Publications

  1. Uncertainty Quantifcation in Computational Fluid Dynamics. ,H. Bijl, D. Lucor, S. Mishra, C. Schwab eds., Lecture Notes in Computational Science and Engineering Volume 92, 2013.
  1. S. Mishra, Convergence of upwind di fference schemes for a scalar conservation law with indefinite discontinuities in the flux function, SIAM Jl. Num. Anal., 559 - 577, 43(2), 2005.
  2. Adimurthi, S. Mishra and G.D.V. Gowda, Optimal Entropy solutions for conservation laws with discontinuous flux functions, Jl. Hyp. Di . Eqns, 787-838, 2 (4), 2005.
  3. Adimurthi, S. Mishra and G.D.V. Gowda, Conservation laws with flux functions discontinuous in the space variable-II: Convex- Concave fluxes and generalized entropy solutions, Jl. Comp. Appl. Math, 203 (2), 2007, 310-344.
  4. Adimurthi, S. Mishra and G.D.V. Gowda, Convergence of Godunov type schemes for conservation with spatially varying discontinuous flux functions, Math. Comput, 76, 2007, 1219-1242.
  5. Adimurthi, S. Mishra and G.D.V. Gowda, Existence and Stability of entropy solutions for conservation laws with discontinuous non-convex fluxes, Net. Heter. Media, 2 (1), 2007, 127-157.
  6. Adimurthi, S. Mishra and G.D.V. Gowda, Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and Conservation laws with discontinuous coefficients, Jl. Di . Eqns, 24, 2007, 1-31.
  7. K . H. Karlsen, S. Mishra and N. H. Risebro, Semi-Godunov schemes for general triangular systems of conservation laws, Journal of Engg Math, 60, 2008, 337 - 349.
  8. K . H. Karlsen, S. Mishra and N. H. Risebro, Large time stepping schemes for balance equations, Jornal of Engg. Math, 60, 2008, 351 - 363.
  9. K . H. Karlsen, S. Mishra and N. H. Risebro, A new class of well-balanced schemes for conservation laws with source terms, Math. Comput., 78 (265), 2009, 55-78.
  10. K . H. Karlsen, S. Mishra and N. H. Risebro, Convergence of finite volume schemes for triangular systems of conservation laws, Numer. Math., 111 (4), 2009, 559-589.
  11. F.Fuchs, S. Mishra and N.H.Risebro, Splitting based finite volume schemes for the ideal MHD equations, Jl. Comput. Phys., 228 (3), 2009, 641-660.
  12. G.M.Coclite, S. Mishra, K.H.Karlsen and N.H.Risebro, Convergence of vanishing viscosity approximations for a multi-dimensional triangular systems of conservation laws, Boll. Unione. Mat. Ital, 9 (2), 2009, 275 - 284.
  13. K . H. Karlsen, S. Mishra and N. H. Risebro, Semi-Godunov schemes for multi-phase flows in porous media, Ap. Num. Math., 59 (9), 2009, 2322-2336.
  14. F.Fuchs, K. H. Karlsen, S. Mishra and N.H.Risebro, Stable upwind schemes for the magnetic induction equations, M2AN. Math. Model. Num. Anal, 43 (5), 825-852, 2009.
  15. M. Svard and S. Mishra, A shock capturing technique for higher order finite di fference schemes, Jl. Sci. Comp, 39 (3). 2009, 454-484.
  16. P. G. LeFloch and S. Mishra, Non-classical shocks and numerical kinetic relations for a model MHD system, Act. Math. Sci., 29(6), 2009, 1684-1702.
  17. S. Mishra and J. Ja re, On the upstream mobility flux scheme for two phase flows in a porous medium with changing rock types, Comp. GeoSci., 14 (1), 2010, 105-124.
  18. G.M.Coclite, S. Mishra and N.H.Risebro, Convergence of an Engquist-Osher scheme for a multi-dimensional triangular systems of conservation laws, Math. Comput., 79 (269), 71-94, 2010.
