \right\rangle \right\rangle = B^{-1} \left\langle \left| \left\langle \right\rangle \right\rangle + B \left\langle \right\rangle \right\rangle \left( \left\langle \right\rangle$$
$$\left\langle C \right\rangle = (-A^2 - A^{-2})^{n-m} (-B^2 - B^{-2})^{m-1}$$

 $C = \{n \text{ circles intersecting the axis in } 2m \text{ points}\}$ 

$$W_D(A,B) = (-A^{-3})^{\alpha(D)}(-B^{-3})^{\beta(D)}\langle D \rangle \in \mathbb{Z}(A,B)$$

 $\alpha(D) =$  off-axis writhe,  $\beta(D) =$  on-axis writhe

 $W_D(t,t) = V(t) =$  Jones polynomial

Applications of the refined Jones polynomial (E.-L.):

Diagrams of  $8_9$  with the same partial knots and different W's:



Applications of the refined Jones polynomial (E.-L.):

 $\exists$  2-bridge knots diagrams  $D_n$ ,  $D'_n$ ,  $n \geq 2$ , with

► same partial knots

• 
$$D_2 = D_{8_9}$$
 ,  $D_2' = D_{8_9}$  ,

• 
$$W_{D_n} \neq W_{D'_n}$$
 if  $n \neq 4$ 

 $D_4$  and  $D'_4$ :





#### Knot invariants from lattice models (Jones): $Z = \sum W$

# 

х

"Enhanced" vertex models + conditions (EYBE) → knot invariants (recover Homfly, Kauffman)

а

IRF models  

$$Z_{IRF} = \sum_{\{\text{face states}\}} \prod_{v} B_v^{\pm}(a, b, c, d)$$

$$\underbrace{\downarrow}_{v \neq \pm} b$$
"Enhanced" IRF models  $\leftrightarrow$ 
"special" E.V.M.  $(a + x = y + b)$ 
 $\rightsquigarrow$  knot invariants (recover  
Homfly, Kauffman)

#### Edge-interaction models

Edge-interaction models (a.k.a. spin models)  $\leftrightarrow$  "special" IRF models :



$$X = \{1, \dots, n\}, \ d \in \{\pm \sqrt{n}\}, \ N = |\Gamma_D^0|$$
$$Z_{\text{spin}} = d^{-N} \sum_{\sigma: \ \Gamma_D^0 \to X} \prod_{e \in \Gamma_D^1} W^{\pm}(e, \sigma)$$

#### Spin models

$$Z_{\mathsf{spin}} = d^{-N} \sum_{\sigma : \ \Gamma_D^0 o X} \prod_{e \in \Gamma_D^1} W^{\pm}(e, \sigma)$$

- R2-invariance of  $Z_{spin}$ :  $W^+ \circ W^- = J$  (all-1 matrix)
- $\begin{array}{l} \bullet \quad R3\text{-invariance of } Z_{\text{spin}}: \\ \begin{cases} W^+Y_{a,b} = dW^-(a,b)Y_{a,b}, \ Y_{a,b} \in \mathbb{C}^n \\ Y_{a,b}(x) = W^+(x,a)/W^+(x,b) \end{cases} \end{array}$
- **R1-invariance**:  $I_D(W^+, d) = W^+(x, x)^{-w(D)} Z_{spin}$
- $(W^+(x,x) \text{ independent of } x)$

#### Examples of spin models

▶ Potts model:  $\xi \in \mathbb{C}$ ,  $\xi^8 + (2 - n)\xi^4 + 1 = 0$ ,  $n \ge 2$ 

$$W^+_{\mathsf{Potts}} := (-\xi^{-3})I + \xi(J-I), \ d := -\xi^2 - \xi^{-2} \in \{\pm \sqrt{n}\}$$

