Research reports
Childpage navigation
Years: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Second-Kind Boundary Integral Equations for Scattering at Composite Partly Impenetrable Objects
by X. Claeys and R. Hiptmair and E. Spindler
(Report number 2015-19)
Abstract
We consider acoustic scattering of time-harmonic waves at objects composed of several homogeneous parts. Some of those may be impenetrable, giving rise to Dirichlet boundary conditions on their surfaces. We start from the second-kind boundary integral approach of [X. Claeys, and R. Hiptmair, and E. Spindler. A second-kind Galerkin boundary element method for scattering at composite objects. BIT Numerical Mathematics, 55(1):33-57, 2015] for pure transmission problems and extend it to settings with essential boundary conditions. Based on so-called global multi-potentials, we derive variational second-kind boundary integral equations posed in L2(Σ), where Σ denotes the union of material interfaces. To suppress spurious resonances, we introduce a combined-field version (CFIE) of our new method.
Thorough numerical tests highlight the low and mesh-independent condition numbers of Galerkin matrices obtained with discontinuous piecewise polynomial boundary element spaces. They also confirm competitive accuracy of the numerical solution in comparison with the widely used first-kind single-trace approach.
Keywords: acoustic scattering, second-kind boundary integral equations, Galerkin boundary element methods
BibTeX@Techreport{CHS15_609, author = {X. Claeys and R. Hiptmair and E. Spindler}, title = {Second-Kind Boundary Integral Equations for Scattering at Composite Partly Impenetrable Objects}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2015-19}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2015/2015-19.pdf }, year = {2015} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).