> simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > > simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > Research reports – Seminar for Applied Mathematics | ETH Zurich

Research reports

Electromagnetic scattering at composite objects: A novel multi-trace boundary integral formulation

by X. Claeys and R. Hiptmair

(Report number 2011-58)

Abstract
Since matrix compression has paved the way for discretizing the boundary integral equation formulations of electromagnetics scattering on very fine meshes, preconditioners for the resulting linear systems have become key to efficient simulations. Operator preconditioning based on Calderon identities has proved to be a powerful device for devising preconditioners. However, this is not possible for the usual first-kind boundary formulations for electromagnetic scattering at general penetrable composite obstacles. We propose a new first-kind boundary integral equation formulation following the reasoning employed in [X.Claeys and R.Hiptmair, Boundary integral formulation of the first kind for acoustic scattering by composite structures, Technical Report no. 2011-45, SAM, ETH Zuerich, 2011] for acoustic scattering. We call it multi-trace formulation, because its unknowns are two pairs of traces on interfaces in the interior of the scatterer. We give a comprehensive analysis culminating in a proof of coercivity, and uniqueness and existence of solution. We establish a Calderon identity for the multi-trace formulation, which forms the foundation for operator preconditioning in the case of conforming Galerkin boundary element discretization.

Keywords:

BibTeX
@Techreport{CH11_110,
  author = {X. Claeys and R. Hiptmair},
  title = {Electromagnetic scattering at composite objects: A novel multi-trace boundary integral formulation},
  institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich},
  number = {2011-58},
  address = {Switzerland},
  url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2011/2011-58.pdf },
  year = {2011}
}

Disclaimer
© Copyright for documents on this server remains with the authors. Copies of these documents made by electronic or mechanical means including information storage and retrieval systems, may only be employed for personal use. The administrators respectfully request that authors inform them when any paper is published to avoid copyright infringement. Note that unauthorised copying of copyright material is illegal and may lead to prosecution. Neither the administrators nor the Seminar for Applied Mathematics (SAM) accept any liability in this respect. The most recent version of a SAM report may differ in formatting and style from published journal version. Do reference the published version if possible (see SAM Publications).

JavaScript has been disabled in your browser