Pentagonal model:

$$W_{\text{pent}}^{+} = \begin{pmatrix} 1 & \omega & \omega^{-1} & \omega^{-1} & \omega \\ \omega & 1 & \omega & \omega^{-1} & \omega^{-1} \\ \omega^{-1} & \omega & 1 & \omega & \omega^{-1} \\ \omega^{-1} & \omega^{-1} & \omega & 1 & \omega \\ \omega & \omega^{-1} & \omega^{-1} & \omega & 1 \end{pmatrix}, \quad \omega = e^{2\pi i/5}, \quad d = \sqrt{5}$$

(De La Harpe):

$$\frac{1}{d}I(W_{\text{Potts}}^+, d) = V(\xi^4) \ (V = \text{Jones})$$
$$\frac{1}{d}I(-iW_{\text{pent}}^+, -d) = F(-i, 2i\cos(2\pi/5)) \ (F = \text{Kauffman})$$

#### Refined spin models - role of the axis

$$Z_{\rm spin} = d^{-N} \sum_{\sigma: \ \Gamma_D^0 \to X} \prod_{e \in \Gamma_D^1} W^{\pm}(e, \sigma)$$

 $\Gamma_D^1 \leftrightarrow \{ \text{crossings} \}$ 

#### Idea:

 $\Gamma^1_A \cup \Gamma^1_B \leftrightarrow \{ \text{crossings on the axis} \} \cup \{ \text{crossings off the axis} \}$ 

$$\widetilde{Z}_{\mathsf{spin}} = d^{-N} \sum_{\sigma \colon \ \Gamma^0_D \to X} \prod_{e \in \Gamma^1_A} V^{\pm}(e,\sigma) \prod_{e \in \Gamma^1_B} W^{\pm}(e,\sigma)$$

 $V^{\pm} =$  symmetric  $n \times n$  matrix

#### Refined spin models – the Nomura algebra

Can we choose  $V^{\pm}$  so that  $\widetilde{Z}_{spin}$  is invariant under SR moves ? Nomura algebra:

 $N_{W^+} = \{A \in M_n(\mathbb{C}) \mid Y_{a,b} \text{ } A \text{-eigenvector } \forall a, b\} \subseteq M_n(\mathbb{C})$ 

- closed under Hadamard product  $\circ$  and transposition  $\tau$
- ► self-dual:  $\psi$ :  $N_{W^+} \rightarrow M_n(\mathbb{C})$ ,  $AY_{a,b} = \psi(A)(a,b)Y_{a,b}$  $\Rightarrow \psi|_{N_{W^+}}$ :  $N_{W^+} \stackrel{\cong}{\rightarrow} N_{W^+}$ ,  $\psi^2|_{N_{W^+}} = n\tau|_{N_{W^+}}$

► 
$$I, J, \pm W^{\pm} \in N_{W^+}$$

#### Refined spin models – choice of $V^{\pm}$



Theorem (Collari-L.): Let  $V^{\pm} \in N_{W^+}$ . Then,

- S2( $\pm$ ) and S2(h)-invariance of  $\widetilde{Z}_{spin}$ : automatic
- S2(v)-invariance of  $\widetilde{Z}_{spin}$ :  $V^+ \circ V^- = J$
- ► S3 and S4-invariance of  $\widetilde{Z}_{spin}$ :  $\psi(V^+) = dV^-$
- S1-invariance:  $I_D(W^+, V^{\pm}, d) = V^+(x, x)^{-w_A(D)} \widetilde{Z}_{spin}$

#### Refined spin models – choice of $V^{\pm}$

Theorem (Collari-L.): Let  $V^+ \in N_{W^+}$ . Then,

- $S2(\pm)$  and S2(h)-invariance: automatic
- S2(v)-invariance:  $V^+ \circ V^- = J$
- S3 and S4-invariance:  $\psi(V^+) = dV^-$
- S1-invariance:  $I_D(W^+, V^{\pm}, d) = V^+(x, x)^{-w_A(D)} \widetilde{Z}_{spin}$

 $(V^+(x,x) \text{ independent of } x)$ 

Remark:  $\pm W_{\text{Potts}}^{\pm} \in \langle I, J \rangle \subset N_{W^+} \Rightarrow \text{system} \begin{cases} V^+ \circ V^- = J \\ \psi(V^+) = dV^- \end{cases}$ always has solutions, giving Potts-refined spin models