  19. S. Mishra and M. Svard, On stability of numerical schemes via frozen coefficients and the magnetic induction equations, BIT., 50 (1), 2010, 85-108.
  20. U.Koley, S. Mishra, N.H.Risebro and M. Svard, Higher order finite diff erence schemes for the magnetic induction equations, BIT., 49 (2), 375-395, 2009.
  21. F.Fuchs, A.McMurry, S. Mishra, N.H.Risebro and K.Waagan, Finite volume methods for wave propagation in stratified magneto-atmospheres, Comm. Comput. Phys., 7 (3), 2010, 473-509.
  22. F.Fuchs, A.McMurry, S. Mishra, N.H.Risebro and K.Waagan, High-order Well-balanced finite volume schemes for simulating waves in stratified magnetoatmospheres, Jl. Comput. Phys., 229 (11), 2010, 4033-4058.
  23. U.S. Fjordholm, S. Mishra and E. Tadmor, Energy preserving and energy stable schemes for the shallow water equations, Proc. FoCM,. London Math. Soc. lecture notes, 363, 2009, 93-139.
  24. M. Svard and S. Mishra, Implicit-Explicit schemes for flow equations with stiff source terms, Jl. Comp. Appl. Math, 235 (6), 1564-1577, 2011.
  25. S. Mishra and E. Tadmor, Constraint preserving schemes using potential based fluxes- I: Multi-dimensional transport equations, Comm. Comput. Phys, 9, 2011, 688-710.
  26. S. Mishra and E. Tadmor, Constraint preserving schemes using potential based fluxes- II: Genuinely multi-dimensional schemes for systems of conservation laws, SIAM Jl. Num. Anal., 49 (3), 2011, 1023-1045.
  27. U.S. Fjordholm, S. Mishra and E. Tadmor, Energy preserving and energy stable schemes for shallow water equations with bottom topography, Jl. Comput. Phys, 230, 2011, 5587-5609.
  28. F.Fuchs, A.McMurry, S. Mishra, N.H.Risebro and K.Waagan, Approximate Riemann solver based high-order finite volume schemes for the MHD equations in multi-dimensions, Comm. Comput. Phys, 9, 2011, 324-362.
  29. U.S. Fjordholm and S. Mishra, Vorticity preserving schemes for the shallow-water equations, SIAM Jl. Sci. Comp, 33 (2), 588-611, 2011.
  30. F.Fuchs, A.McMurry, S. Mishra and K.Waagan, Simulating waves in the upper solar atmosphere with SURYA: A well-balanced high-order finite volume code, Astrophysical Journal,732 (2), 2011, 75.
  31. S. Mishra and E. Tadmor, Constraint preserving schemes using potential based fluxes- III: divergence preserving central schemes for MHD equations, M2AN Math. Model. Num. Anal,46, 2012, 661-680.
  32. S. Mishra and C. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data. Math. Comput., 81(180), 1979-2018, 2012 .
  33. G.M.Coclite, K.H.Karlsen, S. Mishra and N.H.Risebro, A hyperbolicelliptic model of two-phase flow in porous media- existence of entropy solutions, Int. Jl. Num. Anal. Model., 9 (2012), no. 3, 562583.
  34. U.S. Fjordholm and S. Mishra, Accurate Numerical discretizations of non-conservative hyperbolic systems, M2AN Math. Model. Num. Anal, 46, 187-206, 2012.
  35. U.S. Fjordholm, S. Mishra and E. Tadmor, Arbitrarily high order accurate entropy stable essentially non-oscillatory schemes for systems of conservation laws, SIAM Jl. Num. Anal, 50(2), 2012, 544-573.
  36. H. Kumar and S. Mishra, Entropy stable numerical schemes for two-fluid MHD equations, Jl. Sci. Comp, 52 (2012), no. 2, 401-425 .
  37. U.S. Fjordholm, S. Mishra and E. Tadmor, ENO reconstruction and ENO interpolation are stable, Found. Comput. Math, 13 (2), 2013, 139-159.
