Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Spectral convergence of defect modes in large finite resonator arrays
by H. Ammari and B. Davies and E.O. Hiltunen
(Report number 2023-05)
Abstract
We show that defect modes in infinite systems of resonators have corresponding modes in finite systems which converge as the size of the system increases. We study the generalized capacitance matrix as a model for three-dimensional coupled resonators with long-range interactions and consider defect modes that are induced by compact perturbations. If such a mode exists, then there are elements of the discrete spectrum of the corresponding truncated, finite system converging algebraically to each element of the pure point spectrum. This result, which concerns periodic lattices of arbitrary dimension in a three-dimensional differential system, is in contrast with the exponential convergence observed in one-dimensional problems. This is due to the presence of long-range interactions in the system, which gives a dense matrix model and shows that exponential convergence cannot be expected in physical systems.
Keywords: finite crystals, metamaterials, edge effects, capacitance coefficients, subwavelength resonance
BibTeX@Techreport{ADH23_1042, author = {H. Ammari and B. Davies and E.O. Hiltunen}, title = {Spectral convergence of defect modes in large finite resonator arrays}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2023-05}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2023/2023-05.pdf }, year = {2023} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).