Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Nonparametric Regression of Stochastic Processes via Signatures
by A. Schell and R. Alaifari
(Report number 2023-45)
Abstract
Nonparametric regression of stochastic processes estimates statistical relationships between multidimensional, time-dependent data without relying on specific parametric assumptions. We propose a novel approach to this classical estimation problem by using the signature transform from rough path theory to encode the information of a stochastic process into a sequence of iterated integrals, capturing its statistical properties in a time-global and hierarchical manner. Viewing statistical regression as an operator learning problem, this signature-based discretisation allows us to characterise the conditional statistical dependence of a stochastic process on another stochastic process as the solution to a convex semi-infinite linear least squares problem. This result is based on a functional monotone class argument involving the bounded signature of the conditioning process and allows for the efficient and provably consistent nonparametric estimation of regression functions and conditional distributions for very general classes of jointly distributed stochastic processes as solutions to convex optimisation problems. The structural insights of this approach are summarised in two universally consistent regression estimators that are computable with practical algorithms and supported by broad theoretical guarantees.
Keywords: conditional expectation, conditional distribution, conditional probability, supervised learning, nonparametric regression, functional regression, function approximation
BibTeX@Techreport{SA23_1082, author = {A. Schell and R. Alaifari}, title = {Nonparametric Regression of Stochastic Processes via Signatures}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2023-45}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2023/2023-45.pdf }, year = {2023} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).