> simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > > simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > Research reports – Seminar for Applied Mathematics | ETH Zurich

Research reports

An alternative to Ewald sums. Part I: Identities for sums

by R. Sperb

(Report number 1996-18)

Abstract
In this paper identities are derived which allow to compute the Coulomb energy associated with emN/em charges in a central cell and all their periodic images. These identities are all consequences of one basic identity which is obtained in a simple and straightforward way. It is possible to extend the results to other types of potentials as well.

Keywords:

BibTeX
@Techreport{S96_201,
  author = {R. Sperb},
  title = {An alternative to Ewald sums. Part I: Identities for sums},
  institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich},
  number = {1996-18},
  address = {Switzerland},
  url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports1996/1996-18.pdf },
  year = {1996}
}

Disclaimer
© Copyright for documents on this server remains with the authors. Copies of these documents made by electronic or mechanical means including information storage and retrieval systems, may only be employed for personal use. The administrators respectfully request that authors inform them when any paper is published to avoid copyright infringement. Note that unauthorised copying of copyright material is illegal and may lead to prosecution. Neither the administrators nor the Seminar for Applied Mathematics (SAM) accept any liability in this respect. The most recent version of a SAM report may differ in formatting and style from published journal version. Do reference the published version if possible (see SAM Publications).

JavaScript has been disabled in your browser