Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
A-posteriori QMC-FEM error estimation for Bayesian inversion and optimal control with entropic risk measure
by M. Longo and Ch. Schwab and A. Stein
(Report number 2023-04)
Abstract
We propose a novel a-posteriori error estimation technique, where the target quantities of interest are ratios of high-dimensional integrals, as occur e.g. in PDE constrained Bayesian inversion and PDE constrained optimal control subject to an entropic risk measure.
We consider in particular parametric, elliptic PDEs with affine-parametric diffusion coefficient, on high-dimensional parameter spaces.
We combine our recent a-posteriori Quasi-Monte Carlo (QMC) error analysis, with Finite Element a-posteriori error estimation.
The proposed approach yields a computable a-posteriori estimator which is reliable, up to higher order terms.
The estimator's reliability is uniform with respect to the PDE discretization, and robust with respect to the parametric dimension of the uncertain PDE input.
Keywords: Quasi-Monte Carlo, a-posteriori estimator, Bayesian inverse problem, optimal control, parametric PDEs
BibTeX@Techreport{LSS23_1041, author = {M. Longo and Ch. Schwab and A. Stein}, title = {A-posteriori QMC-FEM error estimation for Bayesian inversion and optimal control with entropic risk measure}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2023-04}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2023/2023-04.pdf }, year = {2023} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).