Research reports
Years: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Error Estimators for the Position of Discontinuities in Hyperbolic Conservation Laws with Source Terms which are solved using Operator Splitting
by R. Jeltsch and P. Klingenstein
(Report number 1997-16)
Abstract
When computing numerical solutions of hyperbolic conservation laws with source terms, one may obtain spurious solutions --- these are unphysical solutions that only occur in numerics such as shock waves moving with wrong speeds, cf. [7], [2], [1], [10], [3]. Therefore it is important to know how errors of the location of a discontinuity can be controlled. To derive appropriate error-estimates and to use them to control such errors, is the aim of our investigations in this paper. We restrict our considerations to numerical solutions which are computed by using a splitting method. In splitting methods, the homogeneous conservation law and an ordinary differential equation (modelling the source term) are solved separately in each time step. Firstly, we derive error-estimates for the scalar Riemann problem. The analysis shows that the local error of the location of a discontinuity mainly consists of two parts. The first part is introduced by the splitting and the second part is due to smearing of the discontinuity. Next, these error-estimates are used to construct an adaptation of the step size so that the error of the location of the discontinuity remains sufficiently small. The adaptation is applied to several examples, which are a scalar problem, a simplified combustion model, and the one-dimensional inviscid reacting compressible Euler equations. All the examples show that the adaptation based on the derived error-estimates works well. The theory can also be extended to planar two-dimensional problems.
Keywords: adaptation, error-estimates, operator splitting, shock location, stiff source terms
BibTeX@Techreport{JK97_221, author = {R. Jeltsch and P. Klingenstein}, title = {Error Estimators for the Position of Discontinuities in Hyperbolic Conservation Laws with Source Terms which are solved using Operator Splitting}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {1997-16}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports1997/1997-16.pdf }, year = {1997} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).