Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Deep ReLU networks and high-order finite element methods II: Chebyshev emulation
by J. A. A. Opschoor and Ch. Schwab
(Report number 2023-38)
Abstract
We show expression rates and stability in Sobolev norms of deep feedforward ReLU neural networks (NNs) in terms of the number of parameters defining the NN for continuous, piecewise polynomial functions, on arbitrary, finite partitions \(\mathcal{T}\) of a bounded interval \((a,b)\). Novel constructions of ReLU NN surrogates encoding function approximations in terms of Chebyshev polynomial expansion coefficients are developed which require fewer neurons than previous constructions. Chebyshev coefficients can be computed easily from the values of the function in the Clenshaw--Curtis points using the inverse fast Fourier transform. Bounds on expression rates and stability are obtained that are superior to those of constructions based on ReLU NN emulations of monomials as considered in [Opschoor, Petersen and Schwab, 2020] and [Montanelli, Yang and Du, 2021]. All emulation bounds are explicit in terms of the (arbitrary) partition of the interval, the target emulation accuracy and the polynomial degree in each element of the partition. ReLU NN emulation error estimates are provided for various classes of functions and norms, commonly encountered in numerical analysis. In particular, we show exponential ReLU emulation rate bounds for analytic functions with point singularities and develop an interface between Chebfun approximations and constructive ReLU NN emulations.
Keywords: Neural Networks, hp-Finite Element Methods, Chebyshev Expansions
BibTeX@Techreport{OS23_1075, author = {J. A. A. Opschoor and Ch. Schwab}, title = {Deep ReLU networks and high-order finite element methods II: Chebyshev emulation}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2023-38}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2023/2023-38.pdf }, year = {2023} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).