#### Sketch: $\psi(V^+) = dV^- \Rightarrow$ S3-invariance

Local change of medial graphs under an S3-move:



 $\sum_{x \in X} V^+(x,c) W^+(x,a) W^-(b,x) = dV^-(a,b) W^+(c,a) W^-(b,c)$ 

#### $\iff$

$$\psi(V^+) = dV^-$$

#### Applications – 1

Example: 
$$N_{W_{\text{pent}}^+} = \langle I, A_1, A_2 \rangle$$
,  
 $W_{\text{pent}}^+ = I + \omega A_1 + \omega^4 A_2$ ,  $\omega = e^{\frac{2\pi i}{5}}$ ,  $d = \sqrt{5}$   
 $V_{a,b,c}^{\pm} = a^{\pm 1}I + b^{\pm 1}A_1 + c^{\pm 1}A_2$ ,  $\psi(V^+) = dV^- \Leftrightarrow$   
(\*)  $\begin{cases} a(a+2b+2c) = d \\ b(a+2(\omega^2+\omega^3)b+2(\omega+\omega^4)c) = d \\ c(a+2(\omega+\omega^4)b+2(\omega^2+\omega^3)c) = d \end{cases}$   
(a, b, c)  $\in \{\pm \frac{\sqrt{d}}{2}i(-2, 1, 1), \pm \sqrt{\frac{d}{3}}i(-1, 1, 1)\}$  satisfy (\*) and  
 $I_{D_2}(W_{\text{pent}}^+, V_{a,b,c}^{\pm}, \sqrt{5}) \neq I_{D'_2}(W_{\text{pent}}^+, V_{a,b,c}^{\pm}, \sqrt{5})$ 

 $\Rightarrow$   $D_2$ ,  $D'_2$  not SR equivalent

► 
$$I_{D\#\widetilde{D}}(W_{\text{pent}}^+, V_{a,b,c}^{\pm}, \sqrt{5}) =$$
  
 $\frac{1}{d}I_D(W_{\text{pent}}^+, V_{a,b,c}^{\pm}, \sqrt{5})I_{\widetilde{D}}(W_{\text{pent}}^+, V_{a,b,c}^{\pm}, \sqrt{5})$ 

 $\Rightarrow \#^k D_2$ ,  $\#^k D'_2$  not SR equivalent

▶ Dropping condition  $V^+ \circ V^- = J$  one looses S2(v)-invariance, but can find many  $V^+, V^- \in N_{W_{Potts}^+}$  such that  $\psi(V^+) = dV^-$ ,

$$I_{D_4}(W^+_{\mathsf{Potts}},V^\pm,d) 
eq I_{D'_4}(W^+_{\mathsf{Potts}},V^\pm,d)$$

 $\Rightarrow$  D<sub>4</sub>, D'<sub>4</sub> cannot be proved SR equivalent without S2(v)-moves

#### Applications – 3

▶ Refined cyclic models  $\{W_{c,n}^+\}_{n\geq 3}$ ,  $W_{c,n}^+ \in M_n(\mathbb{C})$ 

 $I_D^c(n) := I_D(W_{c,n}^+, V_{c,n}^{\pm}, d_n)$ 

| Diagrams                         | Distinct $I_n^c(D), 1 \le n \le 10$ |
|----------------------------------|-------------------------------------|
| $D_2, D'_2$                      | $I_{D_2}^c(5)  eq I_{D_2'}^c(5)$    |
| D <sub>3</sub> , D' <sub>3</sub> | $I_{D_3}^c(7) \neq I_{D_3'}^c(7)$   |
| $D_4, D'_4$                      | _                                   |
| $D_5, D'_5$                      | _                                   |
| $D_6, D'_6$                      | _                                   |

