Research reports
Years: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Scalable Signature Kernel Computations for Long Time Series via Local Neumann Series Expansions
by M. Tamayo-Rios and A. Schell and R. Alaifari
(Report number 2025-09)
Abstract
The signature kernel is a recent state-of-the-art tool for analyzing high-dimensional sequential data, valued for its theoretical guarantees and strong empirical performance. In this paper, we present a novel method for efficiently computing the signature kernel of long, high-dimensional time series via dynamically truncated recursive local power series expansions. Building on the characterization of the signature kernel as the solution of a Goursat PDE, our approach employs tilewise Neumann-series expansions to derive rapidly converging power series approximations of the signature kernel that are locally defined on subdomains and propagated iteratively across the entire domain of the Goursat solution by exploiting the geometry of the time series. Algorithmically, this involves solving a system of interdependent local Goursat PDEs by recursively propagating boundary conditions along a directed graph via topological ordering, with dynamic truncation adaptively terminating each local power series expansion when coefficients fall below machine precision, striking an effective balance between computational cost and accuracy. This method achieves substantial performance improvements over state-of-the-art approaches for computing the signature kernel, providing (a) adjustable and superior accuracy, even for time series with very high roughness; (b) drastically reduced memory requirements; and (c) scalability to efficiently handle very long time series (e.g., with up to half a million points or more) on a single GPU. These advantages make our method particularly well-suited for rough-path-assisted machine learning, financial modeling, and signal processing applications that involve very long and highly volatile data.
Keywords: signature kernel, Goursat, PDE, GPU, time series analysis
BibTeX
@Techreport{TSA25_1130,
author = {M. Tamayo-Rios and A. Schell and R. Alaifari},
title = {Scalable Signature Kernel Computations for Long Time Series via Local Neumann Series Expansions},
institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich},
number = {2025-09},
address = {Switzerland},
url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2025/2025-09.pdf },
year = {2025}
}
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).