Research reports
Years: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
An efficient sparse finite element solver for the radiative transfer equation
by G. Widmer
(Report number 2009-11)
Abstract
The stationary monochromatic radiative transfer equation (RTE) is posed in five dimensions, with the intensity depending on both a position in a three-dimensional domain as well as a direction. For non-scattering radiative transfer, sparse finite elements [10, 11] have been shown to be an efficient discretization strategy if the intensity function is sufficiently smooth. Compared to the discrete ordinates method, they make it possible to significantly reduce the number of degrees of freedom N in the discretization with almost no loss of accuracy. However, using a direct solver to solve the resulting linear system requires O(N3) operations. In this paper, an efficient solver based on the conjugate gradient method (CG) with a subspace correction preconditioner is presented. Numerical experiments show that the linear system can be solved at computational costs that are nearly proportional to the number of degrees of freedom N in the discretization.
Keywords:
BibTeX@Techreport{W09_398, author = {G. Widmer}, title = {An efficient sparse finite element solver for the radiative transfer equation}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2009-11}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2009/2009-11.pdf }, year = {2009} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).