Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Stability of the non-Hermitian skin effect
by H. Ammari and S. Barandun and B. Davies and E.O. Hiltunen and P. Liu
(Report number 2023-34)
Abstract
This paper shows that the skin effect in systems of non-Hermitian subwavelength resonators is robust with respect to random imperfections in the system. The subwavelength resonators are highly contrasting material inclusions that resonate in a low-frequency regime. The non-Hermiticity is due to the introduction of an imaginary gauge potential, which leads to a skin effect that is manifested by the system's eigenmodes accumulating at one edge of the structure. We elucidate the topological protection of the associated (real) eigenfrequencies and illustrate the competition between the two different localisation effects present when the system is randomly perturbed: the non-Hermitian skin effect and the disorder-induced Anderson localisation. We show that, as the strength of the disorder increases, more and more eigenmodes become localised in the bulk. Our results are based on an asymptotic matrix model for subwavelength physics and can be generalised also to tight-binding models in condensed matter theory.
Keywords: Non-Hermitian systems, non-Hermitian skin effect, subwavelength resonators, imaginary gauge potential, Toeplitz matrix, eigenvector condensation, Anderson localisation, stability analysis, disorder-induced phase transition.
BibTeX@Techreport{ABDHL23_1071, author = {H. Ammari and S. Barandun and B. Davies and E.O. Hiltunen and P. Liu}, title = {Stability of the non-Hermitian skin effect}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2023-34}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2023/2023-34.pdf }, year = {2023} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).