Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Multilevel Domain Uncertainty Quantification in Computational Electromagnetics
by R. Aylwin and C. Jerez-Hanckes and Ch. Schwab and J. Zech
(Report number 2022-47)
Abstract
We continue our study [Domain Uncertainty Quantification in
Computational Electromagnetics, JUQ (2020), {\bf 8}:301--341] of the numerical approximation of time-harmonic electromagnetic fields for the Maxwell lossy cavity problem for uncertain geometries. We adopt the same affine-parametric shape parametrization framework,
mapping the physical domains to a nominal polygonal domain with piecewise smooth maps. The regularity of the pullback solutions on the nominal domain is characterized in piecewise Sobolev spaces. We prove error convergence rates and optimize the algorithmic steering of parameters for edge-element discretizations in the nominal domain combined with: (a) multilevel Monte Carlo sampling, and (b) multilevel, sparse-grid quadrature for computing the expectation of the solutions with respect to uncertain domain ensembles. In addition, we analyze sparse-grid interpolation to compute surrogates of the domain-to-solution mappings. All calculations are performed on the polyhedral nominal domain, which enables the use of standard simplicial finite element meshes. We provide a rigorous fully discrete error analysis and show, in all cases, that dimension-independent algebraic convergence is achieved. For the multilevel sparse-grid quadrature methods, we prove higher order convergence rates which are free from the so-called curse of dimensionality, i.e.~independent of the number of parameters used to parametrize the admissible shapes. Numerical experiments confirm our theoretical results and verify the
superiority of the sparse-grid methods.
Keywords: Computational Electromagnetics, Uncertainty Quantification, Finite Elements, Shape Holomorphy, Smolyak Quadrature
BibTeX@Techreport{AJSZ22_1035, author = {R. Aylwin and C. Jerez-Hanckes and Ch. Schwab and J. Zech}, title = {Multilevel Domain Uncertainty Quantification in Computational Electromagnetics }, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2022-47}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2022/2022-47.pdf }, year = {2022} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).