#### Applications – 3

▶ Refined cyclic models  $\{W_{c,n}^+\}_{n\geq 3}$ ,  $W_{c,n}^+ \in M_n(\mathbb{C})$ 

```
I_D^c(n) := I_D(W_{c,n}^+, V_{c,n}^{\pm}, d_n)
```

| Diagrams        | Distinct $I_D^c(n), 1 \le n \le 10$      | $H_1(\Sigma_2(K))$         |
|-----------------|------------------------------------------|----------------------------|
| $D_2, D_2'$     | $I^{c}_{D_{2}}(5)  eq I^{c}_{D'_{2}}(5)$ | $\mathbb{Z}/25\mathbb{Z}$  |
| $D_{3}, D'_{3}$ | $I_{D_3}^c(7) \neq I_{D_3'}^c(7)$        | $\mathbb{Z}/49\mathbb{Z}$  |
| $D_4, D'_4$     | _                                        | $\mathbb{Z}/81\mathbb{Z}$  |
| $D_5$ , $D_5'$  | _                                        | $\mathbb{Z}/121\mathbb{Z}$ |
| $D_{6}, D_{6}'$ | _                                        | $\mathbb{Z}/169\mathbb{Z}$ |

Question left open: are  $D_4$ ,  $D'_4$  SR equivalent ?

#### A different approach to SR equivalence



Proposition (Collari-L.):

- $\blacktriangleright \quad W_{D_4(n)} = W_{D_4'(n)}$
- ►  $I_{D_4(n)}(W^+, W_{\text{Potts}}^{\pm}, d) = I_{D'_4(n)}(W^+, W_{\text{Potts}}^{\pm}, d)$

#### Theorem (Collari-L.):

- D, D' SR equivalent  $\Rightarrow$  D(n), D'(n) SR equivalent
- $D_4(2)$ ,  $D'_4(2)$  are not Reidemeister equivalent
- $\Rightarrow$   $D_4$ ,  $D_4'$  are not SR equivalent

#### $D_4(2)$ , $D'_4(2)$ are not Reidemeister equivalent

•  $K_1$ ,  $K'_1$  have distinct third cyclic branched covers:

$$\begin{split} H_1(\Sigma_3(K_1);\mathbb{Z}) &\cong \mathbb{Z}/7\mathbb{Z} \oplus \mathbb{Z}/7\mathbb{Z} \oplus \mathbb{Z}/7\mathbb{Z} \oplus \mathbb{Z}/7\mathbb{Z} \\ H_1(\Sigma_3(K_1');\mathbb{Z}) &\cong \mathbb{Z}/49\mathbb{Z} \oplus \mathbb{Z}/49\mathbb{Z}. \end{split}$$

$$K_s = \text{knot}(D_{4s}(2)), K'_s = \text{knot}(D'_{4s}(2))$$
:

•  $K_s$ ,  $K'_s$  have the same Alexander polynomials but distinct second Alexander ideals for each  $s \ge 1$ 

 $\Rightarrow D_{4s}, D_{4s}'$  not SR equivalent  $\forall s \geq 1$ 

#### D, D' S2(h) equivalent $\Rightarrow$ D(n), D'(n) S2(h) equivalent



#### D, D' S1 equivalent $\Rightarrow$ D(n), D'(n) S1 equivalent



#### D, D' S1 equivalent $\Rightarrow$ D(n), D'(n) S1 equivalent



#### D, D' S2(v) equivalent $\Rightarrow$ D(n), D'(n) S2(v) equivalent



#### D, D' S2(v) equivalent $\Rightarrow$ D(n), D'(n) S2(v) equivalent



#### D, D' S3 equivalent $\Rightarrow$ D(n), D'(n) S3 equivalent



#### D, D' S3 equivalent $\Rightarrow$ D(n), D'(n) S3 equivalent



## D, D' S4 equivalent $\Rightarrow$ D(n), D'(n) SR equivalent



## Double induction: case S(m, k), $1 \le k < n$



#### D, D' S2 equivalent $\Rightarrow$ D(n), D'(n) SR equivalent





## D, D' S2 equivalent $\Rightarrow$ D(n), D'(n) SR equivalent







# Thank you for listening !