  38. S. Mishra, Ch. Schwab and J. Sukys, Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions, Jl. Comput. Phys, 231 (2012), no. 8, 3365-3388
  39. P. Corti and S. Mishra, Stable finite di fference schemes for the magnetic induction equation with Hall e ffect, BIT Numerical Mathematics, 52 (4), 2012, 905-932.
  40. M. Svard and S. Mishra, Entropy stable scheme for initial-boundaryvalue-problems for conservation laws, ZAMP, 63 (6), 2012, 985-1003.
  41. M.J. Castro, U.S. Fjordholm, S. Mishra and C. Pares Entropy conservative and entropy stable schemes for non-conservative hyperbolic systems, SIAM Jl. Num. Anal, 51 (3), 2013, 1371-1391.
  42. S. Mishra, Ch. Schwab and J. Sukys Multi-level Monte Carlo finite volume methods for shallow water equations with uncertain topography in multidimensions, SIAM Jl. Sci. Comput, 34 (6), 2012, 761-784.
  43. U.Koley, S. Mishra, N.H.Risebro and M. Svard, Higher order SBP-SAT schemes for magnetic induction equations with resistivity, IMA Jl. Num. Anal., 32(3), 2012, 1173-1193.
  44. A. Hiltebrand and S. Mishra, Entropy stable shock capturing streamline diff usion space-time discontinuous Galerkin (DG) methods for systems of conservation laws, Numer. Math, 126 (1), 2014, 103-151.
  45. G.M. Coclite, L. Di Ruvo, J. Ernest and S. Mishra, Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes, Netw. Heterog. Media, 8 (4), 2013, 969-984.
  46. R. Kappeli and S. Mishra, Well-balanced schemes for the Euler equations with gravitation, J. Comput. Phys., 259, 2014, 199-219.
  47. G. M. Coclite, S. Mishra, N. H. Risebro and F. R. Weber, Analysis and Numerical approximation of Brinkmann regularization of two phase flows in porous media, Comp. GeoSci., 18 (5), 2014, 637-659.
  48. P. LeFloch and S. Mishra, Numerical methods with controlled dissipation for small-scale dependent shocks Acta Numerica, 23, 2014, 743-816.
  49. I. Averbukh, D. Ben-Zvi, S. Mishra and N. Barkai, Scaling morphogen gradients during tissue growth by a cell division rule, Development, 141, 2014, 2150-2156.
  50. S. Mishra and L.V. Spinolo Accurate numerical schemes for approximating intitial-boundary value problems for systems of conservation laws , Jl. Hyp. Di . Eqns., 12 (1), 2015, 61-86.
  51. J. Ernest, P. LeFloch and S. Mishra, Schemes with Well controlled dissipation (WCD) I: Non-classical shock waves, SIAM Jl. Num. Anal., 53 (1), 2015, 674-699.
  52. A. Hiltebrand and S. Mishra, Efficient pre conditioners for a shock capturing space-time discontinuous Galerkin method for systems of conservation laws, Comm. Comput. Phys., 17 (2015), 1, 83-98
  53. C. Sanchez-Linares, M. de la asuncion, M. Castro, S. Mishra and J. Sukys, Multi-level Monte Carlo finite volume method for shallow water equations with uncertain parameters applied to landslides-generated tsunamis, Appl. Math. Modeling, 39 (23-24), 2015, 7211-7226.
  54. S. Lanthaler and S. Mishra, Computation of measure valued solutions for the incompressible Euler equations, Math. Mod. Meth. Appl. Sci. (M3AS), 25 (2015), 11, 2043-2088.
  55. A. Hiltebrand and S. Mishra, A well-balanced space-time Discontinuous Galerkin method for the shallow water equations, Netw. Het. Med., 11 (1), 2016, 145-162.
  56. K. Pressel, C. Kaul, Z. Tan, T. Schneider and S. Mishra, Large-eddy simulation in an an elastic framework with closed water and entropy balances, Journal of Advances in Modeling Earth Systems (JAMES), 7 (3), 1425-1456.
