Research reports
Years: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Change Point Detection in Time Series Data using Autoencoders with a Time-Invariant Representation
by T. De Ryck and M. De Vos and A. Bertrand
(Report number 2021-15)
Abstract
Change point detection (CPD) aims to locate abrupt property changes in time series data. Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal and suffer from a high false alarm rate. To address these issues, we employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD. The result is a flexible method that allows the user to indicate whether change points should be sought in the time domain, frequency domain or both. Detectable change points include abrupt changes in the slope, mean, variance, autocorrelation function and frequency spectrum. We demonstrate that our proposed method is consistently highly competitive or superior to baseline methods on diverse simulated and real-life benchmark data sets. Finally, we mitigate the issue of false detection alarms through the use of a postprocessing procedure that combines a matched filter and a newly proposed change point score. We show that this combination drastically improves the performance of our method as well as all baseline methods.
Keywords: change point detection, time series segmentation, autoencoder, deep learning
BibTeX@Techreport{DDB21_957, author = {T. De Ryck and M. De Vos and A. Bertrand}, title = {Change Point Detection in Time Series Data using Autoencoders with a Time-Invariant Representation}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2021-15}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2021/2021-15.pdf }, year = {2021} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).