Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Generic bounds on the approximation error for physics-informed (and) operator learning
by T. De Ryck and S. Mishra
(Report number 2022-20)
Abstract
We propose a very general framework for deriving rigorous bounds on the approximation error for physics-informed neural networks (PINNs) and operator learning architectures such as DeepONets and FNOs as well as for physics-informed operator learning. These bounds guarantee that PINNs and (physics-informed) DeepONets or FNOs will efficiently approximate the underlying solution or solution operator of generic partial differential equations (PDEs). Our framework utilizes existing neural network approximation results to obtain bounds on more involved learning architectures for PDEs. We illustrate the general framework by deriving the first rigorous bounds on the approximation error of physics-informed operator learning and by showing that PINNs (and physics-informed DeepONets and FNOs) mitigate the curse of dimensionality in approximating nonlinear parabolic PDEs.
Keywords: deep learning, PINN, DeepONet, FNO, neural network approximation theory
BibTeX@Techreport{DM22_1008, author = {T. De Ryck and S. Mishra}, title = {Generic bounds on the approximation error for physics-informed (and) operator learning}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2022-20}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2022/2022-20.pdf }, year = {2022} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).