  57. S. Mishra, Ch. Schwab and J. Sukys, Multi-Level Monte Carlo Finite Volume methods for uncertainty quantification of acoustic wave propagation in random heterogeneous layered medium, J. Comput. Phys., 312, 2016, 192-217.
  58. G. M. Coclite, M. M. Coclite, and S. Mishra. On a model for the evolution of morphogens in a growing tissue, SIAM J. Math. Anal., 48 (3), 2016 1575-1615.
  59. S. Mishra, N.H. Risebro, Ch. Schwab and S. Tokareva, Numerical solution of scalar conservation laws with random flux functions, SIAM/ASA Jl. Uncertainty Quanti cation., 4 (1), 2016, 552-591.
  60. D. Ray, P. Chandrasekhar, U. S. Fjordholm and S. Mishra, Entropy stable scheme on two-dimensional unstructured grids for Euler equations, Commun. Comput. Phys., 19 (5), 2016, 1111-1140.
  61. U. S. Fjordholm, R. Kappeli, S. Mishra and E. Tadmor, Construction of approximate entropy measure valued solutions for hyperbolic systems of conservation laws. Found. Comput. Math., 2016, to appear, available with doi: 10.1007/s10208-015-9299-z.
  62. U. S. Fjordholm, S. Mishra and E. Tadmor, On the computation of measure-valued solutions, Acta Numerica, 25, 2016, 567-679.
  63. R. Kappeli and S. Mishra, A well-balanced finite volume scheme for the Euler equations with gravitation-The exact preservation of hydrostatic equilibrium with arbitrary entropy stratification, Astronomy and Astrophysics, 587, 2016, A94.
  64. T. Zimmermann, S. Mishra, B. R. Doran, D. F. Gordon, A. Landsman, Tunneling time and weak measurement in strong field ionization., Phys. Rev. Lett., 2016, to appear.
  65. C. Sanchez-Linares, M. de la asuncion, M. Castro, J. M. Gonzalez-Vida, J. Macias and S. Mishra, Uncertainty quantification in tsunami modeling using Multi-level Monte Carlo finite volume method, Jl. Math. Ind., 2016, to appear.
  66. A. BelJadid, P. G. LeFloch, S. Mishra and C. Pares, Schemes with well-controlled dissipation-hyperbolic systems in non-conservative form, Commun, Comput. Phys., 21 (4), 2017, 913-946
  67. F. Leonardi, S. Mishra and Ch. Schwab, Numerical approximation of statistical solutions of incompressible flow. Math. Mod. Meth. Appl. Sci. (M3AS), 2016, 26 (13), 2471-2524.
  68. K. G. Pressel, S. Mishra, T. Schneider, C.M. Kaul and Z. Tan, Numerics and Subgrid-Scale Modeling in Large Eddy Simulations of Stratocumulus Clouds, Journal of Advances in Modeling Earth Systems (JAMES), 9 (2), 2017, 1342-1365
  69. U.S. Fjordholm, S. Lanthaler ans S. Mishra, Statistical solutions of hyperbolic conservation laws I: Foundations, Arch. Rat. Mech. Anal., 226, 2017, 809-849
  70. A. Hiltebrand, S. Mishra and C. Pares, Entropy stable space-time DG schemes for non-conservative hyperbolic systems, ESIAM Math. Model. Num. Anal., 2018, to appear.
  1. U.S. Fjordholm, S. Mishra and E. Tadmor, Energy preserving and energy stable schemes for the shallow water equations, Foundations of Computational Mathematics, Proc. FoCM,. London Math. Soc. lecture notes, 363, 2009, 93-139.
  2. S. Mishra, Maximal entropy solutions for conservation laws with discontinuous flux. , Hyperbolic Problems, theory, numerics and applications, Springer, 2008, 731-738.
  3. F. G. Fuchs, A. D. McMurry and S. Mishra, High-order finite volume schemes for wave propagation in stratified atmospheres, Hyperbolic problems: theory, numerics and applications, 575584, Proc. Sympos. Appl. Math., 67, Part 2, Amer. Math. Soc., Providence, RI, 2009.
