Research reports
Years: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Error estimates for DeepOnets: A deep learning framework in infinite dimensions
by S. Lanthaler and S. Mishra and G. E. Karniadakis
(Report number 2021-07)
Abstract
DeepOnets have recently been proposed as a framework for learning nonlinear operators mapping between infinite dimensional Banach spaces. We analyze DeepOnets and prove estimates on the resulting approximation and generalization errors. In particular, we extend the universal approximation property of DeepOnets to include measurable mappings in non-compact spaces. By a decomposition of the error into encoding, approximation and reconstruction errors, we prove both lower and upper bounds on the total error, relating it to the spectral decay properties of the covariance operators, associated with the underlying measures. We derive almost optimal error bounds with very general affine reconstructors and with random sensor locations as well as bounds on the generalization error, using covering number arguments.
We illustrate our general framework with four prototypical examples of nonlinear operators, namely those arising in a nonlinear forced ODE, an elliptic PDE with variable coefficients and nonlinear parabolic and hyperbolic PDEs. In all these examples, we prove that DeepOnets \emph{break the curse of dimensionality}, thus demonstrating the efficient approximation of infinite-dimensional operators with this machine learning framework.
Keywords: deep learning, operator learning
BibTeX@Techreport{LMK21_949, author = {S. Lanthaler and S. Mishra and G. E. Karniadakis}, title = {Error estimates for DeepOnets: A deep learning framework in infinite dimensions}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2021-07}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2021/2021-07.pdf }, year = {2021} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).