Research reports
Years: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Structured eigenvalue condition numbers and linearizations for matrix polynomials
by B. Adhikari and R. Alam and D. Kressner
(Report number 2009-01)
Abstract
This work is concerned with eigenvalue problems for structured matrix polynomials, including complex symmetric, Hermitian, even, odd, palindromic, and anti-palindromic matrix polynomials. Most numerical approaches to solving such eigenvalue problems proceed by linearizing the matrix polynomial into a matrix pencil of larger size. Recently, linearizations have been classified for which the pencil reflects the structure of the original polynomial. A question of practical importance is whether this process of linearization increases the sensitivity of the eigenvalue with respect to structured perturbations. For all structures under consideration, we show that this is not the case: there is always a linearization for which the structured condition number of an eigenvalue does not differ significantly. This implies, for example, that a structure-preserving algorithm applied to the linearization fully benefits from a potentially low structured eigenvalue condition number of the original matrix polynomial.
Keywords: Eigenvalue problem, matrix polynomial, linearization, structured condition number
BibTeX@Techreport{AAK09_394, author = {B. Adhikari and R. Alam and D. Kressner}, title = {Structured eigenvalue condition numbers and linearizations for matrix polynomials}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2009-01}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2009/2009-01.pdf }, year = {2009} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).