  4. S. Mishra and E. Tadmor, Vorticity preserving schemes using potentialbased fluxes for the system wave equation, Hyperbolic problems: theory, numerics and applications, 795804, Proc. Sympos. Appl. Math., 67, Part 2, Amer. Math. Soc., Providence, RI, 2009.
  5. S. Mishra and E. Tadmor, Potential based, constraint preserving, genuinely multi-dimensional schemes for systems of conservation laws, Nonlinear partial di fferential equations and hyperbolic wave phenomena, Comtemporary Mathematics, A.M.S, 295-314, Providence, 2010.
  6. F. G. Fuchs, A. D. McMurry, S. Mishra and K. Waagan, Robust finite volume schemes for simulating waves in the solar atmosphere, Proc. of the Hyperbolic problemstheory, numerics and applications Conference 2010. Volume 1, Ser. Contemp. Appl. Math. CAM, 17, World Sci. Publishing, Singapore, 2012, 215226.
  7. U.S. Fjordholm, S. Mishra and E. Tadmor, Entropy stable ENO scheme, Proc. of the Hyperbolic problemstheory, numerics and applications Conference 2010. Volume 1, Ser. Contemp. Appl. Math. CAM, 17, World Sci. Publishing, Singapore, 2012, 1227.
  8. J. Sukys, S. Mishra and Ch. Schwab, Static load balancing for multi-level Monte Carlo finite volume solvers , Proceedings of the 32th PPAM (Parallel processing and Applied Mathematics) Conference, 2012.
  9. T. J. Barth, S. Mishra and Ch. Schwab, UQ methods for nonlinear conservation laws containing discontinuities, Uncertainty Quanti -  fication in Computational Fluid Dynamics", AVT-193, Sponsored by NATO RTO, October 24-28, 2011.
  10. F. Fuchs, A. D. McMurry, S. Mishra and N. H. Risebro, Explicit and Implicit finite volume schemes for radiation MHD and the e ffects of radiation on wave propagation in stratified atmospheres, Proc. of the Hyperbolic Problems: Theory, Numerics, Applications conference 2012. F. Ancona, A. Bressan, P. Marcati, A. Marson eds., AIMS Series on Applied Mathematics, Vol 8, 2014, 41-59
  11. Multi-level Monte Carlo finite volume methods for uncertainty quantification in nonlinear systems of balance laws, In Uncertainty quantification in computational fluid dynamics, Bijl, Lucor, Mishra, Schwab Eds., LNCSE 92, Springer 2013, 225-294.
  12. Jonas Sukys, Siddhhartha Mishra, Christoph Schwab, Multi-level Monte Carlo Finite Differenceand Finite Volume Methods for Stochastic Linear Hyperbolic Systems, MCQMC 2012 Springer Proceedings in Mathematics and Statistics, vol. 65, 2013, pp. 649666.
  13. R. Abgrall and S. Mishra, Uncertainty quantification for hyperbolic systems of conservation laws, Handbook of numerical methods for hyperbolic problems, 507544, Handb. Numer. Anal., 18, Elsevier/North-Holland, Amsterdam, 2017
  14. Mishra, S. Numerical methods for conservation laws with discontinuous coefficients. Handbook of numerical methods for hyperbolic problems, 479–506, Handb. Numer. Anal., 18, Elsevier/North-Holland, Amsterdam, 2017
  15. A. Hiltebrand and S. Mishra, Efficient computation of all speed flows using an entropy stable shok-capturing space-time discontinuous Galerkin method Research report 2014-17, SAM ETH Zurich, to appear in Partial Differential Equations, Mathematical Physics and Stochastic analysis, EMS Congress reports, 2017.
  1. S. Mishra and Ch. Schwab, Monte-Carlo Finite-Volume methods in uncertianty quantification for hyperbolic conservation laws, Preprint, 2017.
  2. U. S. Fjordholm, K. Lye and S. Mishra, Numerical approximation of statistical solutions of scalar conservation laws, Preprint, 2017.
JavaScript has been disabled in your browser